
COVESA VISS version 3.0 - Core
30 January 2025

▾ More details about this document

Latest published version:
none

Latest editor's draft:
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/

VISSv3.0_Core.html

History:
Commit history

Editors:
Ulf Bjorkengren (Ford Motor Company)

이원석(Wonsuk Lee) (한국전자통신연구원(ETRI))

Feedback:
GitHub COVESA/vehicle-information-service-specification (pull requests, new issue, open

issues)

Copyright © 2024 COVESA®. This document includes material derived from W3C VISS version 2 - Core.

Abstract

The Vehicle Information Service Specification (VISS) is a service for accessing vehicle information,

signals from sensors on control units within a vehicle's network. It exposes this information using a

hierarchical tree like taxonomy defined in COVESA Vehicle Signal Specification (VSS). The service

provides this information in JSON format. The service may reside in the vehicle, or on servers in the

internet with information already brought off the vehicle.

This specification describes a third version of VISS which has been implemented and deployed on

production vehicles. The first version of VISS only supported WebSocket as a transport protocol, the

second version is generalized to work across different protocols as some are better suited for different

use cases. The second version added support for the HTTP and MQTT transport protocols,

subscription capabilities was improved and an access control solution was added.

There are three parts to this specification, CORE, [TRANSPORT EXAMPLES], and [PAYLOAD

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

1 von 64 30.01.2025, 15:15

https://covesa.global/
https://covesa.global/
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html
https://github.com/COVESA/vehicle-information-service-specification/commits/
https://github.com/COVESA/vehicle-information-service-specification/commits/
https://www.ford.com/
https://www.ford.com/
mailto:wonsuk.lee@etri.re.kr
mailto:wonsuk.lee@etri.re.kr
https://etri.re.kr/eng/main/main.etri
https://etri.re.kr/eng/main/main.etri
https://github.com/COVESA/vehicle-information-service-specification/
https://github.com/COVESA/vehicle-information-service-specification/
https://github.com/COVESA/vehicle-information-service-specification/pulls/
https://github.com/COVESA/vehicle-information-service-specification/pulls/
https://github.com/COVESA/vehicle-information-service-specification/issues/new/choose
https://github.com/COVESA/vehicle-information-service-specification/issues/new/choose
https://github.com/COVESA/vehicle-information-service-specification/issues/
https://github.com/COVESA/vehicle-information-service-specification/issues/
https://github.com/COVESA/vehicle-information-service-specification/issues/
https://github.com/COVESA/vehicle-information-service-specification/issues/
https://www.w3.org/TR/viss2-core/
https://www.w3.org/TR/viss2-core/

1.

2.

3.

3.1

4.

4.1

4.1.1

4.1.1.1

4.1.1.2

4.1.2

4.2

5.

5.1

5.1.1

5.1.2

5.1.3

5.1.4

5.1.5

5.2

5.2.1

5.3

ENCODING]. This document, the VISS version 3.0 CORE specification, describes the VISSv3.0

messaging layer.

The VISSv3.0 transport protocol examples document describes the deviations from the CORE

definitions that are used in some transport protocols. It also examplifies the JSON primary payload

format using the Websocket payloads.

The VISSv3.0 payload encoding document describes payload encoding designs that may be applied e.

g. for payloads in transit.

Table of Contents

Abstract

Introduction

Conformance

Terminology

Definitions

Data Model

Addressing

Authority URI Component

IP address / domain name

Port number

Path URI Component

Data representation

Interface

Methods

Read

Update

Subscribe

Unsubscribe

Subscription

Error Message

Error Information

Timestamps

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

2 von 64 30.01.2025, 15:15

6.

6.1

6.2

6.3

7.

7.1

7.2

7.3

7.4

7.4.1

7.4.2

7.5

7.6

7.7

7.8

7.8.1

7.8.2

7.8.3

8.

8.1

8.2

8.3

8.3.1

8.3.2

8.3.3

8.3.3.1

8.3.3.2

8.3.4

8.3.4.1

8.3.4.2

8.3.4.2.1

8.3.4.2.2

8.3.5

8.3.6

8.4

8.4.1

8.4.2

Security Considerations

Transport security

Data security

Privacy Considerations

Filter Request

Paths Filter Operation

History Filter Operation

Time Based Filter Operation

Range Filter Operation

Single Boundary Range

Multi Boundary Range

Change Filter Operation

Curve logging Filter Operation

Metadata Filter Operation

Multiple Signals Request

Error Handling

Response syntax

Subscription Event Triggering

Access Control Model

Architecture

Protocol Flows

Protocol Messages

Access Grant Request

Access Grant Response

Access Token Request

Initial Access Token Request

Inquiry Access Token Request

Access Token Response

Access Token Response Consent Not Required

Access Token Response Consent Required

Access Token Response To Initial Access Token Request

Access Token Response To Inquiry Access Token Request

Protected Resource Request

Protected Resource Response

Actors

Client

Access Grant Token Server

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

3 von 64 30.01.2025, 15:15

8.4.3

8.4.4

8.4.5

8.4.6

8.5

8.5.1

8.5.2

8.5.2.1

8.5.2.2

8.5.3

8.5.4

8.6

8.6.1

8.6.2

8.6.3

8.7

8.7.1

8.7.2

8.8

9.

9.1

A.

A.1

A.2

B.

C.

C.1

C.2

D.

D.1

D.2

D.3

D.4

Access Token Server

Access Control Server

Resource Owner

Ecosystem Manager

Credentials

Client Authentication

Access Grant Token

Short Term Access Grant Token

Long Term Access Grant Token

Access Token

Proof of Possession

Client Context

User Roles

Application Roles

Device Roles

Policy Documents

Purpose List

Scope List

Access Control Selection

Consent support

External Consent Framework Interface

File Transfer

Data channel realization

Alternative based on well-known file transfer protocols

JSON Schema

Server Capabilities

Server Tree Example

Server Feature Naming

Data Compression

Static UID Path Compression

Request Local Path Compression

Request Relative Timestamp Compression

Sequence Diagram Compression Scheme Examples

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

4 von 64 30.01.2025, 15:15

E.

E.1

References

Normative references

This document describes the messaging API for the VISS protocol. This includes the messaging layer

and set of rules for structuring data.

The specification is agnostic to which transport protocol that is used as long as it conforms to this

messaging API and data rule set. Transport protocols that cannot conform to the entire CORE

specification can still be conformant by describing their deviations in the [TRANSPORT

EXAMPLES] specification.

The primary payload data format is JSON. The JSON schema (B. JSON Schema) defines all of the

payloads. If a transport protocol uses a different payload encoding, such as gRPC, or a more

bandwidth efficient data representation is desired, then this encoding may be defined in the

[PAYLOAD ENCODING] document. This encoding must contain a solution for both encoding of the

JSON payloads and decoding back to the JSON format. A client MUST be able to access the message

payload in the JSON format.

The messages are exchanged between a server implementation holding the representation of data and a

client using the data as shown in the figure below, where the payload also is encoded when in transit

over the transport protocol.

Figure 1 VISSv3 payload encoding overview.

The VISSv3.0 messaging layer builds on RESTful principles for the method exchange via the

interface (5. Interface).

The VISSv3.0 data structuring rules (VSS Rule set) are the same through all transport protocols. The

basis for structuring data held by a server is a tree structure.

§ 1. Introduction

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

5 von 64 30.01.2025, 15:15

https://covesa.github.io/vehicle_signal_specification/rule_set/
https://covesa.github.io/vehicle_signal_specification/rule_set/

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes

in this specification are non-normative. Everything else in this specification is normative.

The key words MAY, MUST, SHALL, and SHOULD in this document are to be interpreted as

described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as

shown here.

The acronym 'VISSv3.0' is used to refer to this document, the VISS version 3.0 specification. The

acronym 'VSS' is used to refer to the 'Vehicle Signal Specification' which is hosted by COVESA. The

term 'WebSocket' when used in this document, is as defined in the W3C WebSocket API and

[RFC6455], the WebSocket Protocol.

client
An entity that works with data managed by a server.

server
An entity that manages and offers access to data.

success response
The message being returned by the server to the client when no error is encountered. These are

specific per request type.

error message
The message being returned by the server to the client when an error is encountered. It can be a

synchronous response message, or an asynchrounous event message.

data point
A structure containing one or more value, timestamp tuplets.

value
The data that is associated with one or more VSS nodes. Regardless of its data type, a single data

§ 2. Conformance

§ 3. Terminology

§ 3.1 Definitions

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

6 von 64 30.01.2025, 15:15

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://github.com/COVESA/vehicle_signal_specification
https://github.com/COVESA/vehicle_signal_specification
https://www.w3.org/TR/websockets/
https://www.w3.org/TR/websockets/

item is always represented as a string in message payloads.

timestamp
A date and time representation. See chapter 5.3 Timestamps.

filter
Additional information to help the server in the selection of data for the client.

authorization
A token providing a verifiable proof that the client may be authorized access to the requested

data. This may be represented by a token handle provided by the server.

subscriptionId
A handle identifying a subscription session.

requestId
Unique id value specified by the client. Returned by the server in the response and used by the

client to link the request and response messages. The value MAY be an integer or a Universally

Unique Identifier (UUID).

purpose
A purpose is one of the short text entries from the 8.7.1 Purpose List.

ECF
External Consent Framework. An agent that is responsible for inquiring a data owner about

consent for client access to data.

The service is intended for use with a tree-like logical taxonomy to represent the vehicle data. An

illustrative example of such a tree structure is shown in Figure 1. While it is meant to support

conforming taxonomies it was created principally with the Vehicle Signal Specification (VSS) in

mind. For more details, see the VSS documentation.

Depending on how VISS is being used, for instance to serve data already off-boarded and residing in

the cloud, it may make sense to allow sensor values to be updated by sending a 'set' request. When

VISS is directly on the vehicle, values reported by sensors are authoritative and should be read-only

within VISS. Implementations should handle set requests appropriately for their situation and respond

with appropriate success or error messages accordingly.

§ 4. Data Model

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

7 von 64 30.01.2025, 15:15

https://github.com/COVESA/vehicle_signal_specification
https://github.com/COVESA/vehicle_signal_specification
http://covesa.github.io/vehicle_signal_specification/
http://covesa.github.io/vehicle_signal_specification/
not used in this document and re-defined in transport where it is acutally used. Maybe remove?

Figure 2 Example VSS 2.0 tree.

Addressing of resources is done using URIs as defined in [RFC3987].

scheme://authority/path?query

The scheme describes the protocol to use to reach the addressed resource. For supported protocols, see

the transport protocols in [TRANSPORT EXAMPLES] specification.

The authority describes where to reach the resource, for more details see 4.1.1 Authority URI

Component.

The path addresses a specific service within the resource, for more details see 4.1.2 Path URI

Component.

The query contains further information related to the addressed service, see 7. Filter Request.

There are potentially three resources for which a client needs a URI, see 8.1 Architecture:

• VISSv3 server.

• Access grant token server.

• Access token server.

§ 4.1 Addressing

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

8 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#transport-protocols
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#transport-protocols

The authority component of the URI consists of an IP address or a domain name followed by a colon

and a port number.

Depending on the deployment of a resource, either in the cloud or in a vehicle, they will have a

domain name or an IP address, respectively. A client is expected to obtain this part of the authority

component via an interaction with the ecosystem manager. The details of this interaction is out of

scope for this specification.

This section is non-normative.

The VISSv3 server shall use the following port numbers for the different transport protocols.

• HTTP port number = 443.

• Websocket port number = 6443.

• MQTT port number = 8883.

The access grant token server shall use the port number 7443.

The access token server shall use the port number 8443.

A client may be provisioned with other port numbers than the above specified in its interaction to

obtain the other parts of the authority component, see 4.1.1.1 IP address / domain name.

The path URI component definition differs between the three resources.

For the VISSv3 server the definition is as follows.

§ 4.1.1 Authority URI Component

§ 4.1.1.1 IP address / domain name

§ 4.1.1.2 Port number

§ 4.1.2 Path URI Component

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

9 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#ecosystem-manager-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#ecosystem-manager-def

The path consists of a sequence of VSS node names separated by a delimiter. VSS specifies the dot (.)

as delimiter, which therefore is the recommended choice also in this specification. However, in HTTP

URLs the conventional delimiter is slash (/), therefore also this delimiter is supported. To exemplify,

the path expression from traversing the nodes Vehicle, Car, Engine, RPM can be

"Vehicle.Car.Engine.RPM", or "Vehicle/Car/Engine/RPM". A mix of delimiters in the same path

expression SHOULD be avoided.

The path MUST not contain any wildcard characters ("*"), for such needs see 7.1 Paths Filter

Operation.

For the access grant token server the path is "agts".

For the access token server the path is "ats".

A single data point is in the message payload represented by a value and an associated timestamp, in

JSON represented by two key-value pairs with the key names "value" and "ts".

The "ts" value MUST be a string as specified in 5.3 Timestamps.

The "value" value MUST be represented as a string for simple datatypes. If the value is an array it

MUST be represented as a JSON array of strings. In the case the value is a struct complex datatype it

MUST be represented as a JSON object, see below. For supported datatypes see VSS Data Types.

Number values MUST follow the number formats as specified in [RFC8259], but as stated above

represented as a string. Boolean values MUST be represented by either of the strings "true" or "false".

The struct complex datatype MUST be represented as a JSON object as shown below. A struct with the

following declaration

 struct {

 field1 datatype

 field2 datatype

 }

is represented by the following JSON object

{"field1":"X", "field2":"Y"}

where X and Y are the actual values of respective datatype. The datatype of a field of the struct may

§ 4.2 Data representation

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

10 von 64 30.01.2025, 15:15

https://covesa.github.io/vehicle_signal_specification/rule_set/data_entry/data_types/
https://covesa.github.io/vehicle_signal_specification/rule_set/data_entry/data_types/

be any datatype supported by VSS, including a struct.

For representation of multiple data points, see 7.8.2 Response syntax.

If data is represented incorrectly, then an error message with number 400, and reason "Bad data"

MUST be returned. A specific case of this is if an array of data elements does not contain the number

expected by the server. The server MAY then respond successfully, and follow a proprietary recovery

policy, or it MAY respond with error number 400, and reason "Invalid array size".

This chapter describes the different methods and its arguments that govern the communication

between a client and the server.

The transport protocols used to implement these methods MUST implement the Read and Update

methods, and MAY implement the Subscribe, Unsubscribe, and Subscription methods.

Purpose: Get one or more values addressed by the given path.

The client MAY have to obtain an authorization token before being able to access the values. If the

server is able to satisfy the request it MUST return a success response. If the server is unable to fulfil

the request, then the server MUST return an error message.

Arguments, of which path is mandatory:

• path The path as defined in VSS to a node in the VSS tree.

• filter Additional information defining the requested data.

• authorization The authorization token.

• data compression The data compression scheme(s).

Success response, of which authorization is optional:

§ 5. Interface

§ 5.1 Methods

§ 5.1.1 Read

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

11 von 64 30.01.2025, 15:15

• data The data structure contains one or more sets of a path and a data point structure.

• path The path for the associated data point structure.

• data point A structure containing one or more tuplets of value and timestamp.

• value The latest available value. Please note that also for actuators this returns the

current value, and not a target value that might have been set.

• timestamp The capture time of the value.

• authorization A handle representing the authorization token.

• timestamp The time of the server request execution.

Purpose: Provide an altered value to the vehicle signal addressed by the path.

The client MAY have to obtain an authorization token before being able to update the vehicle signal. If

the server is able to satisfy the request it MUST return a success response, else it MUST return an error

message. Only actuator type signals can be updated. Please note that a success response does not

guarantee that the actuation attempt to change to the updated target value has, or will, succeed. A

client may monitor the actuation progress through subsequent reads of the actuator value.

Arguments, of which path and value are mandatory:

• path The path as defined in VSS to a leaf node in the VSS tree.

• value The value by which the vehicle signal addressed by the path will be updated to.

• authorization The authorization token.

Success response, of which authorization is optional:

• authorization A handle representing the authorization token.

• timestamp The time of the server request execution. This may not be the same as the final update

time of the signal.

§ 5.1.2 Update

§ 5.1.3 Subscribe

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

12 von 64 30.01.2025, 15:15

https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-data-element
https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-data-element

Purpose: Get asynchronous messages containing the value(s) addressed by the path. The triggering

rules for issuing the event messages are set by the filter data.

The client MAY have to obtain an authorization token before being able to subscribe to the vehicle

signal(s). The server MUST issue an event message if a trigger rule is fulfilled. If the server is able to

satisfy the request it MUST return a success response. If the server is unable to fulfil the request, then

the server MUST return an error message. If an error occurs during the subscription period, the server

SHOULD return an error message.

Arguments, of which path and filter are mandatory:

• path The path as defined in VSS to a node in the VSS tree.

• filter The rule set describing triggering criterias for issuance of asynchronous event messages.

• authorization The authorization token.

• data compression The data compression scheme(s).

Success response, of which authorization is optional:

• authorization A handle representing the authorization token.

• subscriptionId A handle identifying event messages associated with the subscription.

• timestamp The start time for the subscription period.

Purpose: Termination of the subscription period started by a previous subscribe request.

If the server is able to satisfy the request it MUST return a success response, and it MUST stop issuing

event messages associated to the subscription handle. If the server is unable to fulfil the request, then

the server MUST return an error message.

Arguments, of which subscriptionId is mandatory:

• subscriptionId Handle identifying the subscription.

Success response:

• timestamp The stop time for the subscription period.

§ 5.1.4 Unsubscribe

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

13 von 64 30.01.2025, 15:15

in all the other requests authorization is explicitly mentioned here. Does unsubscribe not required authorization?
If that is the case security considerations should be elaborated.

Purpose: Asynchronous client event message issued according to the subscribe request trigger rules.

The server MUST issue an event message when a triggering rule associated with the subscription is

met. If the server cannot fulfill the triggering rules it MUST issue an error message and terminate the

subscription.

Arguments, of which all are mandatory:

• subscriptionId Handle identifying the subscription.

• data The data structure contains one or more sets of a path and a data point structure.

• path The path for the associated data point structure.

• data point A structure containing one or more tuplets of value and timestamp.

• value The value associated with the filter expression.

• timestamp The capture time of the value.

• timestamp The time of the server subscription execution.

The server MUST inform a client about errors ocurring in interactions between the two, whether it is in

a synchronous error response, or an asynchronous error event as a result of a previous subscribe. For

transport protocols which do not control the logical linking between request and response messages it

may not be possible to link an error message to the correct client request. In cases like this the server

may omit sending an error message. The error message has three arguments, of which subscriptionId

is mandatory only for error events. In the case of an error event being issued by the server, the

associated subscription session SHALL thereafter be terminated by the server.

Arguments:

• 5.2.1 Error Information

• subscriptionId The reference to the subscribe session.

• timestamp The time of the server execution leading to the error.

§ 5.1.5 Subscription

§ 5.2 Error Message

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

14 von 64 30.01.2025, 15:15

https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-data-element
https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-data-element
isn't that what the requestId is there for?

The error information has three components - a number, a reason, and a description. The number

MUST always be part of the error information, while the reason and description components MAY be a

part of it.

• number See the status codes as defined in [TRANSPORT EXAMPLES].

• reason See the status codes as defined in [TRANSPORT EXAMPLES].

• description See the status codes as defined in [TRANSPORT EXAMPLES].

Timestamps in transport payloads MUST conform to the [ISO8601] standard, using the UTC format

with a trailing Z. Time resolution SHALL at least be seconds, with subsecond resolution as an optional

degree of precision when desired. The time and date format shall be as shown below, where the sub-

second data and delimiter is optional.

YYYY-MM-DDTHH:MM:SS.ssssssZ

The exceptions to this are timestamps within tokens which MUST conform to Unix time, or if

timestamp data compression is applied.

Transport protocols supported by this specification MUST make use of TLS v1.2 as defined in

[RFC5246].

§ 5.2.1 Error Information

§ 5.3 Timestamps

§ 6. Security Considerations

§ 6.1 Transport security

§ 6.2 Data security

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

15 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html/#status-codes
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html/#status-codes
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#status-codes
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#status-codes
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#status-codes
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#status-codes

The 8. Access Control Model makes it possible to apply restrictions on the data access for clients that

are granted access on the transport protocol level.

In addition to some privacy provisions within the specification itself, COVESA and W3C have

activities seeking to establish systems and guidelines to provide further considerations for handling of

information.

For some uses, such as when information is only referenced within the vehicle not sent off nor

persisting between restarts, there should be little to no privacy concerns.

This specification has granular access control capabilities to limit what information an application

may access. All information sent from a VISS service to client application must be transported over an

encrypted protocol to help protect privacy.

A client accessing vehicle data may require consent from whoever is deemed authoritative for a given

jurisdiction and ownership situation. This specification enables an External Consent Framework to

connect to a VISS server to realize this functionality, see 9. Consent support. That consent should be

revocable. Revoking it is outside the scope of this specification, it is expected to be handled out of

band and in some cases by regulations and contractual commitments.

Filtering is a mechanism to refine a client request, in order to more precisely control what is returned

in a response. Filtering can be applied in read requests and in subscribe requests. A request where

filtering is applied has the following structure

• for the HTTP protocol:

◦ GET /<vsspath>?filter=<filter-expression>

• for any protocol using the primary JSON payload format:

◦ {"action":"get", "path":"<vsspath>", "filter":"<filter-expression>"}

where

• Get is the transport protocol method,

§ 6.3 Privacy Considerations

§ 7. Filter Request

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

16 von 64 30.01.2025, 15:15

is there a reason why the other possible protocols are not explicitly considered here?

• vsspath is the path starting from the tree root,

• filter is the key name for the filter expression,

• filter-expression contains the filter instructions.

The filter expression has the object format as shown below. For the case of an optional second object

of this type, these are enclosed in an array expression.

• {"variant":"<x>", "parameter":"<y>"}

where

• variant: the key name for the filter operation variant, which can have one of the values:

◦ paths:

▪ one or more relative paths. In the case of several paths an array expression shall be

used.

◦ timebased:

▪ data is captured repeatedly with a fixed period time.

◦ range:

▪ data is captured when values are in the given range.

◦ change:

▪ data is captured when the value since last capture has changed more than a fixed value.

◦ curvelog:

▪ captured data is processed according to the curve logging algorithm before being sent

to client.

◦ history:

▪ captured data from a time period from current time and backwards in time.

◦ metadata:

▪ the response contains the VSS metadata of the addressed sub-tree.

• parameter: the key name for the optional configuration data that the filter operation requires.

The parameter data varies depending on the variant, is enclosed in one object, or optionally an

array of two objects, and is described in the following chapters.

The server MUST support the timebased and change variants, the other variants are optional.

In the JSON object, the key-value pairs "variant" and "parameter" must always be present. The JSON

expression may consist of maximum one object with variant "paths", plus maximum one object with

any other supported variant, which are then logically combined as with an AND operator.

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

17 von 64 30.01.2025, 15:15

https://www.geotab.com/blog/gps-logging-curve-algorithm/
https://www.geotab.com/blog/gps-logging-curve-algorithm/
I assume this describes the filter-expression? Could be stated more clearly

The variants timebased, range, change, and curvelog are only applicable for subscription requests.

Subscription requests are not supported by the HTTP transport protocol.

The restriction on how many objects that can be combined is also set by the URL size restriction on 1k

characters (*).

(*) 1k is the "conservative limit, which should always be supported, a more liberal limit is 2k, which is

supported in most cases.

The paths filter operation is used when a single request is used to retrieve signal data from multiple

data points in the VSS tree. The vsspath shall point to the last node in the tree that is common for the

relative paths in the filter parameter object, that start off from this node. If the end point of a path in

the filter value is a branch, then all leaf nodes in the sub-tree below this branch are addressed. A path

in the filter value may contain the wildcard character (*) as a representative for a single path segment.

Every path element in a value array must address at least one node in the tree, or else an error message

shall be returned.

Different elements of the value array may address the same node, in which case it is the responsibility

of the server to resolve this to a singleton in the event messages.

Examples can be found in the search read on HTTPS and search read on WebSocket in [TRANSPORT

EXAMPLES] specification.

The server typically have access only to the latest, most fresh data point representing a signal.

However, it may for various reasons at least temporarily have access to also older data points. A

scenario where this could occur is when a vehicle temporarily loses its connectivity, maybe because it

enters into a tunnel. Assuming that the vehicle detects the loss of connectivity, it may then start to

record data. If recorded, this data may then be accessed using the history variant. The vehicle system

makes its own decision whether to record any data, and for how long this data will be kept in storage.

The period in the filter expression goes from current time, excluding the current value, and backwards

in time. The number of data points in the response depends on the period size, and the sample

frequency. The latter can not be set by the client, so the client should have some understanding of its

value to estimate the amount of data it may receive. A request for historic data will return a Not found

error (404) if historic data is unavailable. The period must conform to the [ISO8601] duration format,

expressed with days, hour, minute, and second data, i. e. "parameter": "PdddDThhHmmMssS". The

§ 7.1 Paths Filter Operation

§ 7.2 History Filter Operation

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

18 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#https-search-read
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#https-search-read
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#wss-search-read
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#wss-search-read

number of days shall be less than 999. Only a single period can be expressed.

Examples can be found in the history read on HTTPS and history read on WebSocket in

[TRANSPORT EXAMPLES] specification.

The parameter object contains the period time X in between captures, {"period":"X"}. X is an integer

and represents the period time in milliseconds. Example can be found in the subscribe section in

[TRANSPORT EXAMPLES] specification.

The range filter operation supports two types of ranges, see the following sub chapters.

The values must be of a number datatype.

One logical "boundary operator" evaluates the current signal value in relation to the boundary. If

evaluated to true, the server issues an event message containing the signal value to the subscribing

client. The boundary operator MUST be one of the values shown in the footer (**).

Examples

{"boundary-op":"gt", "boundary": "5"} // x > 5

{"boundary-op":"eq", "boundary": "5"} // x == 5

Two boundaries with respective boundary operators are evaluated relative to the current signal value.

The logical outcome of the two evaluations are applied as input to a logical AND/OR operation. If

evaluated to true, the server issues an event message containing the signal value to the subscribing

client. Besides the mandatory "boundary-op", and "boundary" key-value pairs in each JSON object,

the first object may contain a "combination-op" key value pair, which then MUST have either the

§ 7.3 Time Based Filter Operation

§ 7.4 Range Filter Operation

§ 7.4.1 Single Boundary Range

§ 7.4.2 Multi Boundary Range

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

19 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#https-history-read
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#https-history-read
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#wss-history-read
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#wss-history-read
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#subscribe
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#subscribe

value "AND", or the value "OR". If omitted, the result of the two boundary evaluations is per default

applied to an AND operation. The JSON array MUST contain two objects. The boundary operator

MUST be one of the values shown in the footer (**).

Examples

[{"boundary-op":"gt", "boundary": "5"},{"boundary-op":"lt", "boundary": "10"}] // x > 5 AND x < 10

[{"boundary-op":"lt", "boundary": "5", "combination-op":"OR"},{"boundary-op":"gt", "boundary":

"10"}] // x < 5 OR x > 10

(**)The supported boundary operators are ["eq", "ne", "gt", "gte", "lt", "lte"], where "eq" is "equal",

"ne" is "not equal", "gt" is "greater than", "gte" is "greater than or equal", "lt" is "less than", "lte" is

"less than or equal".

Examples can be found in the authorized subscribe and range subscribe in [TRANSPORT

EXAMPLES] specification.

The values must be of a number or boolean datatype.

The parameter object contains the logical operator for comparison of previous and current values,

{"logic-op":"X", "diff":"Y"}, where X is one of the supported logical operators (**), and Y is the

value of the required change.

For boolean values the following expressions shall be supported:

"parameter":{"logic-op":"gt", "diff": "0"} This leads to a trigger event when the value goes false-

>true.

"parameter":{"logic-op":"lt", "diff": "0"} This leads to a trigger event when the value goes true->false.

"parameter":{"logic-op":"ne", "diff": "0"} This leads to a trigger event when the value goes true-

>false OR false->true.

(**)The supported logic operators are ["eq", "ne", "gt", "gte", "lt", "lte"], where "eq" is "equal", "ne" is

"not equal", "gt" is "greater than", "gte" is "greater than or equal", "lt" is "less than", "lte" is "less than

or equal".

Example can be found in the Change Subscribe in [TRANSPORT EXAMPLES] specification.

The parameter object contains the maximum error limit, and the buffer size, {"maxerr": "X",

§ 7.5 Change Filter Operation

§ 7.6 Curve logging Filter Operation

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

20 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#authorized-subscribe
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#authorized-subscribe
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#range-subscribe
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#range-subscribe
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#change-subscribe
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#change-subscribe

"bufsize":"Y"}, where X is a float value setting the max allowed error between any data sample and

the simplified curve, and Y is the number of buffer elements. Data is processed when the buffer

becomes full, and the essential data points are returned as a time series per signal.

Example can be found in the curve logging subscribe in [TRANSPORT EXAMPLES] specification.

The metadata request is used when the client instead of the data associated to VSS node(s) wants to

retrieve meta data associated to the VSS node(s).

The metadata is retrieved from the VSS tree that is deployed in the vehicle. This request variant is

sometimes referred to as a signal discovery request. If the "parameter" object contains an empty string,

then all metadata that the server can retrieve for the for the addressed node(s) are returned, while if it

contains a metadata key name, or an array of key names, then only the selected metadata is returned.

For the set of metadata key names, see the Vehicle Signal Specification.

The vsspath in the request may point to either a leaf node, or to a branch node. In the latter case then

the response will contain metadata from the entire sub-tree having this branch as the root.

A metadata request can be combined with a paths filter operation to address multiple nodes, but

cannot be combined with any other filter variant.

The response is a JSON formatted object with corresponding key-value pairs per addressed node. The

server MAY support the metadata request.

Example can be found in the signal discovery read on HTTPS in [TRANSPORT EXAMPLES]

specification.

The filtering operations may be used to address multiple tree nodes in one request. This may lead to

specific issues in certain situations, as described below.

A request addressing multiple nodes may address both valid nodes, and invalid nodes. The latter case

shall lead to a Forbidden error (403) response message part that contains information about which

node, or nodes, that are invalid. The error message shall not contain data from any of the validly

§ 7.7 Metadata Filter Operation

§ 7.8 Multiple Signals Request

§ 7.8.1 Error Handling

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

21 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#curve-logging-subscribe
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#curve-logging-subscribe
https://github.com/COVESA/vehicle_signal_specification
https://github.com/COVESA/vehicle_signal_specification
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#https-service-discovery-read
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#https-service-discovery-read
"metadata" basically means the VSS entry for the leaf?

what is the expected behavior in case this is done anyhow?

See also separate feedback about this section

invalid is not clearly defined.
If a node does not exist, is 403 the right error?

addressed nodes.

A response may contain multiple values, due to either that multiple nodes are addressed, or to that

multiple values for one signal is returned. These two reasons can be combined, leading to four

different cases.

• Request for a single value from a single node.

• Request for multiple values from a single node.

• Request for a single value from multiple nodes.

• Request for multiple values from multiple nodes.

The syntax to accomodate these four cases have a common structure where a data point ("dp") consists

of one or more objects containing a "value" and a timestamp ("ts"), and the complete aggregation

("data"), consists of one or more objects containing a "path" and a data point (dp"). The syntax of the

four cases are shown below.

Response for a single value from a single node:

"data": {

"dp": {

"ts": "Z",

"value": "Y"

 },

"path": "X"

}

Response for multiple values from a single node:

"data": {

"dp": [

 {

"ts": "Z1",

"value": "Y1"

 },

 {

§ 7.8.2 Response syntax

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

22 von 64 30.01.2025, 15:15

Formulation; suggestion: because either multiple nodes were addressed or multiple values....

are

"ts": "Zn",

"value": "Yn"

 }

],

"path": "X"

}

Response for a single value from multiple nodes:

"data": [

 {

"dp": {

"ts": "Z1",

"value": "Y1"

 },

"path": "X1"

 },

 {

"dp": {

"ts": "Zm",

"value": "Ym"

 },

"path": "Xm"

 }

]

Response for multiple values from multiple nodes:

"data": [

 {

"dp": [

 {

"ts": "Z11",

"value": "Y11"

 },

 {

"ts": "Z1n",

"value": "Y1n"

 }

],

"path": "X1"

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

23 von 64 30.01.2025, 15:15

 },

 {

"dp": [

 {

"ts": "Zm1",

"value": "Ym1"

 },

 {

"ts": "Zmn",

"value": "Ymn"

 }

],

"path": "Xm"

 }

]

In the case of a request for multiple values from multiple nodes, the data point for different paths may

contain single or multiple objects, as the vehicle system may not have multiple values recorded for all

requested signals.

A subscription request must always contain a filter operation that describes the trigger event that leads

to that the server dispatches an asynchronous event message. For the filter variants "range" or

"change", the triggering is dependent on the signal value. When the request addresses multiple signals,

the triggering condition shall only be evaluated on one of the signals, which is the first signal in the

parameter array of paths. The first path in the array must therefore not contain wildcards to address

multiple signals. In this case one of the path addresses in the wildcard expression must be selected as

the first array element, which can then be followed by the wildcard expression. The duplicate

reference to one signal that this leads to shall be resolved by the server to a singleton in the event

messages.

Access control MUST be supported. However, in this chapter only the sections that describe the

interactions between the client and the VISSv3 server are mandatory.

§ 7.8.3 Subscription Event Triggering

§ 8. Access Control Model

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

24 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def

Access control SHALL not be applied to the VSS nodes containing the VSS version data, and not to

client requests for dynamic metadata about the server capabilities, or about the access control selection

tags applied to the VSS tree.

This section is non-normative.

The VISSv3 access control model is inspired by the concepts of OAuth2.0 [RFC6749], but some

deviations exist as is described in the following chapters.

Four actors are defined:

Client

An application making protected and authorized resource requests on behalf of its user.

Access grant token server

The server issuing the Access Grant credential after successfully authenticating the client.

Access token server

The server issuing the access token to the client after successfully validating the request and obtaining

authorization.

VISSv3 server

The server hosting the protected resources, capable of accepting and responding to protected resource

requests using access tokens.

The abstract protocol flow illustrated in the figure below describes the interaction between the four

actors.

§ 8.1 Architecture

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

25 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#application-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#application-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#user-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#user-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def

Figure 3 The abstract protocol flow.

Besides the four actors directly involved in the abstract flow, there are two more actors.

Resource owner

This is typically the driver of the vehicle, who may be asked for consent before access is granted.

Ecosystem manager

The entity managing the access control ecosystem. It controls the Policy documents, and manages the

PKI ecosystem that the other actors may utilize.

The abstract protocol flow is implemented by two different flows, as will be described in the following

chapters.

The process to obtain the credentials needed for client authentication is out-of-scope, as well as the

installation procedures for the applications.

This section is non-normative.

Two different flows are described. Which flow to use depends on the capabilities of the client.

If a client is able to run public key cryptographic primitives, i.e. key pair generation and signatures,

and has access to some kind of trusted execution environment where private keys are protected from

the regular execution environment, then it can use the long term flow. Clients that do not have access

to these capabilities, or do not want to use them, must select the short term flow.

§ 8.2 Protocol Flows

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

26 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#application-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#application-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def

The advantage of using the long term flow is that the client can be trusted with longer expiry times of

access grant tokens. In the short term flow the client must due to a shorter expiry time contact the

access grant token server more often to obtain a new access grant token.

A client selects the type of flow by either submitting a public key in the access grant request, or not.

The latter leading to an short term flow.

This section is non-normative.

This chapter describes the payloads of the messages used in the protocol flow.

The request shall contain the Context and Proof parameters below, the others are optional:

• VIN: The vehicle identification number. Instead of the assigned VIN a generated hash can be

used as a pseudo VIN, or any other identity that uniquely links to the vehicle in the access control

ecosystem.

• Context: The context associated to the client. The context consists of a triplet of roles for user,

app permissions, and device characteristics.

• Proof: A proof mechanism that is used by the client to attest its context to the access grant token

server. This is indeed a composed proof for the User role, app permissions, and device

characteristics.

• Public key: If this parameter is present, the client will receive a long term access grant token in

return.

Depending on the kind of proofs included in the request, the client and the server may need to run an

interactive protocol to verify them. The protocol may involve also third parties, such as the ecosystem

manager or the resource owner. The protocol is out of scope for this specification.

In scenarios where both the client and the access grant token server are deployed in-vehicle the VIN

parameter may be omitted, in all other deployment scenarios it shall be present.

§ 8.3 Protocol Messages

§ 8.3.1 Access Grant Request

§ 8.3.2 Access Grant Response

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

27 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-request-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-request-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#user-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#user-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#application-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#application-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#device-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#device-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#proof-of-possession-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#proof-of-possession-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#application-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#application-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#device-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#device-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#proof-of-possession-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#proof-of-possession-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#ecosystem-manager-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#ecosystem-manager-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#ecosystem-manager-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#ecosystem-manager-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#resource-owner-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#resource-owner-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def

The response shall contain the parameter below:

• Access grant token: A signed token with claims needed for the validation of the client request.

The response for a successful access grant request is a short or long term access grant token,

depending on the input in the request message. The only difference between both kind of tokens is that

long term access grant token would include the public key used in the request.

The access grant token is a digitally signed document issued by the access grant token server including

all relevant information needed to issue access tokens.

An error message shall contain the parameter:

• Error code: The error code shall be informative in order for the client to understand what it needs

to correct to become successful.

The client may have to issue several requests before an access token can be obtained, even in the case

of having a valid access grant token. The reason for this is that if consent is required, the ATS will

forward the consent request to the External Consent Framework, and it is likely that there will not be

an immediate response from the ECF. The ATS will then on the initial access token request respond to

the client with a session handle that the client must use in subsequent requests for the access token.

When the ATS has obtained a consent reply from the ECF it can thereafter following client inquiry

request in the case of a positive consent respond with the access token, or in the case of a negative

consent respond with only the negative consent result.

The request shall contain at least these two parameters below:

• Access grant token: A signed token with claims needed for the validation of the client request.

• Purpose: The intended client usage of the requested data.

Short term access grant tokens can be used as direct input to the access token server, but long term

access grant tokens should be accompanied by a proof of possession (PoP) for the private key

corresponding to the public key included in the token.

§ 8.3.3 Access Token Request

§ 8.3.3.1 Initial Access Token Request

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

28 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-request-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-request-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#proof-of-possession-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#proof-of-possession-def

The access token server acts as a Policy Enforcement Point, making decisions on whether to grant

access to the protected resource based on the provided access grant token and purpose.

This request can be issued by the client after a session handle has been received in a response to an

initial access token request.

The request shall contain at least the parameter below:

• Session handle: The handle logically links the request to a previously issued initial access token

request.

In the case that the access control is not combined with a requirement for obtaining consent from the

data owner, an immediate response is possible, and in the case of a successful response it shall contain

the parameter:

• Access token: The token to be used in client requests to the VISSv3 server for Protected

Resources.

An error message shall contain the parameter:

• Error code: The error code shall be informative in order for the client to understand what it needs

to correct to become successful.

§ 8.3.3.2 Inquiry Access Token Request

§ 8.3.4 Access Token Response

§ 8.3.4.1 Access Token Response Consent Not Required

§ 8.3.4.2 Access Token Response Consent Required

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

29 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def

In the case that the access control is combined with a requirement for obtaining consent from the data

owner, an immediate response is not possible, and the response to an initial access token request shall

contain the parameter:

• Session handle: A reference to the initial access token request that can be used by the client in

subsequent inquiry requests.

• Consent status: There is at this point not any consent status received from the ECF, so consent

status is set to NOT_SET.

There are three different responses possible to an inquiry access token request.

In the case that there is still no consent reply available from the ECF, the response is identical to the

response to the initial access token response, see above.

In the case that there is a negative consent reply from the ECF, the response shall contain the

parameter:

• Consent status: The consent reply was negative, so consent status is set to NO.

In the case that there is a positive consent reply from the ECF, the response shall contain the

parameters:

• Access token: The token to be used in client requests to the VISSv3 server for Protected

Resources.

• Consent status: The consent reply was positive, so consent status is set to YES.

This is a VISSv3 request including an access token as described in general in the 5.1 Methods chapter,

and for different transport protocols in the [TRANSPORT EXAMPLES] document. The first time a

token is submitted in a request it must be provided in its entirety. If a server supports caching of access

§ 8.3.4.2.1 A����� T���� R������� T� I������ A����� T���� R������

§ 8.3.4.2.2 A����� T���� R������� T� I������ A����� T���� R������

§ 8.3.5 Protected Resource Request

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

30 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#transport-protocols
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#transport-protocols

tokens and returns a token hanle to the client, then any following requests may provide the token

handle instead of the complete access token.

This is a VISSv3 response as described in general in the 5.1 Methods chapter, and for different

transport protocols in the [TRANSPORT EXAMPLES] document. It does not differ from the response

to an unprotected resource request.

This section is non-normative.

The client is an abstract representation of three sub-actors:

• The device. It is in charge of running the Apps that make requests to the VISSv3 server

• The app. It runs requests on behalf of the user.

• The user. It delegates access rights to the app.

All the information regarding the client is encoded in the context of the request.

This section is non-normative.

The access grant token server is in charge of producing access grant tokens to clients.

Depending on the capabilities of the client, the specification supports two types of access grant tokens:

Short term and long term access grant tokens.

Long term access grant tokens, are supported for those clients able to run public key cryptographic

primitives, i.e. key pair generation and signatures, and is the recommended choice for clients with

access to a trusted execution environment where private keys are protected from the regular execution

§ 8.3.6 Protected Resource Response

§ 8.4 Actors

§ 8.4.1 Client

§ 8.4.2 Access Grant Token Server

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

31 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#transport-protocols
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#transport-protocols
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#device-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#device-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#application-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#application-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#user-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#user-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
d

environment. The specification also supports short term access grant tokens that require no extra

capabilities in the client, but due to its shorter expiry time it forces the client to contact the access

grant token server more often before access token server requests for an access token.

The client request shall contain the following:

• A client context.

• A set of proofs.

In scenarios where both the client and the access grant token server are deployed in-vehicle the VIN

parameter may be omitted, in all other deployment scenarios it shall be present.

• A VIN.

When a VIN is present in the request, the vehicle identity (vin) claim shall be present in the access

grant token.

If the client needs a long term access grant token, then the request shall also contain:

• A public key.

The Vehicle identification number shall be for the vehicle that the client wants to access.

The client context contains all relevant information from the client, i.e. for each of the three sub-actors

that the client represents.

The proofs are to be used for verifying the client context.

The public key shall be generated by the client, and the associated private key must be under control

of the client.

The main responsibilities of the access grant token server are:

• To verify the client context, and assess that their respective role request can be granted.

• To check that the vehicle represented by the VIN belong to this Ecosystem, and is accessible.

• To create an access grant token.

The proofs may include certificates from a Certificate Authority known by the access grant token

server. For example, users might authenticate themselves using X.509 identity certificates and roles

might be issued using attribute certificates. In those cases, as part of the authentication protocol, the

access grant token server shall also validate the certificates signatures.

The access grant token server may contact the ecosystem manager for checking the VIN.

The access grant token generation is defined in the corresponding chapter.

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

32 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#proof-of-possession-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#proof-of-possession-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#proof-of-possession-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#proof-of-possession-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#proof-of-possession-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#proof-of-possession-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#ecosystem-manager-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#ecosystem-manager-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def

This section is non-normative.

The client shall after a successful interaction with the access grant token server request an access

token from the access token server. The client request shall contain at least these two parameters

below.

• Access grant token.

• Purpose.

For long term access grant tokens, i.e. those including a public key, the client must also include a

proof of possession, for the corresponding private key, in the request.

The purpose must be supported by the ecosystem manager, and thus be on the purpose list. The

purpose list associates a set of accessible signals to the purpose, thus realizing the principle of least

privilege.

The main responsibilities of the access token server are:

• To validate the access grant token.

• To validate that the client context provides permission for the requested purpose.

• To create an access token.

The validation of the access grant token consists of at least the following:

• Signature validation.

• Expiry time check.

Additionally, for long term access grant tokens, the access token server needs to verify the proof of

possession using the public key contained in the token.

The access grant token signature validation is done with the access grant token server public key.

To allow for some time synchronization inaccuracy and minor network latency, expiry times should be

set to include potential modest margin of error, possibly as long as tens of seconds.

If a vehicle identity claim (vin) is present in the access grant token, the vehicle identity (vin) claim

SHALL be included in the access token.

If the client context as declared in the access grant token does not match in the set of allowed roles for

the requested purpose in the purpose list, then the client request for an access token must be denied.

§ 8.4.3 Access Token Server

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

33 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#proof-of-possession-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#proof-of-possession-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#ecosystem-manager-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#ecosystem-manager-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#purpose-list-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#purpose-list-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#purpose-list-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#purpose-list-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#proof-of-possession-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#proof-of-possession-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#proof-of-possession-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#proof-of-possession-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#purpose-list-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#purpose-list-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def

The VISSv3 server MUST support validation of access tokens. The functionality needed for this is

decribed in this chapter. This includes validation of at least the following:

• Token signature.

• Token expiry time.

If a vehicle identity claim (vin) is present in the token, then it MUST be validated to match the identity

of this vehicle.

If any of the mentioned validations fail, the server MUST reject the access request.

Token signature validation may be delegated to the access token server, if a secure communication

link can be established. If not delegated, then a preprovisioned common secret may be shared with the

access token server, or other PKI based solutions may be used.

The VISSv3 server SHALL have access to a secure system time, that cannot be modified by actors

without system acknowledged credentials. Time validation may allow for a time synchronization

inaccuracy in the range of tens of seconds.

After a successful token validation, the server MUST check that the scope of the token is compatible

with the request. If the scope claim of the access token contains a purpose short-name, successful

validation requires that all the nodes addressed by the path in the request MUST be matched by the

paths associated with the purpose in the purpose list .

If the scope claim of the access token contains a explicit list of signals, successful validation requires

that all the nodes addressed by the path in the request MUST be matched by the one of the signals

included in the token.

Validation of the device and app roles may involve MAC address checks, or message round-trip

measurements.

The access permission validation MUST have the outcome shown in the table below, when comparing

the type of the client request with the access control mode either in the purpose list or the explicit

signals that are associated to the scope claim in the access token. If the client request contains several

signals, and one fails the validation, then the entire request MUST be rejected.

Permission read-only read-write

get

set

subscribe

Ok Ok

Nok Ok

Ok Ok

§ 8.4.4 Access Control Server

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

34 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#purpose-list-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#purpose-list-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#device-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#device-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#application-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#application-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#purpose-list-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#purpose-list-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
with what error?
seems to not be part
of table below

The access token need to be refreshed periodically, which is controlled by the expiry time. If the

access grant token that the client used to obtain the now expired access token is not expired, then the

client can revisit the access token server with this access grant token to obtain a new access token.

If the access grant token is expired, then the client must obtain a new access grant token first, before

revisiting the access token server.

The server SHOULD support caching of a limited number of access tokens. The access token MUST

be included in the cache after a first successful request and MUST be removed once they expire. If an

access token is cached then the server shall return a token handle of at least 24 bytes long. The client

may then use this instead of the complete access token in following requests that require this access

token. If the client decides to include the access token handle in a request, the server must then fetch

the corresponding access token from the cache, and verify its validity before deciding to grant the

request.

The server might decide to remove any token from the cache. In the case this token is then referred to

with a token handle the client will get a "401, missing_token" error and will be forced to send the

whole access token again. For client requests that are not granted due to access control, the VISSv3

server MUST return one of the error codes shown in the table below.

Error Number (Code) Error Reason Error Description

401 (Unauthorized) missing_token One or more of the requested signals are access

controlled, an access token or its jti, must be

included in the request.

406 (Not

Acceptable)

invalid_token In case the request included an access token, a

fresh one must be obtained. In case the request

included just the jti, the whole access token

needs to be send again.

406 (Not

Acceptable)

insufficient_priviledges The priviledges represented by the access token

are not sufficient.

This section is non-normative.

The resource owner is typically the owner and/or driver of the vehicle. If Consent is required for

granting access to the protected resource, then it should be directed to the resource owner. The process

for this is out of scope for this specification.

§ 8.4.5 Resource Owner

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

35 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def

This section is non-normative.

The Ecosystem manager is the entity responsible for the functionality of the access control system.

This typically includes the management of the access grant token server, and the access token server,

the Policy documents, and that there is a PKI domain for the other actors to utilize.

This section is non-normative.

The three client sub-actors must provide authentication credentials to the access grant token server.

This may be certificates that the sub-actors have obtained from a Certificate Authority that is known

by the access grant token server. The interactions related to this are out of scope.

This section is non-normative.

The short term access grant token shall have the following claims in header and payload, where all but

the vehicle identity (vin) claim are mandatory.

 {

"alg": "ES256",

"typ": "JWT"

 },

§ 8.4.6 Ecosystem Manager

§ 8.5 Credentials

§ 8.5.1 Client Authentication

§ 8.5.2 Access Grant Token

§ 8.5.2.1 Short Term Access Grant Token

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

36 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def

 {

"vin": "vehicle-id",

"iat": 1609452095,

"exp": 1609459199,

"clx": "user+app+dev",

"aud": "covesa.global/VISSv3",

"jti": "5967e92e-40e8-5f39-892d-cc0da890db1d"

 }

The algorithm (alg) claim shall be set to a valid RSA or ECDSA algorithms according to [RFC7518].

The type (typ) claim shall be set to "JWT".

The vehicle identity (vin) claim may be present or not, depending on input to the access grant token

server.

The issued at (iat) claim shall be set to the time of token issuance, in Unix time.

The expiry (exp) claim shall be set to the time when the token expires, in Unix time.

The Client context (clx) claim shall be set to the role triplet that the client has been assigned. The

delimiter separating the roles is a plus sign (+).

The audience (aud) claim shall be set to the URL "covesa.global/VISSv3".

The JSON Web Token identity (jti) claim shall be set to a UUID that is unique within the domain

controlled by the ecosystem manager.

Except for the vehicle identity (vin) claim that is optional, the long term access grant token SHALL

have the following claims in header and payload.

 {

"alg": "ES256",

"typ": "JWT"

 },

 {

"vin": "vehicle-id",

"iat": 1609452095,

"exp": 1609459199,

"clx": "user+app+dev",

"pub": client_pub_key,

"aud": "covesa.global/VISSv3",

§ 8.5.2.2 Long Term Access Grant Token

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

37 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#ecosystem-manager-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#ecosystem-manager-def

"jti": "5967e92e-40e8-5f39-892d-cc0da890db1d"

 }

The algorithm (alg) claim shall be set to a valid RSA or ECDSA algorithms according to [RFC7518].

The type (typ) claim shall be set to "JWT".

The vehicle identity (vin) claim may be present or not, depending on input to the access grant token

server.

The issued at (iat) claim shall be set to the time of token issuance, in Unix time.

The expiry (exp) claim shall be set to the time when the token expires, in Unix time.

The Client context (clx) claim shall be set to the role triplet that the client has been assigned. The

delimiter separating the roles is a plus sign (+).

The public key (pub) claim shall be set to the public key that the client provided in the access grant

request, using the JSON Web Key (JWK) data structure [RFC7517].

The audience (aud) claim shall be set to the URL "covesa.global/VISSv3".

The JSON Web Token identity (jti) claim shall be set to a UUID that is unique within the domain

controlled by the ecosystem manager.

Except for the vehicle identity (vin), and client context (clx) claims that are optional, the Access token

SHALL have the following claims in header and payload.

 {

"alg": "HS256",

"typ": "JWT"

 },

 {

"vin": "vehicle-id",

"iat": 1609452095,

"exp": 1609459199,

"scp": "PurposeX" || signal-set,

"clx": "user+app+dev",

"aud": "covesa.global/VISSv3",

"jti": "5967e93f-40f9-5f39-893e-cc0da890db2e"

 }

The algorithm (alg) claim shall be set to any valid algorithms according to [RFC7518].

§ 8.5.3 Access Token

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

38 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-request-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-request-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-request-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-request-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#ecosystem-manager-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#ecosystem-manager-def

The type (typ) claim shall be set to "JWT".

The vehicle identity claim (vin) may be present or not, depending on its presence in the access grant

token.

The issued at (iat) claim shall be set to the time of token issuance, in Unix time.

The expiry (exp) claim shall be set to the time when the token expires, in Unix time.

The scope (scp) claim shall be set to either a purpose list short name, which logically links to the

signal scope as defined in the purpose list, or to a set of signals that the token permits access to. Each

signal is defined as a JSON object containing the signal path, and the signal permission as shown

below.

{"path":"vss-path", "access_permission":"permission"}

If the scope claim is set to a purpose, the client context claim MUST be present in the token.

The Client context (clx) claim shall be set to the role triplet that the client has been assigned. The

delimiter separating the roles is a plus sign (+).

The audience (aud) claim shall be set to the URL "covesa.global/VISSv3".

The JSON Web Token identity (jti) claim shall be set to an unguessable UUID that is unique within

the domain controlled by the ecosystem manager.

This section is non-normative.

Long term access grant tokens need to be accompanied by a Proof of Possession (PoP) for the private

key corresponding to the public key included in the access grant token. This requirement enables a

longer validity for this kind of tokens, ranging from a few days to a even a year. By adding the PoP, an

eavesdropper is prevented to reuse an access token request, impersonating the client. Without a PoP,

the longer the validity of an access grant token, the higher the risk an attacker could intercept and

reuse it. PoP for JWT are defined in [RFC7800], but in essence, a PoP enables the requester to proof

to the server that it has access to a private key, without disclosing it. Traditionally that would require

the server to create a random challenge, or nonce, and ask the client to sign it with its private key.

Along with the public key, the server would be able to verify the PoP. This scheme would require an

extra step in the protocols, where the client ask for the nonce.

In order to avoid this extra step, the client can generate the nonce itself. The server would need to

check that nonces are not reused. Although logging previous nonces at the server side would work for

small environments, the use of an incremental nonce in the form of a timestamp is proposed. One of

the drawbacks of this proposal is that the server has no means to check whether the PoP has been

precomputed or not. However, this is irrelevant from the eavesdropper point of view.

§ 8.5.4 Proof of Possession

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

39 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#purpose-list-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#purpose-list-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#purpose-list-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#purpose-list-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#ecosystem-manager-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#ecosystem-manager-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def

In case freshness of the PoP was a critical requirement, a public source of randomness to obtain the

nonce could be used, e.g. Leage of Entropy or Interoperable Randomness Beacons. That would

provide the server a mean to check freshness of the PoP but on the other hand, it would require the

client to access the public source of randomness every time it needs to create a PoP which is against

the main design goals for the long term access grant token.

This section is non-normative.

The client context contains a client actor that is characterized by three subactors:

• The user of the application.

• The application.

• The device.

Each of these subactors is in turn characterized by a role, building on the concept of a Role Based

Access Control (RBAC) model. The set of these three roles is called the Client context.

VISSv3 specifies a rudimentary list of roles for each subactor, it is expected that these lists are

augmented by the ecosystem manager, hopefully in a cooperative effort.

Using an RBAC model provides the following main purposes in the VISSv3 access control model:

• Input to the access grant token server in the client authentication process.

• Input to the access token server in the purpose validation.

The access grant token server must in the authentication process of the client possibly separately

authenticate each of the three subactors. For the access grant token server to decide on which

authentication method to use per subactor can be quite complex, but may be somewhat eased by the

client request for roles for each subactor.

Following the principle of least priviledge, a client should not have access to more vehicle signals than

necessary. This is achieved by the purpose list, that assigns only the for the purpose relevant signals to

the client.

VISSv3 specifies the following minimum set of roles for users:

§ 8.6 Client Context

§ 8.6.1 User Roles

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

40 von 64 30.01.2025, 15:15

https://www.cloudflare.com/leagueofentropy/
https://www.cloudflare.com/leagueofentropy/
https://csrc.nist.gov/projects/interoperable-randomness-beacons
https://csrc.nist.gov/projects/interoperable-randomness-beacons
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#user-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#user-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#application-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#application-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#device-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#device-roles-def
https://en.wikipedia.org/wiki/Role-based_access_control
https://en.wikipedia.org/wiki/Role-based_access_control
https://en.wikipedia.org/wiki/Role-based_access_control
https://en.wikipedia.org/wiki/Role-based_access_control
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#ecosystem-manager-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#ecosystem-manager-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-grant-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#purpose-list-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#purpose-list-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def

• OEM

• Dealer

• Independent

• Owner

• Driver

• Passenger

An OEM user is anyone representing the vehicle brand.

A Dealer user is anyone representing a normally OEM affiliated organisation that provide sale and

workshop services for the vehicle.

An Independent user is anyone representing a normally OEM independent organisation that provide

after-market services for the vehicle.

An Owner user is anyone representing the organisation owning the vehicle.

A Driver user is anyone driving the vehicle.

A Passenger user is anyone travelling in the vehicle, but not being the Driver.

VISSv3 specifies the following minimum set of roles for applications:

• OEM

• Third party

An OEM application role is used for applications that are pre-installed in the vehicle by the OEM, or

later OEM-provisioned to the vehicle.

A Third party application role is used for applications that are approved by automotive manufacturer

for vehicle deployment, but developed by a third party.

VISSv3 specifies the following minimum set of roles for devices:

• Vehicle

§ 8.6.2 Application Roles

§ 8.6.3 Device Roles

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

41 von 64 30.01.2025, 15:15

• Nomadic

• Cloud

A Vehicle role is used for applications that are deployed in-vehicle, in e. g. the center stack ECU.

A Nomadic role is used for applications that are deployed in a user's mobile phone, laptop, etc, that

uses short range radio communication like Bluetooth, or WiFi.

A Cloud role is used for applications that are deployed in off-vehicle devices, and uses a long range

radio communication like cellular in the connection to the vehicle.

This section is non-normative.

The Policy documents are typically owned and created by the ecosystem manager. They need to be

handled securely to protect their integrity. The ecosystem manager shall securely provision them to the

access token servers in the access control ecosystem.

A client shall provide a purpose as input to a request for an access token. A list of supported purposes

needs to exist for a client to select from. The ecosystem manager shall therefore provide means for

clients to survey the list to find a purpose that fits its use case.

Each entry in the list contains a short description of the purpose, which is what the client shall provide

as input to its request for an access token. There is also a long purpose description, which may be used

in the dialogue for consent, if needed. Then there is a list of the client context, i. e. the sub-actor role

triplet, that can be granted this access, and last there is a list of the signals that the client is given

access to for this purpose, with the access control and consent requirements. The list shall use a JSON

format as shown in the example below.

 {"purposes":

 [{"short": "fuel-status",

"long": "Fuel level and remaining range.",

"contexts":[{"user":"Independent","app":["OEM", "Third party"],

"device":"Cloud"}, {"user":"Owner", "app":"Third party", "device":"Nomadic"},

{"user":"Driver", "app":"OEM", "device":"Vehicle"}],

§ 8.7 Policy Documents

§ 8.7.1 Purpose List

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

42 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#application-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#application-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#application-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#application-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#application-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#application-roles-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#ecosystem-manager-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#ecosystem-manager-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#ecosystem-manager-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#ecosystem-manager-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#ecosystem-manager-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#ecosystem-manager-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def

 "signal_access":

 [{"path": "Vehicle.Powertrain.FuelSystem.Level",

"access_permission": "read-only"},

 {"path": "Vehicle.Powertrain.FuelSystem.Range",

"access_permission": "read-only"}]

 },

 {}]

 }

The purpose list shall be securely provisioned to the access token server. The protocol for this is out-

of-scope. The access token server must reject all requests for access tokens if it is not in possession of

a purpose list.

The scope list contains a list of the VSS tree nodes for which access shall be prohibited, per client

context. This prohibition is regardless of whether the client has a valid access token or not.

The scope list can also be used to limit the node metadata that is returned on a signal discovery

request.

Each entry in the list contains a list of paths to nodes that should be excluded, and a list of the client

contexts, i. e. the sub-actor role triplet, for which this exclusion should be made.

The scope list may contain an entry for a context with all three Roles set to "Undefined". The no-

access scope of this entry shall then be used for signal discovery requests where no token is included.

An entry in the no_access array that addresses a branch results in no access to the subtree of this

branch.

The list shall use a JSON format as shown in the example below.

{"scope":

[{"contexts":[{ "user":["Driver", "Passenger"], "app":"Third party",

"device":"Vehicle"}, { }],

"no_access":

["Vehicle.Drivetrain.Transmission.Speed",

"Vehicle.CurrentLocation.Latitude",

"Vehicle.CurrentLocation.Longitude"]

},

{}]

}

§ 8.7.2 Scope List

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

43 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def

The scope list shall be securely provisioned to the access token server. The protocol for this is out-of-

scope. The access token server shall not restrict the scope for any client context if it is not in

possession of a scope list.

This section is non-normative.

This chapter describes a complementary functionality to the access control model, the ability to apply

it selectively to parts of the tree. It can be used in cases where not all nodes of the tree are believed to

require access control, or where write-only validation is sufficient instead of read-write validation for

certain nodes.

This functionality requires that the access token specifies whether the access permission granted to the

client to a signal is read-only, or read-write. It also requires that the metadata for the node in the VSS

tree contains data specifying whether the access control verification should be carried out only for

write request, or for both read and write requests.

The former requirement is realized as described in earlier chapters by that the access token scope

claim links to a purpose where the signals and their respective access permission are found.

The latter requirement is realized by adding to nodes in the VSS tree the key-value pair

"validate":'access-control-mode', where 'access-control-mode' is either the string "write-only", or

"read-write".

Figure 4 Access control selection tagging.

§ 8.8 Access Control Selection

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

44 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-def

The figure above shows an example where both read and write requests to the three leftmost leaf

nodes will be access controlled, while the two rightmost leaf nodes only will be access controlled for

write requests. An inheritance rule leads to that any nodes below a tagged node are assigned the same

access control, if they are untagged.

This metadata is not likely to be applied to the standardised VSS tree, as different implementers of this

standard may have different views on which nodes to apply it to. Instead it is anticipated that it is

applied at a "deployment" stage, possibly using the VSS layering concept.

The inheritance model, which says that if access-control-mode data is added to a node, then all nodes

in the subtree for which this node is the root inherits the setting, unless there is access-control-mode

data added to any node in this subtree, makes possible a reduction of the number of nodes this

metadata have to be added to.

This allows for example an entire VSS tree to be assigned an access-control-mode by merely applying

it in the root of the tree.

The figure below shows an overview of the access control selection model, and a table showing the

required access control tagging of a node for the VISSv3 server to grant the requested access.

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

45 von 64 30.01.2025, 15:15

Figure 5 Access control selection model.

If the VSS tree used by a VISSv3 server contains access control selection tags, then the server MUST

support their usage as described in this chapter.

If it is not used, then a server may implement access control for the entire tree.

This section is non-normative.

Handling of consent involves vehicle and cloud architectural subsystems that is out of scope in

VISSv3. However, a VISSv3 vehicle server has a capability to enforce consent results, i. e. to allow or

§ 9. Consent support

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

46 von 64 30.01.2025, 15:15

block access to requested data. This can be leveraged in a model where the server receives consent

results from an ECF and uses that information to either grant client requests, or not, for data that is

consent protected. How the ECF obtains the consent status is out-of-scope in this specification. A

secure, local communication channel shall exist between the ECF and the server as shown in the

figure below, over which the server can inquire about the consent status for data requested by a client.

Figure 6 Consent architecture.

The ECF is responsible for the lifetime management of the consent status for all data that is managed

by the server, which may involve initialization, event based update, consent status removal.

The consent status can be set to any of the following values:

• NOT_SET // the server must request the ECF for the status. Unless an immediate ECF response

is given, the server must deny any client request with an error code that shows the reason.

• NO // the server must deny any client request with an error code that shows the reason.

• IN_VEHICLE // the server shall serve the client request. The client is not allowed to off-board

the data.

• YES // the server shall serve the client request. The client is allowed to off-board the data.

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

47 von 64 30.01.2025, 15:15

It shall be possible for the ECF to cancel a valid consent, which shall lead to the consent status being

set to NOT_SET. Any consequences to the data provided to the client prior to the cancelling is out of

scope.

In the case of a client request requiring a consent for data to be returned, it is the responsibility of the

access token server to obtain it from the ECF during the dialogue with a client requesting an access

token. This is done by issuing a request to the ECF which shall contain the following information:

• The requested data.

• The purpose of the request.

• The client context.

The response from the ECF shall contain:

• Consent status.

If the received consent status is set to NO or NOT_SET, then the access token server must not provide

a valid access token to the requesting client. The server must store the consent status that it receives

from the ECF, together with the data from the request for the duration of the associated service, or

until a consent cancellation is received.

Whether a server shall take action to obtain a consent or not shall be signalled in the VSS tree. This is

done by tagging appropriate nodes in the VSS tree extending the model used for access control

selection. The key-value pair used for tagging of access control is suffixed with "+consent" as shown

in the example below:

• "validate":"read-write+consent"

The consent tagging follows the same inheritance rules as defined for the access control tagging.

A server receiving a client request that involves obtaining a consent status shall send a request to the

ECF on which it shall receive a response containing the consent status. The request shall contain the

data from the list in the previous chapter. The response shall contain the data shown in the table above.

This communication shall be carried out using a secure channel (e.g. TLS).

§ 9.1 External Consent Framework Interface

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

48 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#access-token-server-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html#client-context-def

This appendix is non-normative.

File transfer use cases, where a client either sends or receives a file from the vehicle server, can e. g.

be a client that wants to push a map to the vehicle, or a client that wants to receive a video recording

clip from the vehicle.

File resources represented in the VSS tree can either be read-only, represented by the sensor node

type, or write-only, represented by the actuator node type. In either case the node datatype MUST be a

reference to a struct datatype with the following fixed definition:

 typedef FileDescriptor struct {

 name string

 hash string

 uid string

 }

The FileDescriptor name member SHALL have a dot separated file extension that identifies the file

format.

The FileDescriptor hash member SHALL be a SHA-1 hex string encoded hash calculated on the

content of the file.

The FileDescriptor uid member SHALL be a hex string encoded random uint32 value. Its value shall

be unique for each file transfer session, created by the client for download sessions, and by the server

for upload sessions.

File transfer from client to server, or in the other direction, follows the model shown in the two

sequence diagrams below. The server exposes two communication channels, a control channel and a

data channel. The control channel is the channel where the primary VISSv3.0 payloads are

communicated, while the data channel is a channel over which the file transfer data is communicated.

The file transfer data consists of the data from the file, split into appropriate size chunks, and

prepended by a header. The header consists of three fixed size parameters as shown in the list below.

• uid: 4 bytes. A unique identifier for this file transfer session.

• messageNo: 1 byte. Starting at zero and increasing by one for each file chunk that is transferred.

Maximum value is 254.

• file chunk size: 4 bytes. The size in bytes of this message, including the header size.

§ A. File Transfer

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

49 von 64 30.01.2025, 15:15

• lastMessage: 1 byte. Indiates whether this message is the last message in the transfer of this file.

The value zero indicates that this is not the last message, while a non-zero value indicates that it

is the last message.

Figure 7 VISSv3 file download.

The client SET request on the control channel is exemplified below in the primary payload format.

{

"action": "set",

"path": "Vehicle.Cabin.Infotainment.privateMap",

"value": {

"name": "privateMap.kml",

"hash": "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",

"uid": "2d878213"

}

}

The Ok response would in primary payload format look like:

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

50 von 64 30.01.2025, 15:15

Please clarify who downloads
- the client or the server

{"action": "set", "ts": "2024-08-20T11:30:00Z"}

The client message on the data channel consists of a concatenation of the header and the file chunk.

The server response on this contains a concatenation of the three parameters shown below.

• uid: 4 bytes. The identifier from the received message.

• messageNo: 1 byte. The message number from the received message.

• status: 1 byte. Indiates whether the message was correctly received or not. The value zero

indicates that it was correctly received, while a non-zero value indicates that it was not.

If the SET request on the control channel receives an error message then the client shall not issue any

SET requests on the data channel.

If the client message on the data channel receives an error response then the client hall send the same

message again. If this results in another error response the client shall terminate the download session.

Figure 8 VISSv3 file upload.

The server GET request and response on the control channel are exemplified below in the primary

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

51 von 64 30.01.2025, 15:15

payload format.

{"action": "get", "path": "Vehicle.Cabin.DashCam.Clip"}

{

 "action": "get",

"data": {

 "path": "Vehicle.Cabin.DashCam.Clip",

"dp" {

 "value": {"name": "dashCamClip.mp4", "hash":

"2aae6c35c94fcfb415dbe95f408b9ce91ee846ed", "uid": "2d878213"},

 "ts": "2024-08-20T11:30:00Z"

 }

 },

 "ts": "2025-01-09T12:13:14Z"

}

If the GET request on the control channel receives an error message then the client shall not issue any

messages on the data channel. Client messages has the same format as the server messages in the file

download scenario, and as in that case it refers to the previously received message from the server.

The client must issue an initial message of this type to trigger the server to respond, in this first

message the message number is set to 255 (all bits set to one). The client shall send a final message

after receiving the last message from the server. If the status is set to zero the server shall respond with

only the header from its last message, with the chunk size set to zero.

If the GET request on the data channel receives an error response then the client shall terminate the

upload session. The client should calculate the file hash on the received file data after the session is

concluded and compare with the file hash value received in the GET on the control channel. If they

differ the received file is likely corrupt.

A client may terminate a file download session on the data channel by sending only the header by

setting the message number to 255, the chunk size to zero, and the last message to non-zero, on which

the server shall respond with status set to zero.

A file upload session is terminated by the client by issuing a message with the message number set to

255 and the status set to non-zero.

The node type for the file resource MUST be "actuator" for the download case and "sensor" for the

upload case. This node must have a fixed datatype, a struct with the members "name", "hash", and

"uid".

Examples of tree nodes for file download and upload, respectively:

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

52 von 64 30.01.2025, 15:15

does this mean that the same node can not provide download and upload?

 DownloadFile:

 type: actuator

 datatype: Types.Resources.FileDescriptor

 description: File that may be downloaded to the vehicle.

 UploadFile:

 type: sensor

 datatype: Types.Resources.FileDescriptor

 description: File stored at the vehicle that may be uploaded to a

client.

The Types.Resources.FileDescriptor definition in the Types tree must mirror the struct definition

above.

If file transfer is realized over any supported transport protocol, this must then be shown in the server

capabilities tree, together with the information needed for a client to access the data channel. The

default mechanism for realizing a data channel is to assign a port number for it. The list below shows

the recommended port numbers for the HTTP and WebSocket protocols.

• HTTP port number: 445

• WebSocket port number: 6445

The recommended mechanism for MQTT is to assing a separate topic name to the data channel. The

recommended topic name is created by appending "/datachannel" to the topic name of the control

channel.

There exists a number of common file transfer protocols e. g. ftp, sftp, ftps, and scp which are widely

adopted and have been optimized over many years. For larger files these may be a more efficient

solution than the integrated VISS protocol. The model for using any of these instead builds on that the

client can access the needed informattion to connect to the end point that is offering the use of the file

§ A.1 Data channel realization

§ A.2 Alternative based on well-known file transfer protocols

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

53 von 64 30.01.2025, 15:15

transfer protocol to access the file. This information is available as a struct data point of the tree node.

This struct should have members similar to what is shown below, depending on what is required to

initiate he file transfer.

 struct {

 schema string

 port uint32

path string

 filename string

 }

Schema is the file transfer protocol schema.

Port is the port number for this service, at least for the initial setup.

Path is the URL path for this service.

Filename is the file name of the file to be transferred. It shall include a file extension that defines the

format of the file.

The node type of this tree node shall be "sensor" for files that can only be uploaded to a client, and

"actuator" for the file download case.

Information about the vehicle file system structure, such as the file path information, shall not be

exposed to the client. The server may use the VSS path as a key into a lookup table for accessing the

file in the vehicle file system.

The primary payloads that are sent over any transport protocol SHALL conform with the JSON

schema in this appendix, unless otherwise specified in the VISSv3 TRANSPORT-EXAMPLE or

VISSv3 PAYLOAD-ENCODING specifications.

§ B. JSON Schema

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

54 von 64 30.01.2025, 15:15

{
 "$schema": "https://json-schema.org/draft/2020-12/schema",
 "$id": "https://covesa.global/vissv3.0.bundled.schema.json",
 "title": "VISSv3",
 "description": "VISS version 3.0 bundled schema",
 "type": "object",
 "properties": {
 "action": {
 "type": "string"
 }
 },
 "required": [
 "action"
],
 "oneOf": [
 {
 "properties": {
 "action": {
 "const": "get"
 }
 },
 "$ref": "/vissv3.0/get-message.schema.json"
 },
 {
 "properties": {
 "action": {
 "const": "set"
 }
 },
 "$ref": "/vissv3.0/set-message.schema.json"
 },
 {

A client that wants to connect to a server may be interested in what capabilities the server offers. The

server shall maintain a separate Server tree which the client can access for this purpose to find out

about optional features. However, for the client to access this information it must have information

about at least one transport protocol that the server supports. The VISS API should not make any

assumptions on the communication network topology. Therefore it should not mandate any transport

protocol, instead it should assume that a client can obtain necessary information via out-of-band

means to configure its communication in order to successfully connect to the vehicle server. How that

is done is out-of-scope for this specification, but as an example a solution may be designed around a

cloud based repository to which servers can register their capabilities, and clients can inquire about

obtaining this information. When a client has obtained the information how to connect to the server,

then the server MUST respond to read requests for data from the Server tree.

§ C. Server Capabilities

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

55 von 64 30.01.2025, 15:15

Below follows an example of a server capabilities tree. The tree MUST contain the structures listed

below, other parts are optional. Server capabilities that extends this specification, or change anything

defined in this specification SHALL be declared in the Server tree.

• The root node name MUST be Server.

• The Server node MUST have at least have two children named Support and Config.

• The Support node MUST have at least one child named Protocol.

• The Protocol node MUST be an attribute with a string array datatype with members defining the

supported transport protocols.

#
The server capabilities declaration.
#
Server:
 type: branch
 description: Root for the server capabilities.

Server.Support:
 type: branch
 description: Top branch declaring the server supported features.

Server.Support.Protocol:
 type: attribute
 datatype: string[]
 description: List of supported transport protocols.

Server.Support.Security:
 type: attribute
 datatype: string[]
 description: List of supported security related features.

Server.Support.Filter:
 type: attribute
 datatype: string[]
 description: List of supported filter features.

Server.Support.Encoding:
 type: attribute
 datatype: string[]
 description: List of supported payload encoding features.

Server.Support.Filetransfer:

§ C.1 Server Tree Example

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

56 von 64 30.01.2025, 15:15

the example contains normative text - this seems strange, consider separating

does this mean the 4 bullet points or the whole example?
If the whole example is meant could the points 1,3,4 be removed?

if the following is also mandated: what is the intended content of the PortNum of proctocols that the server does not support?

does this mean the 4 bullet points or the whole example?
If the whole example is meant could the points 1,3,4 be removed?

A feature that is supported in at least one configuration shall be registered on the Support branch. The

Config branch shall contain the information needed for a client to utilize the feature, for all

configurations that has the feature supported. If a server e. g. supports file transfer upload and

download then this shall be found at the Support branch, and then on the Config branch it shall be

registered for which transport protocol(s) it is supported, and e. g. which port number is then used.

Configuration data that is given a value in the specification documents does not have to be present on

the Config branch.

The feature names that are used in the Server tree should for the features described in this

specification use the names listed below.

Protocol Description

http
[TRANSPORT EXAMPLES], Transport

Protocol Examples:HTTPS chapter

ws

[TRANSPORT EXAMPLES], Transport

Protocol Examples:Secure Websocket

chapter

mqtt
[TRANSPORT EXAMPLES], Transport

Protocols:MQTT chapter

grpc
[TRANSPORT EXAMPLES], Transport

Protocols:gRPC chapter

Filter Description

timebased 7.3 Time Based Filter Operation

change 7.5 Change Filter Operation

paths 7.1 Paths Filter Operation

range 7.4 Range Filter Operation

curvelog 7.6 Curve logging Filter Operation

history 7.2 History Filter Operation

metadata 7.7 Metadata Filter Operation

File transfer Description

download File download to vehicle

§ C.2 Server Feature Naming

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

57 von 64 30.01.2025, 15:15

https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#https
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#https
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#secure-websockets
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html#secure-websockets

upload File upload to client

Data

compression
Description

pathuid Static UID path compresion

pathlocal Request local path compression

timestamplocal
Response local timestamp

compression

Security Description

accesscontrol 8. Access Control Model

consent 9. Consent support

Access Control Flow Description

short_term 8.2 Protocol Flows

long_term 8.2 Protocol Flows

signalset_claim 8.5.3 Access Token

The primary payload format is JSON, which is text based and thus may lead to large messages in

terms of bytes. Particularly in subscription scenarios with large number of event messages that are sent

off-vehicle this is an undesireable feature as the transportation cost may be significant. The payload

encoding that is supported in this specification provides one possibility of compressing the message

size, but it does typically not take advantage of specific knowledge of the data being transported. The

data compression described here does so, as will be described in the following. This compression can

typically also be combined with a following payload encoding compression step. The compression

scheme is assymmetric in that it is applied to the response data from the server, but not to the client

requests. The assumption is that this is where it may have the largest impact, particularly in the case of

multiple responses on a subscribe request. It is also applied per request by an optional parameter that

can be included in the Read or Subscribe requests, having the following format.

§ D. Data Compression

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

58 von 64 30.01.2025, 15:15

"dc": "A+B"

The expression A+B instructs the server what compression scheme it shall apply to paths and/or

timestamps in its response(s) to this request. This expression must consist of two values separated by a

plus sign, "A + B", where the first value A represents which path compression that is selected, and the

second value B represents which timestamp compression that is selected. The value 0 means that no

compression scheme is selected, values 1, 2, 4, or 8 represents the compression scheme associated

with bits no 0, 1, 2, or 3 in the figure below.

Figure 9 Data compression scheme coding.

The bits shown in the figure above are assigned to the data compression schemes shown in the list

below and described in the following chapters.

For path compression:

• Bit 0: Static UID path compression.

• Bit 1: Request local path compression.

• Bit 2-3: Reserved for other path compression schemes.

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

59 von 64 30.01.2025, 15:15

For timestamp compression:

• Bit 0: Request relative timestamp compression.

• Bit 1-3: Reserved for other timestamp compression schemes.

See the following chapters for description of the supported compression schemes.

If the server supports data compression it SHALL declare the compression schemes it supports in its

server capabilities tree with an expression A+B which is the sum of the values representing the

supported schemes.

If a client request for data compression is not supported, or impossible to realize, the server shall

respond with an error message.

To enable the server to support this path compression the VSS tree must include the static UIDs for

each node. The VSS-Tools exporter tools can be used to assign a static UID to each tree node as

described here.

The server will then in the response message(s) replace the VSS path with the static UID value. The

static UID is represented as a hex value string starting with the characters "0x" then followed by 8

hexadecimal values. The client needs to obtain means for decoding the static UIDs into corresponding

VSS paths. The server shall respond with an error message if the client applies the path compression

in its request.

The principle for request local path compression is that the server will in the response message(s)

replace the path(s) with an integer index. In the case that the request only contains one path reference,

then the index is always set to zero. For requests that reference more than one path via the usage of the

paths filter, the first response from the server will contain the paths uncompressed, but any following

responses will replace the paths with an index. The value of the index is then assigned according to a

sorted list of the paths included in the first response, i. e. the first path in the sorted list is assigned the

value zero, the second the value 1, and so on. The index logically represent an integer value but it is in

the message payload represented as a string.

§ D.1 Static UID Path Compression

§ D.2 Request Local Path Compression

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

60 von 64 30.01.2025, 15:15

https://github.com/COVESA/vss-tools/blob/master/docs/id.md
https://github.com/COVESA/vss-tools/blob/master/docs/id.md
This does not seem to match with the string array defined in C

are there any plans or outlines on how these means could look like / work?

how are the paths sorted? why is there a need to sort the paths? - to me it looks like an arbitrary order is fine here

For get that addresses multiple paths: will the response always contain uncompressed paths or will the compression
be applied also to identical subsequent requests?
What happens if after the uncompressed initial response the referenced paths change e.g. because new signals become
available and/or signals become unavailable?
is it possible to use static UID path compression for the initial response?

The request relative time stamp compression builds on that response messages always contain a

timestamp that represent the time when the response message was issued by the server. This

timestamp will then be the base time that the timestamps for the data point(s) in the response will

contain an offset to. This offset will be represented as an integer representing milliseconds, prepended

with a plus (+) or minus (-) sign. The uncompressed ISO8601 based timestamp contains 24 characters,

so for very large offset values leading to low compression rates the server may decide to keep the

uncompressed timestamp. The client will be able to analyze whether it is a compressed timestamp or

not by examining the first character of the string. If it is an integer it is an uncompressed timestamp, as

the compressed timestamps starts with a plus or a minus character.

The sequence diagram below shows client Get requests for vehicle speed where different

combinations of compression schemes are selected. The responses mainly show the paths or

timestamps that becomes compressed. In the first request/response the client requests static UID path

compression, in the second request local path compression, and in the third and fourth request relative

timestamp compression is added together with the respective path compression.

§ D.3 Request Relative Timestamp Compression

§ D.4 Sequence Diagram Compression Scheme Examples

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

61 von 64 30.01.2025, 15:15

in the message payload is this a string as in D.2 or an integer?

check this sentence

Figure 10 Data compression scheme sequence diagram.

An example with the complete payloads for a subscribe on two signals with path and timestamp

compression are shown below. The first payload is the request, the second is the response, then

follows the two first event messages.

{"action":"subscribe","path":"Vehicle.CurrentLocation","filter":

[{"variant":"paths","parameter":["Latitude", "Longitude"]},

{"variant":"timebased","parameter":{"period":"3000"}}],

"dc":"2+1","requestId":"286"}

{"action":"subscribe","requestId":"286","subscriptionId":"1","ts":"2025-01-10T11:

46:09.955Z"}

{"action":"subscription","data":[{"dp":

{"ts":"-123","value":"56.02"},"path":"Vehicle.CurrentLocation.Latitude"},{"dp":

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

62 von 64 30.01.2025, 15:15

{"ts":"-123","value":"12.36"},"path":"Vehicle.CurrentLocation.Longitude"}],"subsc

riptionId":"1","ts":"2025-01-10T11:46:12.957Z"}

{"action":"subscription","data":[{"dp":{"ts":"-15","value":"56.03"},"path":"0"},

{"dp":

{"ts":"-15","value":"12.37"},"path":"1"}],"subscriptionId":"1","ts":"2025-01-10T1

1:46:15.956Z"}

[html]
HTML Standard. Anne van Kesteren; Domenic Denicola; Dominic Farolino; Ian Hickson; Philip

Jägenstedt; Simon Pieters. WHATWG. Living Standard. URL: https://html.spec.whatwg.org/

multipage/

[ISO8601]
Representation of dates and times. ISO 8601:2004.. International Organization for

Standardization (ISO). 2004. ISO 8601:2004. URL: http://www.iso.org/iso/catalogue_detail?

csnumber=40874

[PAYLOAD ENCODING]
COVESA VISS version 3.0-Payload Encoding. Ulf Bjorkengren. URL: https://raw.githack.com/

COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_PayloadEncoding.html

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997. Best

Current Practice. URL: https://www.rfc-editor.org/rfc/rfc2119

[RFC3987]
Internationalized Resource Identifiers (IRIs). M. Duerst; M. Suignard. IETF. January 2005.

Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc3987

[RFC5246]
The Transport Layer Security (TLS) Protocol Version 1.2. T. Dierks; E. Rescorla. IETF. August

2008. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc5246

[RFC6455]
The WebSocket Protocol. I. Fette; A. Melnikov. IETF. December 2011. Proposed Standard. URL:

§ E. References

§ E.1 Normative references

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

63 von 64 30.01.2025, 15:15

https://html.spec.whatwg.org/multipage/
https://html.spec.whatwg.org/multipage/
https://html.spec.whatwg.org/multipage/
https://html.spec.whatwg.org/multipage/
https://html.spec.whatwg.org/multipage/
https://html.spec.whatwg.org/multipage/
https://html.spec.whatwg.org/multipage/
http://www.iso.org/iso/catalogue_detail?csnumber=40874
http://www.iso.org/iso/catalogue_detail?csnumber=40874
http://www.iso.org/iso/catalogue_detail?csnumber=40874
http://www.iso.org/iso/catalogue_detail?csnumber=40874
http://www.iso.org/iso/catalogue_detail?csnumber=40874
http://www.iso.org/iso/catalogue_detail?csnumber=40874
http://www.iso.org/iso/catalogue_detail?csnumber=40874
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_PayloadEncoding.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_PayloadEncoding.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_PayloadEncoding.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_PayloadEncoding.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_PayloadEncoding.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_PayloadEncoding.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_PayloadEncoding.html
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3987
https://www.rfc-editor.org/rfc/rfc3987
https://www.rfc-editor.org/rfc/rfc3987
https://www.rfc-editor.org/rfc/rfc3987
https://www.rfc-editor.org/rfc/rfc3987
https://www.rfc-editor.org/rfc/rfc5246
https://www.rfc-editor.org/rfc/rfc5246
https://www.rfc-editor.org/rfc/rfc5246
https://www.rfc-editor.org/rfc/rfc5246
https://www.rfc-editor.org/rfc/rfc5246
https://www.rfc-editor.org/rfc/rfc6455
https://www.rfc-editor.org/rfc/rfc6455
https://www.rfc-editor.org/rfc/rfc6455

https://www.rfc-editor.org/rfc/rfc6455

[RFC6749]
The OAuth 2.0 Authorization Framework. D. Hardt, Ed. IETF. October 2012. Proposed Standard.

URL: https://www.rfc-editor.org/rfc/rfc6749

[RFC7517]
JSON Web Key (JWK). M. Jones. IETF. May 2015. Proposed Standard. URL: https://www.rfc-

editor.org/rfc/rfc7517

[RFC7518]
JSON Web Algorithms (JWA). M. Jones. IETF. May 2015. Proposed Standard. URL: https://

www.rfc-editor.org/rfc/rfc7518

[RFC7800]
Proof-of-Possession Key Semantics for JSON Web Tokens (JWTs). M. Jones; J. Bradley; H.

Tschofenig. IETF. April 2016. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc7800

[RFC8174]
Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF. May 2017. Best

Current Practice. URL: https://www.rfc-editor.org/rfc/rfc8174

[RFC8259]
The JavaScript Object Notation (JSON) Data Interchange Format. T. Bray, Ed. IETF. December

2017. Internet Standard. URL: https://www.rfc-editor.org/rfc/rfc8259

[TRANSPORT EXAMPLES]
COVESA VISS version 3.0-Transport Examples. Ulf Bjorkengren. URL: https://raw.githack.com/

COVESA/vehicle-information-service-specification/main/spec/

VISSv3.0_TransportExamples.html

↑

COVESA VISS version 3.0 - Core https://raw.githack.com/COVESA/vehicle-information-service-specifica...

64 von 64 30.01.2025, 15:15

https://www.rfc-editor.org/rfc/rfc6455
https://www.rfc-editor.org/rfc/rfc6455
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc7517
https://www.rfc-editor.org/rfc/rfc7517
https://www.rfc-editor.org/rfc/rfc7517
https://www.rfc-editor.org/rfc/rfc7517
https://www.rfc-editor.org/rfc/rfc7517
https://www.rfc-editor.org/rfc/rfc7517
https://www.rfc-editor.org/rfc/rfc7517
https://www.rfc-editor.org/rfc/rfc7518
https://www.rfc-editor.org/rfc/rfc7518
https://www.rfc-editor.org/rfc/rfc7518
https://www.rfc-editor.org/rfc/rfc7518
https://www.rfc-editor.org/rfc/rfc7518
https://www.rfc-editor.org/rfc/rfc7518
https://www.rfc-editor.org/rfc/rfc7518
https://www.rfc-editor.org/rfc/rfc7800
https://www.rfc-editor.org/rfc/rfc7800
https://www.rfc-editor.org/rfc/rfc7800
https://www.rfc-editor.org/rfc/rfc7800
https://www.rfc-editor.org/rfc/rfc7800
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc8259
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_TransportExamples.html

