
Towards a vehicle DATA specification

An API-first approach to model vehicle-related data.

| 1
Copyright ©2024 COVESA

04.2024

1

2

Background
VSS analysis and limits
Previous attempts for more expressivity

Proposal
VSS feature set correspondence in GraphQL
Other features

Conclusion
Summary
Q&A

3

4

3

1

2

Background
VSS analysis and limits
Previous attempts for more expressivity

Proposal
VSS feature set correspondence in GraphQL
Other features

Conclusion
Summary
Q&A

3

4

3

What is VSS (in one sentence)?

Photo by Denys Nevozhai on Unsplash

https://unsplash.com/@dnevozhai?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/aerial-photography-of-concrete-roads-7nrsVjvALnA?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

| 6

(current) VSS is a controlled vocabulary of car properties organized in a tree hierarchy.

Vehicle Signal Specification (VSS)

✔ Easy to contribute and maintain (e.g., YAML files)
✔ Friendly for non-experts
✔ Tools to export it in different formats
✔ Serve as a naming convention for vehicle properties

https://covesa.github.io/vehicle_signal_specification/

https://covesa.github.io/vehicle_signal_specification/

What is the current scope of VSS?

Photo by Victor Sánchez Berruezo on Unsplash

https://unsplash.com/@vberruezo?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/aerial-photography-of-highway-road-XC_L00hjUww?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

| 8

Our understanding of the functional requirements covered by VSS.*

Functional requirement VSS item

Model can be specified in multiple files. Include

Human-friendly context is provided. Concatenated path

Hierarchical concept scheme to group properties belonging to the same area of interest is supported. Branch type
Aggregate

Properties can be grouped . Aggregate
Struct

Properties whose values do not change often can be specified. Attribute type

Properties whose value might change often can be specified as observable or actuatable. Sensor type
Actuator type

Definitions can be reused when there are multiple occurrences. Instances

Arrays or lists are supported. Arrays (i.e., datatype[])

Extended list of primitive datatypes is supported. (u)intX, boolean, float, double, string

Units and quantity kind can be specified. Unit
Dimension

Default values can be specified. Default

Allowed values can be specified. allowed: [‘value1’, ..., ‘valueN’]

A custom redefinition of the concepts is possible. Overlay

Min and max expected values can be specified. min: 0
max: 100

Concepts in the model can evolve. deprecation

* As of 02.2024. Interpretation of the official project documentation available at: https://covesa.github.io/vehicle_signal_specification/

https://covesa.github.io/vehicle_signal_specification/

Do these features have any limit, disadvantage or problem?

Photo by Victor Sánchez Berruezo on Unsplash

https://unsplash.com/@vberruezo?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/aerial-photography-of-highway-road-XC_L00hjUww?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

| 10

VSS limits* (1)

* Disclaimer: The opinion presented does not necessarily reflect the thinking of the entire alliance. More than a critique, it is an invitation to improve collectively.
** The identifiers have been recently addressed by the inclusion of a mechanism that creates a hashed UUID and it is expected to be used in the future.

▪ No unified or controlled criteria is given for classifying the information in one tree.
▪ Using multiple classification criteria within the same concept scheme (i.e., tree) is a bad practice.
▪ Often used as the ID.**

VSS item

Include

Concatenated path

Branch type
Aggregate

Aggregate
Struct

Attribute type

Sensor type
Actuator type

Instances

Arrays (i.e., datatype[])

(u)intX, boolean, float, double, string

Unit
Dimension

Default

allowed: [‘value1’, ..., ‘valueN’]

Overlay

min: 0
max: 100

deprecation

Where would you locate concepts of mutual interest? (e.g., ChargingSession, SeatOccupancy)

| 11

VSS limits* (2)

▪ Branches provide context only. The primary focus is on SomeFeatureOfInterest.SomeProperty.
▪ The dot separator has various different implicit meanings.
▪ One tree can effectively cover one domain only.

VSS item

Include

Concatenated path

Branch type
Aggregate

Aggregate
Struct

Attribute type

Sensor type
Actuator type

Instances

Arrays (i.e., datatype[])

(u)intX, boolean, float, double, string

Unit
Dimension

Default

allowed: [‘value1’, ..., ‘valueN’]

Overlay

min: 0
max: 100

deprecation

Cabin.Door.Window

Cabin.(<--partOf--)Door.(<--partOf--)Window

Vehicle components or physical parts (i.e., material things).

Battery.Charging

Battery.(<--functionOf--)Charging

Functions of a physical part (i.e., immaterial things also part of the same concept scheme).

* Disclaimer: The opinion presented does not necessarily reflect the thinking of the entire alliance. More than a critique, it is an invitation to improve collectively.

| 12

VSS limits* (3)

▪ Little to no use of them in the public VSS.
▪ No control over how vehicle properties are used in the actual implementation.
▪ Mix up between the responsibilities of a data model and a data schema.

VSS item

Include

Concatenated path

Branch type
Aggregate

Aggregate
Struct

Attribute type

Sensor type
Actuator type

Instances

Arrays (i.e., datatype[])

(u)intX, boolean, float, double, string

Unit
Dimension

Default

allowed: [‘value1’, ..., ‘valueN’]

Overlay

min: 0
max: 100

deprecation

P1

P2

PN

Struct → R&W collectively.
Aggregate → R&W atomically. Enforced by whom?

* Disclaimer: The opinion presented does not necessarily reflect the thinking of the entire alliance. More than a critique, it is an invitation to improve collectively.

| 13

VSS limits* (4)

▪ No timestamp associated to the actual data. It must be complemented with the time domain in the schema.
▪ If an attribute change its value, how is the history supposed to be handled?
▪ Is the history a task of the model, or the actual database that uses the model?

VSS item

Include

Concatenated path

Branch type
Aggregate

Aggregate
Struct

Attribute type

Sensor type
Actuator type

Instances

Arrays (i.e., datatype[])

(u)intX, boolean, float, double, string

Unit
Dimension

Default

allowed: [‘value1’, ..., ‘valueN’]

Overlay

min: 0
max: 100

deprecation

* Disclaimer: The opinion presented does not necessarily reflect the thinking of the entire alliance. More than a critique, it is an invitation to improve collectively.

| 14

VSS limits* (5)

▪ No single sensor or actuator is being modeled (VSS models the properties and the features of interest).
▪ The read and write capabilities are ultimately defined in the actual implementation.

VSS item

Include

Concatenated path

Branch type
Aggregate

Aggregate
Struct

Attribute type

Sensor type
Actuator type

Instances

Arrays (i.e., datatype[])

(u)intX, boolean, float, double, string

Unit
Dimension

Default

allowed: [‘value1’, ..., ‘valueN’]

Overlay

min: 0
max: 100

deprecation

* Disclaimer: The opinion presented does not necessarily reflect the thinking of the entire alliance. More than a critique, it is an invitation to improve collectively.

Vehicle.Speed:
 type: sensor
 datatype: float
 unit: km/h
 description: Vehicle speed.

We don’t model the sensor (e.g., Speedometer)
but the property Speed.

Vehicle.Cabin.Seat.[instance].Position:
 type: actuator
 datatype: uint16
 unit: mm
 description: Seat position...
 min: 0

We don’t model the actuator (e.g., SeatPositionMotor)
but the seat’s property Position.

| 15

VSS limits* (6)

▪ Default instances are not necessarily going to be used. A user can always overwrite.
▪ Instance definition should be decoupled from the actual definition of the concept that can be instantiated.
▪ The resulting path has the instance name embedded.

VSS item

Include

Concatenated path

Branch type
Aggregate

Aggregate
Struct

Attribute type

Sensor type
Actuator type

Instances

Arrays (i.e., datatype[])

(u)intX, boolean, float, double, string

Unit
Dimension

Default

allowed: [‘value1’, ..., ‘valueN’]

Overlay

min: 0
max: 100

deprecation

* Disclaimer: The opinion presented does not necessarily reflect the thinking of the entire alliance. More than a critique, it is an invitation to improve collectively.

| 16

VSS limits* (7)

VSS item

Include

Concatenated path

Branch type
Aggregate

Aggregate
Struct

Attribute type

Sensor type
Actuator type

Instances

Arrays (i.e., datatype[])

(u)intX, boolean, float, double, string

Unit
Dimension

Default

allowed: [‘value1’, ..., ‘valueN’]

Overlay

min: 0
max: 100

deprecation

* Disclaimer: The opinion presented does not necessarily reflect the thinking of the entire alliance. More than a critique, it is an invitation to improve collectively.

▪ Currently, no support for multiple units that belong to the same quantity kind (ongoing discussion).
▪ The resulting path has the instance name embedded.

Is the timestamp unit?
Should it not be a datatype?

| 17

VSS limits* (8)

VSS item

Include

Concatenated path

Branch type
Aggregate

Aggregate
Struct

Attribute type

Sensor type
Actuator type

Instances

Arrays (i.e., datatype[])

(u)intX, boolean, float, double, string

Unit
Dimension

Default

allowed: [‘value1’, ..., ‘valueN’]

Overlay

min: 0
max: 100

deprecation

* Disclaimer: The opinion presented does not necessarily reflect the thinking of the entire alliance. More than a critique, it is an invitation to improve collectively.

▪ Information-only (i.e., just referencial).
▪ Validation is not part of the model but of the implementation.

Are there other considerations or misunderstandings?

Photo by Pablo García Saldaña on Unsplash

https://unsplash.com/@pagsa_?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/yellow-arrow-road-sign-lPQIndZz8Mo?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

| 19

Yes, here are a few aspects that require attention:

https://wiki.covesa.global/display/WIK4/Defining+the+COVESA+data+modeling+strategy+and+its+associated+artifacts

Vehicle
• So far, the focus has been entirely on cars and not vehicles!
• What about buses, motorcycles, hydrofoils, planes, etc.?

Signal
• In VSS, a "signal" is more like the property of a feature of interest
• VSS doesn't cover the physical wire carrying information, where multiple properties can be encoded (i.e., a Signal).

Specification of what exactly?
• The agreement on the meaning (i.e., conceptual or logical area)?
• The agreement on the data structure (i.e., application or physical area)?

https://wiki.covesa.global/display/WIK4/Defining+the+COVESA+data+modeling+strategy+and+its+associated+artifacts

| 20

Are we using the right tool for the job?

Term list

No hierarchies

• Passenger

• Car

• Person

• Vehicle

• Charging station

• ...

Taxonomy (or tree structures)

An organized list of terms

• Vehicle

• Car

• Train

• Person

• Driver

• Passenger

• ...

Thesaurus

A taxonomy extension that defines the
concepts further.

• Vehicle

• Preferred label
🡪 Vehicle @en

• Term in other languages
🡪 Vehículo @es

• Synonyms
🡪 Automobile

• ...

Ontology (or semantic networks)

A formalization of our knowledge in one
or multiple domains with the
relationships and interactions between
concepts

• A Person can own a Vehicle.

• A Passenger is a Person that moves
inside a Vehicle which is driven by a
different Person.

• A Driver cannot be a Passenger.

• A Car is a Vehicle that has four
wheels.

• ...

Machine
readable

Data model? → Conceptual abstraction of a domain
Common goal? → To serve as a controlled vocabulary

• Question translates to “What do I want to express in the data model”?

*(Figure) Semantic spectrum, adapted from:
H. Hedden, The accidental taxonomist,
Third edition. Medford, New Jersey: Information Today, Inc, 2022.

Complexity & Expressiveness MoreLess

VSS tree

GraphQL Schema Language

SCHACL

OWL

Shape of data in APIs using a graph structure
(i.e., multiple arbitrary trees) with types and fields.

SKOS

Vocabularies.

Constraint language
for RDF data

Reasoning.
Custom classification
concept scheme.

| 21

Previous attempts for increased expressivity

VSS

SOSA

Ontology

VSSo
SSN

AMM Porto
04.2023

AMM Gothenburg
04.2024

▪ (BMW) An ontology for vehicle-related data.
▪ (Ford) Integrating Vehicle Signals with VSS and Metadata.
▪ (Ford) Transforming from a vehicle centric data model to a domain agnostic information model.
▪ (SPREAD) GraphQL schema as a contract.
https://wiki.covesa.global/display/WIK4/Data+Models+and+Ontologies

W3C
Discontinued Draft

02.2024

▪ B. Klotz, R. Troncy, D. Wilms and C. Bonnet. “VSSo: A Vehicle Signal and Attribute Ontology,” 2018.
▪ D. Wilms, D. Alvarez-Coello and A. Bekan, "An Evolving Ontology for Vehicle Signals," 2021.
▪ https://www.w3.org/TR/vsso

Vspec2ttl

(contrib)

W3C member

submission

This presentation / proposal

Some lessons learned

• Semantic Web → Steep learning curve for newcomers.
• Ontology modeling is a niche area (e.g., OWL).
• Often perceived as unnecessary overhead.
• Reasoning is (currently) a non-priority feature.
• Integration of domains has the highest priority.

Functional requirement

Approach can be applied to other domains (i.e., not-only cars).

Main modeling view is the feature of interest and the related properties.

Multiple (arbitrary) hierarchies are possible.

Schema as a contract.

https://wiki.covesa.global/display/WIK4/Data+Models+and+Ontologies
https://www.w3.org/TR/vsso/

1

2

Background
VSS analysis and limits
Previous attempts for more expressivity

Proposal
VSS feature set correspondence in GraphQL
Other features

Conclusion
Summary
Q&A

3

4

3

VSS tree

| 23

High amount of explicit context (i.e., ontology) is key for being data-centric.

S
E

M
A

N
T

I
C

S

*On the Importance of semantic data models in modern architectures:
D. Alvarez-Coello, D. Wilms, A. Bekan, and J. Marx Gómez, “Towards a Data-Centric Architecture in the Automotive Industry,”
in Procedia Computer Science, Algarve, Portugal: Elsevier, Feb. 2021, pp. 658–663. doi: 10.1016/j.procs.2021.01.215.

**(Figure) The DIKW hierarchy, interpreted from:
J. Rowley, “The wisdom hierarchy: representations of the DIKW hierarchy,”
Journal of Information Science, vol. 33, no. 2, pp. 163–180, Apr. 2007, doi: 10.1177/0165551506070706.

https://doi.org/10.1177/0165551506070706

| 24

GraphQL in a nutshell.

| 25

VSS examples in GraphQL (1)

▪ Multiple files possible → Splitting by Domain or Type as needed → You model a network and not a single tree
▪ Modularization is possible → Smaller (more manageable) pieces
▪ Schema Stitching (aka., Schema Merging) → Combine everything into a bigger schema

VSS item

Include

Concatenated path

Branch type
Aggregate

Aggregate
Struct

Attribute type

Sensor type
Actuator type

Instances

Arrays (i.e., datatype[])

(u)intX, boolean, float, double, string

Unit
Dimension

Default

allowed: [‘value1’, ..., ‘valueN’]

Overlay

min: 0
max: 100

deprecation

type Door {
 isOpen: Boolean!
 window: Window
}

type Window {
 position: String!
}

DoorSchema.graphql

WindowSchema.graphql

| 26

VSS examples in GraphQL (2)

VSS item

Include

Concatenated path

Branch type
Aggregate

Aggregate
Struct

Attribute type

Sensor type
Actuator type

Instances

Arrays (i.e., datatype[])

(u)intX, boolean, float, double, string

Unit
Dimension

Default

allowed: [‘value1’, ..., ‘valueN’]

Overlay

min: 0
max: 100

deprecation

"""
High-level vehicle data.
"""
type Vehicle {
 """
 Overall vehicle width.

 @original_datatype: VSSDataType.UINT16

 @unit: LenghtUnit

 """

 width: Int @deprecated(reason: "v4.1 replaced with

WidthExcludingMirrors and WidthIncludingMirrors")

}

"""
Attributes that identify a vehicle.
"""
type Vehicle_VehicleIdentification {
 """
 17-character Vehicle Identification Number (VIN) as
defined by ISO 3779.
 """
 vin: String
}

Vehicle.Width:

 datatype: uint16

 default: 0

 deprecation: v4.1 replaced with WidthExcludingMirrors

and WidthIncludingMirrors

 description: Overall vehicle width.

 type: attribute

 unit: mm

Vehicle.VehicleIdentification:

 description: Attributes that identify a vehicle.

 type: branch

Vehicle.VehicleIdentification.VIN:

 datatype: string

 type: attribute

 description: 17-character Vehicle Identification

Number (VIN) as defined by ISO 3779.

| 27

VSS examples in GraphQL (3)

VSS item

Include

Concatenated path

Branch type
Aggregate

Aggregate
Struct

Attribute type

Sensor type
Actuator type

Instances

Arrays (i.e., datatype[])

(u)intX, boolean, float, double, string

Unit
Dimension

Default

allowed: [‘value1’, ..., ‘valueN’]

Overlay

min: 0
max: 100

deprecation

"""All Advanced Driver Assist Systems data."""

type Vehicle_ADAS {

"""
Some description here...
"""
 supportedAutonomyLevel: AutonomyLevel

enum AutonomyLevel {
 SAE_0
 SAE_1
 SAE_2
 SAE_3
 SAE_4
 SAE_5
}

Vehicle.ADAS:

 description: All Advanced Driver Assist Systems data.

 type: branch

Vehicle.ADAS.SupportedAutonomyLevel:

 datatype: string

 type: attribute

 allowed: [

 'SAE_0', # No Driving Automation

 'SAE_1', # Driver Assistance

 'SAE_2', # Partial Driving Automation

 'SAE_3', # Conditional Driving Automation

 'SAE_4', # High Driving Automation

 'SAE_5' # Full Driving Automation

]

 description: Some description here...

Vehicle.ADAS.ABS:

 description: Antilock Braking System signals.

 type: branch

Vehicle.ADAS.ABS.IsEnabled:

 datatype: boolean

 description: Indicates if ABS is ...

 type: actuator

Vehicle.ADAS.ABS.IsEngaged:

 datatype: boolean

 description: ...True = Engaged. False = Not Engaged.

 type: sensor

| 28

VSS examples in GraphQL (4)

▪ In GraphQL, we specify:
→ the shape of the data
→ the operations that can be performed

▪ Query → Read (i.e., vss sensor type)
▪ Mutation → Write (i.e., vss actuator type),

Update, Delete

VSS item

Include

Concatenated path

Branch type
Aggregate

Aggregate
Struct

Attribute type

Sensor type
Actuator type

Instances

Arrays (i.e., datatype[])

(u)intX, boolean, float, double, string

Unit
Dimension

Default

allowed: [‘value1’, ..., ‘valueN’]

Overlay

min: 0
max: 100

deprecation

"""
Antilock Braking System signals.
"""
type Vehicle_ADAS_ABS {
 """Indicates if ABS is..."""
 isEnabled: Boolean
 """... True = Engaged. False = Not Engaged."""
 isEngaged: Boolean
}

Vehicle.ADAS:

 description: All Advanced Driver Assist Systems data.

 type: branch

Vehicle.ADAS.SupportedAutonomyLevel:

 datatype: string

 type: attribute

 allowed: [

 'SAE_0', # No Driving Automation

 'SAE_1', # Driver Assistance

 'SAE_2', # Partial Driving Automation

 'SAE_3', # Conditional Driving Automation

 'SAE_4', # High Driving Automation

 'SAE_5' # Full Driving Automation

]

 description: Some description here...

Vehicle.ADAS.ABS:

 description: Antilock Braking System signals.

 type: branch

Vehicle.ADAS.ABS.IsEnabled:

 datatype: boolean

 description: Indicates if ABS is ...

 type: actuator

Vehicle.ADAS.ABS.IsEngaged:

 datatype: boolean

 description: ...True = Engaged. False = Not Engaged.

 type: sensor

query {
 getVehicleADASABS {
 isEnabled
 }
}

mutation {
 updateVehicleADASABS(input: { isEnabled: true }) {
 isEnabled
 }
}

| 29

VSS examples in GraphQL (5)

▪ Things like doorCount can be resolved directly with a query.
VSS item

Include

Concatenated path

Branch type
Aggregate

Aggregate
Struct

Attribute type

Sensor type
Actuator type

Instances

Arrays (i.e., datatype[])

(u)intX, boolean, float, double, string

Unit
Dimension

Default

allowed: [‘value1’, ..., ‘valueN’]

Overlay

min: 0
max: 100

deprecation

"""All in-cabin components, including doors."""
type Vehicle_Cabin {
 """
 Number of doors in vehicle.
 @original_datatype: VSSDatatype.UINT8
 @default: 4"""
 doorCount: Int

 """
 All doors…
 instances: ['Row[1,2]', ['DriverSide', 'PassengerSide']]
 """
 door:Vehicle_Cabin_Door
}

"""All doors..."""
type Vehicle_Cabin_Door {
 """Door window status..."""
 window: Vehicle_Cabin_Door_Window
}

"""Door window status..."""
type Vehicle_Cabin_Door_Window {
 """
 Some description…
 @original_datatype: VSSDataType.UINT8
 @unit: percent
 @min: 0
 @max: 100
 """
 position: Int
}

Vehicle.Cabin.Door:

 type: branch

 instances:

 - Row[1,2]

 - ["DriverSide","PassengerSide"]

 description: All doors...

Vehicle.Cabin.DoorCount:

 datatype: uint8

 default: 4

 description: Number of doors in vehicle.

 type: attribute

Vehicle.Cabin.Door.Row1.DriverSide.Window:

 type: branch

 description: Door window status...

Vehicle.Cabin.Door.Row1.DriverSide.Window.Position:

 datatype: uint8

 type: actuator

 min: 0

 max: 100

 unit: percent

 description: Some description...

| 30

VSS examples in GraphQL (6)

VSS item

Include

Concatenated path

Branch type
Aggregate

Aggregate
Struct

Attribute type

Sensor type
Actuator type

Instances

Arrays (i.e., datatype[])

(u)intX, boolean, float, double, string

Unit
Dimension

Default

allowed: [‘value1’, ..., ‘valueN’]

Overlay

min: 0
max: 100

deprecation

"""
All smartphone projection actions.
"""
type Vehicle_Cabin_Infotainment_SmartphoneProjection {
 """
 Supportable list for projection.
 """
 supportedMode: [ProjectionMode]
}

enum ProjectionMode {
 ANDROID_AUTO
 APPLE_CARPLAY
 MIRROR_LINK
 OTHER
}

Vehicle.Cabin.Infotainment.SmartphoneProjection.SupportedMode:

 datatype: string[]

 type: attribute

 allowed: ['ANDROID_AUTO', 'APPLE_CARPLAY', 'MIRROR_LINK', 'OTHER']

 description: Supportable list for projection.

| 31

VSS examples in GraphQL (7.1)

VSS item

Include

Concatenated path

Branch type
Aggregate

Aggregate
Struct

Attribute type

Sensor type
Actuator type

Instances

Arrays (i.e., datatype[])

(u)intX, boolean, float, double, string

Unit
Dimension

Default

allowed: [‘value1’, ..., ‘valueN’]

Overlay

min: 0
max: 100

deprecation

type Vehicle_VehicleIdentification {
 vin: String
 speed: Float
}

type TractionBattery {
 netCapacity: Float
 charging: Charging
 stateOfCharge: StateOfCharge
 range: Float
}

type Charging {
 chargeLimit: Float
 isCharging: Boolean
 timeToComplete: Int
}

type StateOfCharge {
 current: Float
}

Example taken from EV Charging Event Data Aggregation:
https://wiki.covesa.global/display/WIK4/EV+Charging+Event+Data+Aggregation+Project

▪ We can specify
→ how the data is to be read with a query.
→ how the data is to be written with mutation.

https://wiki.covesa.global/display/WIK4/EV+Charging+Event+Data+Aggregation+Project

| 32

VSS examples in GraphQL (7.2)

VSS item

Include

Concatenated path

Branch type
Aggregate

Aggregate
Struct

Attribute type

Sensor type
Actuator type

Instances

Arrays (i.e., datatype[])

(u)intX, boolean, float, double, string

Unit
Dimension

Default

allowed: [‘value1’, ..., ‘valueN’]

Overlay

min: 0
max: 100

deprecation

▪ We can specify
→ how the data is to be read with a query.
→ how the data is to be written with mutation.

Example taken from EV Charging Event Data Aggregation:
https://wiki.covesa.global/display/WIK4/EV+Charging+Event+Data+Aggregation+Project

mutation UpdateVehicleDetails($input:
VehicleInput!) {
 updateVehicle(input: $input) {
 success
 message
 vehicle {
 identification {
 VIN
 }
 speed
 powertrain {
 tractionBattery {
 netCapacity
 charging {
 chargeLimit
 isCharging
 timeToComplete
 }
 stateOfCharge {
 current
 }
 range
 }
 }
 }
 }
}

query GetEVChargingData {
 vehicle {
 identification {
 VIN
 }
 speed
 powertrain {
 tractionBattery {
 netCapacity
 charging {
 chargeLimit
 isCharging
 timeToComplete
 }
 stateOfCharge {
 current
 }
 range
 }
 }
 }
}

https://wiki.covesa.global/display/WIK4/EV+Charging+Event+Data+Aggregation+Project

Any other added value?

Photo by J-Photos on Unsplash

https://unsplash.com/@jd_photo?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/green-pine-trees-beside-river-during-daytime-yY1KhFBlisg?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

| 34

Controlling the data schema AND the standard interactions (e.g., queries and mutations).

| 35

Important community and tooling available.

https://graphql.org/community/tools-and-libraries/

https://graphql.org/community/tools-and-libraries/

1

2

Background
VSS analysis and limits
Previous attempts for more expressivity

Proposal
VSS feature set correspondence in GraphQL
Other features

Conclusion
Summary
Q&A

3

4

3

Summary

About the current state
• VSS feature set was analyzed to uncover its actual scope.
• There are a few important limitations and misunderstandings.
• Previous attempts for expressivity thought Us some lessons.

About the proposal
• A schema language, such as the one of GraphQL, enable Us to not only cover the agreement on the meaning but also on the structure.
• Integration of domains is much more natural as a graph than as an individual tree.
• All VSS features can be realized, and many more advantages (e.g., community, tooling)

Moving from a DESCRIPTIVE (i.e., informative-only) data model… …to a PRESCRIPTIVE one! (i.e., using exiting schema languages)

Vehicle.Cabin.Door.Row1.DriverSide.Window.Position:
datatype: uint8
description: Item position. 0 = Start position 100 = End position.
max: 100
min: 0
type: actuator
unit: percent

type Window {
 id: ID!
 # Represents the position of the window.
 # The position value is an integer indicating the percentage
 of closure, ranging from 0 (fully closed) to 100 (fully open).
 position: Int!
 skosConcept: String! # Pointer to unique definition
}

Current VSS alone has no control
on how apps use the model.

Schema representing a contract between
the data producer and consumer.

| 37

| 38

What is next?

VSPEC

Roundtrip
compatibility

Semi-automatic
processes

GraphQL

Transition
phase

Current workflow

Adaptation workflow

“network”
modeling
approach

Unified
modeling
approach

Features’
addition

RDF

SKOS

Other?
Conversational

tools

“network”
modeling
approach

OWL

Q&A

