GENIVIALL MEMBER MEETING - A DIGITAL EXPERIENCE

DIGITAL TWIN CONCEPTS APPLIED TO VEHICLE DATA

RAINER LANG
CHIEF DIGITAL OFFICE MOBILITY

DIMITRIOS STAVRIANOSE/E-ARCHITECT POWERTRAIN SOLUTION

www.linkedin.com/in/lang-rainer

www.linkedin.com/in/dimitrios-stavrianos

Digital Twin Concepts Applied to Vehicle Data We are working on the Data Driven Life Cycle

Digital Twin Concepts Applied to Vehicle Data Closing the Loop needs Open Standards & Partnering

Data as produced – example: Open Manufacturing Platform (OMP)

Bosch is currently **active in manufacturing** with its digital twin. With the increasing relevance of **the integrated life cycle management**, manufacturing, supply chain and logistics

Digital Twin Concepts Applied to Vehicle Data Interoperability of Digital Twins needs open standards

Digital Twin 2nd Generation

Digital Twin Concepts Applied to Vehicle Data

Lifecycle Interaction Beyond Production

Lifecycle Interaction Beyond Production

Key Facts

- Use statistical robustness of vehicle fleets for real world fitting
- Vehicles are part of extended development and validation environment
- Optimize Hard- & Software
- Speed up SW development and innovation Cycles
- Establish digital twin based services

End-2-End Service Architecture Mandatory for Secure & Safe Handling of Data / Configuration / Code

Digital Twin Concepts Applied to Vehicle Data

End-2-End Service Architecture

