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VSS Recap…

• Common approach for describing vehicle data for machines 

& humans, and a bit more.

• Provides a common understanding across the value chain of 

the Connected Vehicle.
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Where to best leverage VSS?
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Deeply-Embedded Layer
§ Small µCs
§ CAN/LIN
§ Very proprietary
Not a happy place for VSS

Backend
§ The cloud
§ Aggregating data of many vehicles
§ Link data to other domains
You want common data models: VSS
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Our Answer
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§ Start converting to the VSS world in a Vehicle computer* , 
because

§ This is the place the industry is working on decoupling 
hard- from software

§ Here you save money & effort with more 
generic/portable software

§ Here you can afford the costs of abstraction
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§ Has you covered transforming signals from different parts of your 
E/E architecture to VSS.

§ Provides secure access to VSS signals using simple to use interfaces
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§ 100% Open Source Eclipse Project (Apache 2.0 license)

§ ”In-vehicle digital twin” based on VSS

§ Lightweight (core written in C++/RUST)

§ Only providing “current” view (no historic data)

§ No access without authorisation

§ Easy to use language-agnostic  interfaces (VISS/GRPC)

§ Data Feeders to transform data to VSS

§ Support for simple VSS actors 

KUKSA.val Scope and Design Choices
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.val

App

Non-VSS data

Feeder

KUKSA.val
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Feeder Concept
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Doing the heavy lifting of transforming 
custom signals to VSS format and pushing 
them to KUKSA.val

Using the standard KUKSA.val VISS or GRPC 
interface

Fully configurable CAN feeder available as 
OSS

SOME/IP feeder blueprint available as OSS 
(soon)

.val
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KUKSA Protocol Options
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KUKSA W3C VISS dialect

§ Websocket + JSON
§ Support get/set subscribe (no complex filters, but 

basic calls and replies should be compliant with 
W3C VISS V2)

§ Extension: KUKSA authorisation
§ Extension: Extend/modify VSS tree during runtime
§ Extension: You can make a difference between 

dealing with current values and target values 
(relevant for actuators)

§ Suported by the KUKSA.val server (C++)

KUKSA Python library for even easier access to basic functionality with just a few lines of code 

.val

KUKSA GRPC interface

§ Binary efficient rpc protocol realised with grpc.io 
§ Supports almost any programming language
§ Supports get/set subscribe for sensors and 

actuators
§ More fine grained control over wich 

fields/metadata are to be read or set
§ (Soon) supported by the KUKSA.val databroker 

(RUST) and kuksa.val server (C++)

https://grpc.io/


Sensors & Actuators in KUKSA.val
• We do not want this to replace any complex RPC/SoA middleware with KUKSA.val, but 

we do want to be able to “actuate” simple things

.val

Set HVAC.temperature target

KUKSA.val

Temp:     20°C
Current:  35°C

Subscribe 
HVAC.temperature current

HVAC control

Subscribe HVAC.temperature target

E/E network: CAN, SOME/IP, LIN, DDS, etc.

HVAC feeder

Set 
HVAC.temperature current



Security Model
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What you get

§ TLS for Websocket and GRPC
§ No access without JWT based authorisation
§ Flat permisson model in KUKSA.val

.val

Bring your own

§ Key & Certificate Management (Provisoning, 
Expiration)

§ Complex Role based access models
§ Bring you own IDM/IAM!

§ Deployment/Granularity: 
§ Individual Authorisation for each 

App/function 
§ Authorisaton per environment 

(Runtime/ECU): “All IVI components have 
access to these signals”



Beyond KUKSA.val: Eclipse Velocitas
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§ KUKSA.val has you covered transforming signals to VSS and having them accessible inside a vehicle

§ In case you are also  searching for solutions
§ How to structure your Vehicle App
§ How to structure your development and delivery workflow
§ How to test, package and deploy in-vehicle Applications

Check out Eclipse Velocitas
https://eclipse-velocitas.github.io/velocitas-docs/

https://eclipse-velocitas.github.io/velocitas-docs/


Eclipse Velocitas Toolchain & SDK
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Takeaway
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§ The most promising location to adopt VSS is in a Vehicle Computer

§ It is very feasible cost/effort-wise

§ Here you can start profitting from the benefits of a common data model and “IT-like” technologies

§ You are not alone, for architecture patterns and Open Source software components check out

§ https://www.eclipse.org/kuksa/

§ https://github.com/eclipse/kuksa.val

§ For a more complete, opinionated solution how to develop, test and deploy Vehicle Applications, check out 

Eclipse Velocitas. Batteries (KUKSA.val) already included!

§ https://eclipse-velocitas.github.io/velocitas-docs/

.val

Both  projects are proud members of https://sdv.eclipse.org and open to any interested party 

https://www.eclipse.org/kuksa/
https://github.com/eclipse/kuksa.val
https://eclipse-velocitas.github.io/velocitas-docs/
https://sdv.eclipse.org/


Thank you

Stay in contact

https://github.com/eclipse/kuksa.val
https://eclipse.org/kuksa

sebastian.schildt@de.bosch.com

https://github.com/eclipse/kuksa.val
https://eclipse.org/kuksa
mailto:sebastian.schildt@de.bosch.com

