
Applying VSS in-Vehicle
Patterns and OSS building blocks

September 18th

| 1

VSS Recap…

• Common approach for describing vehicle data for machines

& humans, and a bit more.

• Provides a common understanding across the value chain of

the Connected Vehicle.

| 3

Where to best leverage VSS?

Copyright ©2022 COVESA1 November 2022 |

Deeply-Embedded Layer
§ Small µCs
§ CAN/LIN
§ Very proprietary
Not a happy place for VSS

Backend
§ The cloud
§ Aggregating data of many vehicles
§ Link data to other domains
You want common data models: VSS

Searching for

the sw
eet sp

ot

| 4

Our Answer

Copyright ©2022 COVESA1 November 2022 |

§ Start converting to the VSS world in a Vehicle computer* ,
because

§ This is the place the industry is working on decoupling
hard- from software

§ Here you save money & effort with more
generic/portable software

§ Here you can afford the costs of abstraction

D
ee

pl
y

Em
be

dd
ed

Ve
hi

cl
e

Co
m

pu
te

r App SwCApp

O
ff-

bo
ar

d
* Som

ething w
ith a processor

and a full blow
n (PO

SIX) O
S

.val

§ Has you covered transforming signals from different parts of your
E/E architecture to VSS.

§ Provides secure access to VSS signals using simple to use interfaces

| 5

§ 100% Open Source Eclipse Project (Apache 2.0 license)

§ ”In-vehicle digital twin” based on VSS

§ Lightweight (core written in C++/RUST)

§ Only providing “current” view (no historic data)

§ No access without authorisation

§ Easy to use language-agnostic interfaces (VISS/GRPC)

§ Data Feeders to transform data to VSS

§ Support for simple VSS actors

KUKSA.val Scope and Design Choices

Copyright ©2022 COVESA1 November 2022 |

.val

App

Non-VSS data

Feeder

KUKSA.val

| 6

Feeder Concept

Copyright ©2022 COVESA1 November 2022 |

Doing the heavy lifting of transforming
custom signals to VSS format and pushing
them to KUKSA.val

Using the standard KUKSA.val VISS or GRPC
interface

Fully configurable CAN feeder available as
OSS

SOME/IP feeder blueprint available as OSS
(soon)

.val

| 7

KUKSA Protocol Options

Copyright ©2022 COVESA1 November 2022 |

KUKSA W3C VISS dialect

§ Websocket + JSON
§ Support get/set subscribe (no complex filters, but

basic calls and replies should be compliant with
W3C VISS V2)

§ Extension: KUKSA authorisation
§ Extension: Extend/modify VSS tree during runtime
§ Extension: You can make a difference between

dealing with current values and target values
(relevant for actuators)

§ Suported by the KUKSA.val server (C++)

KUKSA Python library for even easier access to basic functionality with just a few lines of code

.val

KUKSA GRPC interface

§ Binary efficient rpc protocol realised with grpc.io
§ Supports almost any programming language
§ Supports get/set subscribe for sensors and

actuators
§ More fine grained control over wich

fields/metadata are to be read or set
§ (Soon) supported by the KUKSA.val databroker

(RUST) and kuksa.val server (C++)

https://grpc.io/

Sensors & Actuators in KUKSA.val
• We do not want this to replace any complex RPC/SoA middleware with KUKSA.val, but

we do want to be able to “actuate” simple things

.val

Set HVAC.temperature target

KUKSA.val

Temp: 20°C
Current: 35°C

Subscribe
HVAC.temperature current

HVAC control

Subscribe HVAC.temperature target

E/E network: CAN, SOME/IP, LIN, DDS, etc.

HVAC feeder

Set
HVAC.temperature current

Security Model

01.11.22 9

What you get

§ TLS for Websocket and GRPC
§ No access without JWT based authorisation
§ Flat permisson model in KUKSA.val

.val

Bring your own

§ Key & Certificate Management (Provisoning,
Expiration)

§ Complex Role based access models
§ Bring you own IDM/IAM!

§ Deployment/Granularity:
§ Individual Authorisation for each

App/function
§ Authorisaton per environment

(Runtime/ECU): “All IVI components have
access to these signals”

Beyond KUKSA.val: Eclipse Velocitas

01.11.22 10

§ KUKSA.val has you covered transforming signals to VSS and having them accessible inside a vehicle

§ In case you are also searching for solutions
§ How to structure your Vehicle App
§ How to structure your development and delivery workflow
§ How to test, package and deploy in-vehicle Applications

Check out Eclipse Velocitas
https://eclipse-velocitas.github.io/velocitas-docs/

https://eclipse-velocitas.github.io/velocitas-docs/

Eclipse Velocitas Toolchain & SDK

01.11.22 11

Vehicle Model
Generator

VSS

Vehicle Model

generates

uses

uses

Programming Model

SDK

Vehicle Model
Generator

Vehicle Application Template

VSS

Vehicle Model

generates

uses

uses

Vehicle
Application 1

VSS

Vehicle Abstraction Layer

VSS

Vehicle
Application 1

VSS VSS VSS VSS

KUKSA Data Broker

CAN
Feeder DDS Feeder

Middleware

Vehicle
Application n

VSS
VSS

KUKSA Data Broker

CAN
Feeder DDS Feeder …

CAN
Feeder DDS Feeder DDS

Feeder
CAN

Feeder
SOME/IP Fee

der

Vehicle App
Developer

wants to
develop

….

Deployment Target Runtime,
e.g. Docker or Device running Leda

uses

Dev
Container

Central
Configuration (via

AppManifest)

Vehicle App Skeleton

CI/Release
workflow

Dev
Container

Application Runtime
Services

Test Framework

Central
Configuration (via

AppManifest)

Vehicle App Skeleton

Vehicle App
Abstraction

Kuksa Data
Broker Client ExamplesMiddle-ware

API
Vehicle App
Abstraction

Kuksa Data
Broker Client ExamplesMiddle-ware

API

uses

12

Takeaway

01.11.22

§ The most promising location to adopt VSS is in a Vehicle Computer

§ It is very feasible cost/effort-wise

§ Here you can start profitting from the benefits of a common data model and “IT-like” technologies

§ You are not alone, for architecture patterns and Open Source software components check out

§ https://www.eclipse.org/kuksa/

§ https://github.com/eclipse/kuksa.val

§ For a more complete, opinionated solution how to develop, test and deploy Vehicle Applications, check out

Eclipse Velocitas. Batteries (KUKSA.val) already included!

§ https://eclipse-velocitas.github.io/velocitas-docs/

.val

Both projects are proud members of https://sdv.eclipse.org and open to any interested party

https://www.eclipse.org/kuksa/
https://github.com/eclipse/kuksa.val
https://eclipse-velocitas.github.io/velocitas-docs/
https://sdv.eclipse.org/

Thank you

Stay in contact

https://github.com/eclipse/kuksa.val
https://eclipse.org/kuksa

sebastian.schildt@de.bosch.com

https://github.com/eclipse/kuksa.val
https://eclipse.org/kuksa
mailto:sebastian.schildt@de.bosch.com

