
COVESA VISS version 3.0-Transport
Examples
07 January 2025

▾ More details about this document

Latest published version:
none

Latest editor's draft:
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/

VISSv3.0_TransportExamples.html

History:
Commit history

Editors:
Ulf Bjorkengren (Ford Motor Company)

이원석(Wonsuk Lee) (한국전자통신연구원(ETRI))

Feedback:
GitHub COVESA/vehicle-information-service-specification (pull requests, new issue, open

issues)

Copyright © 2024 COVESA®. This document includes material copied from or derived from W3C VISS version 2 - Core.

Abstract

The Vehicle Information Service Specification (VISS) is a service for accessing vehicle information,

signals from sensors on control units within a vehicle's network. It exposes this information using a

hierarchical tree like taxonomy defined in COVESA Vehicle Signal Specification (VSS). The service

provides this information in JSON format. The service may reside in the vehicle, or on servers in the

internet with information already brought off the vehicle.

This specification describes a third version of VISS which has been implemented and deployed on

production vehicles. The first version of VISS only supported WebSocket as a transport protocol, the

second version is generalized to work across different protocols as some are better suited for different

use cases. The second version added support for the HTTP and MQTT transport protocols,

subscription capabilities was improved and an access control solution was added.

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

1 von 40 07.01.2025, 14:37

https://covesa.global/
https://covesa.global/
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_TransportExamples.html
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_TransportExamples.html
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_TransportExamples.html
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_TransportExamples.html
https://github.com/COVESA/vehicle-information-service-specification/commits/
https://github.com/COVESA/vehicle-information-service-specification/commits/
https://www.ford.com/
https://www.ford.com/
mailto:wonsuk.lee@etri.re.kr
mailto:wonsuk.lee@etri.re.kr
https://etri.re.kr/eng/main/main.etri
https://etri.re.kr/eng/main/main.etri
https://github.com/COVESA/vehicle-information-service-specification/
https://github.com/COVESA/vehicle-information-service-specification/
https://github.com/COVESA/vehicle-information-service-specification/pulls/
https://github.com/COVESA/vehicle-information-service-specification/pulls/
https://github.com/COVESA/vehicle-information-service-specification/issues/new/choose
https://github.com/COVESA/vehicle-information-service-specification/issues/new/choose
https://github.com/COVESA/vehicle-information-service-specification/issues/
https://github.com/COVESA/vehicle-information-service-specification/issues/
https://github.com/COVESA/vehicle-information-service-specification/issues/
https://github.com/COVESA/vehicle-information-service-specification/issues/
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html

1.

2.

3.

4.

4.1

4.1.1

4.1.2

4.1.3

4.1.4

4.2

4.3

5.

5.1

5.1.1

5.1.1.1

5.1.1.2

5.1.2

5.1.2.1

5.1.2.1.1

5.1.2.1.2

5.1.2.1.3

5.1.2.1.4

5.1.2.2

5.1.2.2.1

5.1.2.3

There are three parts to this specification, [viss3-core], [viss3-payload-encoding], and TRANSPORT-

EXAMPLES. This document, the VISS version 3.0 TRANSPORT-EXAMPLES specification,

describes the VISSv3 transport protocols, and the mapping of the message layer on these transports.

The companion specification [viss3-core] describes the messaging layer, and [viss3-payload-encoding]

describes payload encodings to/from the primary JSON payload format.

Table of Contents

Abstract

Introduction

Conformance

Terminology

Transport Common Definitions

Status Codes

400 Bad Request Error Messages

400 Invalid Data Error Messages

401 Unauthorized Error Messages

404 Not Found Error Messages

Transport Payload

Authorization

Transport Protocols

Secure WebSocket

Session Life Time Management

Initialization

Closure

Transport Messages

Read

Authorized Read

Search Read

History Read

Signal Discovery Read

Update

Authorized Update

Subscribe

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

2 von 40 07.01.2025, 14:37

5.1.2.3.1

5.1.2.3.2

5.1.2.3.3

5.1.2.3.4

5.1.2.4

5.2

5.2.1

5.2.1.1

5.2.1.2

5.2.2

5.2.2.1

5.2.2.1.1

5.2.2.1.2

5.2.2.1.3

5.2.2.1.4

5.2.2.1.5

5.2.2.2

5.2.2.2.1

5.3

5.3.1

5.3.2

5.3.3

5.4

6.

6.1

6.2

6.3

A.

A.1

Authorized Subscribe

Curve Logging Subscribe

Range Subscribe

Change Subscribe

Unsubscribe

HTTPS

Session Life Time Management

Initialization

Closure

Transport Messages

Read

Authorized Read

Search Read

History Read

Signal Discovery Read

Dynamic Metadata Read

Update

Authorized Update

MQTT

Application Level Protocol

Security Aspects

Transport Messages

gRPC

Definitions

Term Definitions

Action Definitions

Error Definitions

References

Normative references

This document provides examples of how the message payloads defined in [viss3-core] are used

together with different transport protocols. The Websocket ([RFC6455]) transport protocol is used to

give an example of how the JSON primary payload format is directly used. This is followed by

§ 1. Introduction

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

3 von 40 07.01.2025, 14:37

examples of other transport protocols where exceptions from the primary payload format are defined

and exemplified.

The Vehicle Information Service Specification, version 3.0 permits any transport protocol to be used

that can transport the unaltered primary payload format. Transport protocols that require modifications

or transformations of the primary payload format MUST define this in either this document or in the

[viss3-payload-encoding] document. The transport protocols that define deviations in this document

are listed below.

Protocol name Reference

HTTP [RFC9112]

MQTT [MQTT]

gRPC [gRPC]

The Websocket protocol is used to provied an example for protocols that does not introduce any

deviations so therefore it is not shown on the list above.

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes

in this specification are non-normative. Everything else in this specification is normative.

The key words MAY, MUST, SHALL, and SHOULD in this document are to be interpreted as

described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as

shown here.

The acronym 'VISSv3' is used to refer to this document, the VISS version 3 specification. The

acronym 'VSS' is used to refer to the 'Vehicle Signal Specification' which is defined by the COVESA

Alliance. The term 'WebSocket' when used in this document, is as defined in the W3C WebSocket API

and the WebSocket Protocol.

§ 2. Conformance

§ 3. Terminology

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

4 von 40 07.01.2025, 14:37

https://grpc.io/
https://grpc.io/
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14

This chapter defines features that SHALL be common for all transport protocols.

A server implementing this specification SHALL support the error codes, error reasons and error

messages shown in the table below, for all supported transport protocols. The server may choose to

dynamically replace the error message as described in the sub-chapters

The client MAY support any status code defined in [RFC2616].

Error Number (Code) Error Reason Error Message

400 (Bad Request) bad_request The request is malformed

400 (Bad Request) invalid_data Data in the request is invalid

401 (Unauthorized) invalid_token Access token is invalid

403 (Forbidden) forbidden_request The server refuses to carry out the request

404 (Not Found) unavailable_data The requested data was not found

408 (Request Timeout) request_timeout Subscribe duration limit exceeded

429 (Too Many

Requests)

too_many_requests Rate-limiting due to too many requests

502 (Bad Gateway) bad_gateway The upsteam server response was invalid

503 (Service

Unavailable)

service_unavailable The server is temporarily unable to handle the

request

504 (Gateway Timeout) gateway_timeout The upsteam server took too long to respond

This error code and reason shall be used for JSON schema related errors. The default error message is

shown in the table above. The server may dynamically replace this by any of the error messages in the

list below, or by any other relevant error message.

§ 4. Transport Common Definitions

§ 4.1 Status Codes

§ 4.1.1 400 Bad Request Error Messages

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

5 von 40 07.01.2025, 14:37

what is the intention why this is not made mandatory?

would it be possible to introduce some guidance or any further information
on when/after what delay these errors(service_unavailable, gateway_timeout) are supposed to occur?

• Missing or invalid action

• Missing or invalid path

• Missing or invalid filter

• Missing or invalid value

This error code and reason shall be used for errors that are not covered by the JSON schema but e. g.

breaks a rule set by a VSS property. The default error message is shown in the table above. The server

may dynamically replace this by any of the error messages in the list below, or by any other relevant

error message.

• Update of a sensor is not supported

• Requested action on a branch is not supported

• Data value outside limit

• Incorrect data type

This error code and reason shall be used for errors related to access control validation. The default

error message is shown in the table above. The server may dynamically replace this by any of the error

messages in the list below, or by any other relevant error message.

• Access token has expired

• Access token is missing

This error code and reason shall be used when the server do not have access to the requested data. The

default error message is shown in the table above. The server may dynamically replace this by any of

the error messages in the list below, or by any other relevant error message.

§ 4.1.2 400 Invalid Data Error Messages

§ 4.1.3 401 Unauthorized Error Messages

§ 4.1.4 404 Not Found Error Messages

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

6 von 40 07.01.2025, 14:37

• Data temporarily unaccessible

• Data is unknown

The payload SHALL have JSON format. See the JSON Schema chapter in the CORE document for the

primary payload format.

If authorization is enabled on a signal requested by the client, it MUST provide a token to the server in

order to verify that it is correctly authorized for the service it requests (see [viss3-core]

document).Tokens are integrated in HTTP requests in the Authorization header. For WebSocket and

MQTT requests an optional authorization property in the payload can be used.

The transport protocols supported are the secure versions of HTTP, WebSocket, and MQTT, the latter

on which a thin application layer protocol is applied.

The server MUST support the HTTP and WebSocket protocols, other protocols are optional.

Further transport protocols may be supported in future versions of this specification.

The WebSocket protocol is used in this document to provide examples of a protocol that does not

apply any deviations to the primary payload format. As it does not implicitly provide a logical

association between the request and response messages a key-value pair with the keyname "requestId"

is added to the data components as described in the [viss3-core] document.

As the WebSocket protocol neither specifies a set of explicit methods, another key-value pair with the

keyname "action" is also added. See 6.2 Action Definitions for the declaration of these key-value

§ 4.2 Transport Payload

§ 4.3 Authorization

§ 5. Transport Protocols

§ 5.1 Secure WebSocket

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

7 von 40 07.01.2025, 14:37

pairs. All data components are mapped to the payload.

If the client application is an HTML Application running in a web runtime or is a web page running in

a browser, the WebSocket instance may either be instantiated natively or be created using a 'standards

compliant' WebSocket JavaScript library.

A WebSocket can also be initiated from a native (e.g. C++) Application or from an Application

written using a 'Managed Runtime' language like Java or C#. It is assumed that native and managed

clients use a suitable standards compliant WebSocket library to request that a WebSocket connection is

opened on the server.

Implementations that support additional devices or multiple VISSv3 services should provide

discovery. Alternatively, the location of a particular VISSv3 Server instance on the local vehicle

network may be handled by configuration, either as part of a package manifest or by consulting a

registry on application install. The 'wwwVISSv3' hostname in this specification is used an example.

A client running on the vehicle is able to connect to the VISSv3 Server instance using the hostname

e.g. 'wwwVISSv3' and uses the default port 443. The hostname 'wwwVISSv3' may locally be mapped

to the localhost IP address 127.0.0.1 e.g. by adding an entry to the /etc/hosts file.

The sub-protocol name SHALL be 'VISSv3' with the digit 2 being the version number. The sub-

protocol version will be associated with exactly one VISS Server Specification version so that the

client and server can correctly validate and parse request and response message packets.

var vehicle = new WebSocket("wss://wwwVISSv3:443", "VISSv3");

The client SHALL connect to the server over HTTPS and request that the server opens a WebSocket.

All WebSocket communications between the client and server MUST be over ‘wss’. Non encrypted

communication is not supported, hence the server MUST refuse ‘ws’ connection requests.

This specification assumes that a single WebSocket is used to enable communication between a client

§ 5.1.1 Session Life Time Management

§ 5.1.1.1 Initialization

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

8 von 40 07.01.2025, 14:37

3

application and the server. The client MAY open more than one websocket. However, the server MAY

refuse to open a subsequent WebSocket connection and the client is responsible for handling this

gracefully.

If more than one WebSocket connection is established between a client application and the server then

each connection MUST be managed independently. For example, subscriptions created using a

particular WebSocket connection shall only trigger event messages via that connection and the client

MUST use that WebSocket connection to unsubscribe.

If more than one WebSocket connection has been established between one or more clients and a

particular server instance, there is a risk that race conditions and concurrency issues could occur. An

example of this would be where two or more WebSocket connections are used to update a particular

setting at the same time.

Unless explicitly stated otherwise, the client MAY only assume that the server implements a simple

concurrency model where lost updates and dirty reads could potentially occur if the server has more

than one WebSocket connection open.

The WebSocket may be closed by either the client or the server by invoking the ‘close()’ method on

the WebSocket instance.

The following example shows the lifetime of a WebSocket on the client:

// Open the WebSocket

var vehicle = new WebSocket("wss://wwwVISSv3:443", "VISSv3");

…

// Close the WebSocket

vehicle.close();

The VISSv3 Server may terminate the WebSocket connection if it has not received a request for a

period determined by the server. It is the client’s responsibility to handle this gracefully and to recover

and request new subscriptions, where required.

§ 5.1.1.2 Closure

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

9 von 40 07.01.2025, 14:37

The client MAY send a getRequest message to the server to get the value of one or more vehicle

signals. If the server is able to satisfy the request it SHALL return a getSuccessResponse message. If

the server is unable to fulfil the request, e.g. because the client is not authorized to retrieve one or

more of the signals, then the server SHALL return a getErrorResponse message. The structure of these

message objects is defined below.

Object Name Attribute Type Required

getRequest

action Action Yes

path string Yes

filter string Optional

authorization string Optional

requestId string Yes

Object Name Attribute Type Required

getSuccessResponse

action Action Yes

requestId string Yes

data object Yes

In the table above the "data" attribute is either an object containing "value" and "ts" name/value pairs,

or an array of such objects.

Object Name Attribute Type Required

getErrorResponse

action Action Yes

requestId string Yes

error Error Yes

ts string Yes

Example:

Request:

§ 5.1.2 Transport Messages

§ 5.1.2.1 Read

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

10 von 40 07.01.2025, 14:37

{

"action": "get",

"path": "Vehicle.Drivetrain.InternalCombustionEngine.RPM",

"requestId": "8756"

}

Successful response:

 {

 "action": "get",

"requestId": "8756",

"data":{"path":"Vehicle.Drivetrain.InternalCombustionEngine.RPM",

"dp":{"value":"2372", "ts":"2020-04-15T13:37:00Z"}

 },

 "ts":"2020-04-15T13:37:05Z"

 }

Error response:

{

"action": "get",

"requestId": "8756",

"error": {"number": 404, "reason": "unavailable_data", "message":

"The requested data was not found."},

"ts": "2020-04-15T13:37:00Z"

}

If the operation on the VSS node that is addressed requires authorization, then the request must

contain the field "authorization" with its value being a JWT token. The token validation must be

successful for a getSuccessResponse to be returned, else a getErrorResponse is returned. A token can

§ 5.1.2.1.1 A��������� R���

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

11 von 40 07.01.2025, 14:37

be combined with all types of read requests.

Example:

Request:

{

"action": "get",

"path": "Vehicle.Drivetrain.InternalCombustionEngine.RPM",

"authorization":

"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJuYW1...Zw_KSsds",

"requestId": "8657"

}

Response:

 {

 "action": "get",

"requestId": "8657",

"data":{"path":"Vehicle.Drivetrain.InternalCombustionEngine.RPM",

"dp":{"value":"2372", "ts":"2020-04-15T13:37:00Z"}

 },

 "ts":"2020-04-15T13:37:01Z"

 }

A client may issue a search read request to access multiple values in one request message. This is

realized by adding a "filter" object following the paths filter operation described in the [viss3-core].

Example:

Request:

{

"action": "get",

§ 5.1.2.1.2 S����� R���

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

12 von 40 07.01.2025, 14:37

https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html#paths-filter-operation
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html#paths-filter-operation

"path": "Vehicle.Cabin",

"filter": {"variant":"paths", "parameter":["Door.*.*.IsOpen",

"DriverPosition"]},

"requestId": "5688"

}

Response:

 {

 "action": "get",

"data":[{"path":"Vehicle.Cabin.Door.Row1.Left.IsOpen", "dp":

{"value":"false", "ts":"2020-04-15T13:37:00Z"}},

 {...},…

 {"path":"Vehicle.Cabin.Door.Row4.Right.IsOpen", "dp":

{"value":"true", "ts":"2020-04-15T13:37:01Z"}},

 {"path":"Vehicle.Cabin.DriverPosition", "dp":

{"value":"1", "ts":"2020-04-15T07:00:01Z"}}

],

 "requestId": "5688",

"ts":"2020-04-15T07:00:02Z"

 }

A client may issue a history read request to access recorded data points. This is realized by adding a

"filter" object following the history filter operation described in the [viss3-core].

Example:

Request:

{

"action": "get",

"path": "Vehicle.Acceleration.Longitudinal",

"filter": {"variant":"history", "parameter":"P2DT12H"},

"requestId": "5688"

§ 5.1.2.1.3 H������ R���

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

13 von 40 07.01.2025, 14:37

https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html#history-filter-operation
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html#history-filter-operation

}

Response:

 {

 "action": "get",

"data": {"path": "Vehicle.Acceleration.Longitudinal", "dp":

[{"value": "0.123", "ts": "2020-04-15T13:00:00Z"}, {"value": "0.125", "ts":

"2020-04-15T13:37:02Z"}]},

 "requestId": "5688",

"ts": "2020-04-15T13:37:02Z"

 }

A client may issue a signal discovery read request to access dynamic metadata. A successful response

will contain the requested metadata from all nodes of the subtree defined by the subtree root node that

is addressed by the path. The static metadata, i. e. the metadata in the VSS tree, is retrieved by the

setting the "type" to "static-metadata", and the parameter object to relevant static metadata.

Example:

Request:

{

"action": "get",

"path": "Vehicle.Drivetrain.FuelSystem",

"filter":{"variant":"dynamic-metadata", "parameter":

["availability", "validate"]},

"requestId": "5687"

}

Response:

§ 5.1.2.1.4 S����� D�������� R���

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

14 von 40 07.01.2025, 14:37

that seems to have been removed

 {

 "action": "get",

"requestId": "5687",

"metadata": {"FuelSystem":

{"availability":"available","validate":"read-write","children":["HybridType", ...

]}},

 "ts": "2020-04-15T13:37:00Z"

 }

The client may request that the server sets the value of one or more signals e.g. to lock one or more

doors or open a window by sending a setRequest message to the server. In the case of several signals

being set, they MUST all be of the same data type, and be set to the same value. If the server is able to

satisfy the request it SHALL return a setSuccessResponse message. If an error occurs e.g. because the

client is not authorized to set the requested value, or the value is read-only, the server SHALL return a

setErrorResponse message.

Object Name Attribute Type Required

setRequest

action Action Yes

path string Yes

value string/array/object Yes

authorization string Optional

requestId string Yes

Object Name Attribute Type Required

setSuccessResponse

action Action Yes

requestId string Yes

ts string Yes

Object Name Attribute Type Required

setErrorResponse action Action Yes

requestId string Yes

error Error Yes

§ 5.1.2.2 Update

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

15 von 40 07.01.2025, 14:37

how does that work? setting multiple signals at once?

what about
number and boolean?

Object Name Attribute Type Required

ts string Yes

Example:

Request:

{

"action": "set",

"path": "Vehicle.Drivetrain.Transmission.PerformanceMode",

"value": "sport",

"requestId": "5687"

}

Successful response:

{

"action": "set",

"requestId": "5687",

"ts": "2020-04-15T13:37:00Z"

}

Error response:

{

"action": "set",

"requestId": "5687",

"error": {"number": 404, "reason": "unavailable_data", "message":

"The requested data was not found."},

"ts": "2020-04-15T13:37:00Z"

}

§ 5.1.2.2.1 A��������� U�����

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

16 von 40 07.01.2025, 14:37

If the operation on the VSS node that is addressed requires authorization, then the request must

contain the field "authorization" with its value being a JWT token. The token validation must be

successful for a setSuccessResponse to be returned, else a setErrorResponse is returned. A token can

be combined with all types of update requests.

Example:

Request:

{

"action": "set",

"path": "Vehicle.Drivetrain.Transmission.PerformanceMode",

"value": "sport",

"authorization":

"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJuYW1...Zw_KSsds",

"requestId": "5687"

}

Response:

{

"action": "set",

"requestId": "5687",

"ts": "2020-04-15T13:37:00Z"

}

The client may send a subscribeRequest message to request a subscription to one or more signals,

thereby requesting the server to repeatedly return subscription event messages, as specified by the

filter request described in the [viss3-core]. The server MAY reduce the number of subcriptionEvent

messages sent to the client in order to reduce processing demands.

If the server is able to satisfy the request it SHALL return a subscribeSuccessResponse message. If an

error occurs e.g. because the client is not authorized to read the requested value, the server SHALL

return a subscribeErrorResponse message. If an error occurs during the subscription session, the server

§ 5.1.2.3 Subscribe

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

17 von 40 07.01.2025, 14:37

https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html#filter-request
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html#filter-request
s

shall return an subscriptionErrorEvent message.

The subscription variants are, as described in the [viss3-core] document:

• timebased: event messages are issued at a regular time interval,

• change: event messages are issued when the value has changed as specified,

• range: event messages are issued when the value is in the specified range,

• curvelog: event messages are issued when the buffer is full, and then processed according to the

curve logging algorithm.

If none of the above trigger condition variants is specified, then an event message will be issued

whenever the underlying vehicle system supplies a new data point to the server.

Object Name Attribute Type Required

subscribeRequest

action Action Yes

path string Yes

filter string Optional

authorization string Optional

requestId string Yes

Object Name Attribute Type Required

subscribeSuccessResponse

action Action Yes

requestId string Yes

subscriptionId string Yes

ts string Yes

Object Name Attribute Type Required

subscribeErrorResponse

action Action Yes

requestId string Yes

error Error Yes

ts string Yes

Object Name Attribute Type Required

subscriptionEvent action Action Yes

subscriptionId string Yes

data object Yes

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

18 von 40 07.01.2025, 14:37

contradicts core which state in 5.1.3 that filter is mandatory. JSON schema does not allow empty filter

Object Name Attribute Type Required

ts string Yes

Object Name Attribute Type Required

subscriptionErrorEvent

action Action Yes

subscriptionId string Yes

error Error Yes

ts string Yes

Example:

Request:

{

"action": "subscribe",

"path": "Vehicle.Drivetrain.FuelSystem.Level",

"filter": {"variant":"timebased", "parameter":{"period":"500"}},

"requestId": "6578"

}

Successful response:

{

"action": "subscribe",

"subscriptionId": "12345",

"requestId": "6578",

"ts": "2020-04-15T13:37:00Z"

}

Error response:

{

"action": "subscribe",

"requestId": "6578",

"error": {"number": 404, "reason": "unavailable_data", "message":

"The requested data was not found."},

"ts": "2020-04-15T13:37:00Z"

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

19 von 40 07.01.2025, 14:37

}

Event:

 {

 "action": "subscription",

"subscriptionId": "12345",

"data": {"path": "Vehicle.Drivetrain.FuelSystem.Level",

"dp": {"value": "50", "ts": "2020-04-15T13:37:00Z"}

 },

 "ts": "2020-04-15T13:37:00Z"

 }

Error event:

{

"action": "subscription",

"subscriptionId": "12345",

"error": {"number": 401, "reason": "expired_token", "message":

"Access token has expired."},

"ts": "2020-04-15T13:37:00Z"

}

If the operation on the VSS node that is addressed requires authorization, then the request must

contain the field "authorization" with its value being a JWT token. The token validation must be

successful for a subscribeSuccessResponse to be returned, else a subscribeErrorResponse is returned.

An "authorization" key-value pair can be combined with all types of subscription requests.

Example:

Request:

§ 5.1.2.3.1 A��������� S��������

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

20 von 40 07.01.2025, 14:37

{

"action": "subscribe",

"path": "Vehicle.Drivetrain.FuelSystem.Level",

"filter": {"variant":"range", "parameter":[{"boundary-op":"gt",

"boundary":"49"}, {"boundary-op":"lt", "boundary":"51"}]},

"authorization":

"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJuYW1...Zw_KSsds",

"requestId": "6578"

}

Successful response:

{

"action": "subscribe",

"subscriptionId": "12345",

"requestId": "6578",

"ts": "2020-04-15T13:37:00Z"

}

Event:

 {

 "action": "subscription",

"subscriptionId": "12345",

"data": {"path": "Vehicle.Drivetrain.FuelSystem.Level",

"dp": {"value": "50", "ts": "2020-04-15T13:37:00Z"}

 },

 "ts": "2020-04-15T13:37:00Z"

 }

Curve logging data compression by eliminating data points that are within a set error margin is

activated via a subscription request. Event messages will be issued when the buffer becomes full, after

§ 5.1.2.3.2 C���� L������ S��������

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

21 von 40 07.01.2025, 14:37

insignificant data points have been eliminated, refer the Curve logging Filter Operation chapter in the

[viss3-core] documentation.

Example:

Request:

{

"action": "subscribe",

"path": "Vehicle.Drivetrain.FuelSystem.Level",

"filter": {"variant":"curvelog", "parameter":{"maxerr":"0.5",

"bufsize":"100"}},

"requestId": "6578"

}

Successful response:

{

"action": "subscribe",

"subscriptionId": "12345",

"requestId": "6578",

"ts": "2020-04-15T13:37:00Z"

}

Event:

 {

 "action": "subscription",

"subscriptionId": "12345",

"data":{"path": "Vehicle.Drivetrain.FuelSystem.Level",

"dp":[{"value": "50", "ts": "2020-04-15T13:38:00Z"}, ...,

{"value": "25", "ts": "2020-04-15T13:39:30Z"}]

 },

 "ts": "2020-04-15T13:37:00Z"

 }

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

22 von 40 07.01.2025, 14:37

https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html#curvelog-filter-operation
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html#curvelog-filter-operation

Subscription to a range of values, that can have either a single boundary, or multipe boundaries as in

the example below. For a more information how to use range of values, refer the Range Filter

Operation chapter in the [viss3-core] documentation.

Example:

Request:

{

"action": "subscribe",

"path": "Vehicle.Drivetrain.FuelSystem.Level",

"filter": "filter":{"variant":"range","parameter":[{"boundary-

op":"lt","boundary":"50","combination-op":"OR"},{"boundary-

op":"gt","boundary":"55"}]},

"requestId": "6578"

}

Successful response:

{

"action": "subscribe",

"subscriptionId": "12345",

"requestId": "6578",

"ts": "2020-04-15T13:37:00Z"

}

Event:

 {

 "action": "subscription",

"subscriptionId": "12345",

"data":{"path": "Vehicle.Drivetrain.FuelSystem.Level",

"dp":{"value": "51", "ts": "2020-04-15T14:00:00Z"}},

 "ts": "2020-04-15T14:00:00Z"

 }

§ 5.1.2.3.3 R���� S��������

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

23 von 40 07.01.2025, 14:37

https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html#range-filter-operation
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html#range-filter-operation
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html#range-filter-operation
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html#range-filter-operation

Subscription to when a signal has changed between two sequential captures. For a more information

how to use change of values, refer the Change Filter Operation chapter in the [viss3-core]

documentation.

Example:

Request:

{

"action": "subscribe",

"path": "Vehicle.Drivetrain.FuelSystem.Level",

"filter":{"variant":"change","parameter":{"logic-

op":"gt","diff":"10"}},

"requestId": "6578"

}

Successful response:

{

"action": "subscribe",

"subscriptionId": "12345",

"requestId": "6578",

"ts": "2020-04-15T13:37:00Z"

}

Event:

 {

 "action": "subscription",

"subscriptionId": "12345",

"data":{"path": "Vehicle.Drivetrain.FuelSystem.Level",

§ 5.1.2.3.4 C����� S��������

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

24 von 40 07.01.2025, 14:37

https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html#change-filter-operation
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html#change-filter-operation

"dp":{"value": "101", "ts": "2020-04-15T14:00:00Z"}},

 "ts": "2020-04-15T14:00:00Z"

 }

To unsubscribe from a subscription, the client SHALL send an unsubscribeRequest message to the

server. If the server is able to satisfy the request it returns an unsubscribeSuccessResponse message. If

an error occurs, for example because an invalid subscriptionId is passed to the server, an

unsubscribeErrorResponse message is returned.

If the client has created more than one WebSocket instance, it MUST always unsubscribe using the

same WebSocket instance that was originally used to create the subscription.

Object Name Attribute Type Required

unsubscribeRequest

action Action Yes

subscriptionId string Yes

requestId string Yes

Object Name Attribute Type Required

unsubscribeSuccessResponse

action Action Yes

subscriptionId string Yes

requestId string Yes

ts string Yes

Object Name Attribute Type Required

unsubscribeErrorResponse

action Action Yes

subscriptionId string Yes

requestId string Yes

error Error Yes

ts string Yes

Example:

Request:

§ 5.1.2.4 Unsubscribe

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

25 von 40 07.01.2025, 14:37

{

"action": "unsubscribe",

"subscriptionId": "12345",

"requestId": "5786"

}

Successful response:

{

"action": "unsubscribe",

"requestId": "5786",

"ts": "2020-04-15T13:37:00Z"

}

Error response:

{

"action": "unsubscribe",

"requestId": "6578",

"error": {"number": 400, "reason": "invalid_data", "message":

"Data present in the request is invalid."},

"ts": "2020-04-15T13:37:00Z"

}

The message data components described in the [viss3-core] document are in the first hand mapped to

required HTTP parameters, and only when there is no appropriate mapping it is mapped to the

payload. The most significant deviations are:

• The path is part of the URL.

• A filter expression is appended to the URL as a query.

§ 5.2 HTTPS

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

26 von 40 07.01.2025, 14:37

• The HTTP methods GET, POST replaces the use of "action".

The subscribe/unsubscribe messages are not supported by this transport protocol.

Initialization involves setting up a secure HTTPS session between the client and the server. This

ensures encrypted communication for data transmission. To initialize a secure session, the client sends

a request to the server using the HTTPS protocol. This is achieved by connecting to the server's

designated URL using the 'https://' scheme. The client can use a web browser, a native application, or

a suitable library in the case of programmatically managed sessions.

While the client typically connects to the server using the specified hostname, which often includes

the "www" prefix, it's important to note that this convention may not apply in situations where VISS

operates within a local, in-vehicle network or if remote vehicle connections are allowed. The

communication typically takes place over port 443, the default port for secure HTTPS connections.

The hostname resolution can be done via DNS or configured through local settings.

Closure entails ending the established HTTPS session when the communication is complete or when

the client no longer requires the connection. Either the client or the server can initiate the session

closure. The client can signal the end of the session by sending an appropriate request to the server,

indicating the intent to close the connection.

Upon session closure, any allocated resources, such as server-side threads or memory, are released,

improving overall system efficiency.

§ 5.2.1 Session Life Time Management

§ 5.2.1.1 Initialization

§ 5.2.1.2 Closure

§ 5.2.2 Transport Messages

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

27 von 40 07.01.2025, 14:37

The client MAY send a HTTPS GET request message to the server to get one or more value(s) of one

or more vehicle signal(s). If the server is able to satisfy the request it SHALL return a response

containing the requested value(s). If the server is unable to fulfil the request, e.g. because the client is

not authorized to retrieve one or more of the signals, then the server response SHALL have the status

code set to indicate error.

Example: Request:

 GET /Vehicle/Cabin/SeatPosCount HTTP/1.1

 Host: 127.0.0.1:1337

 Accept: application/json

 ...

Successful response:

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

 ...

 {

"data":{"path":"Vehicle.Cabin.SeatPosCount",

"dp":{"value":["2", "3", "2"],

"ts":"2020-04-15T13:37:00Z"}

 }

 }

Error response:

HTTP/1.1 404 Not Found

Content-Type: application/json; charset=utf-8

 ...

 {

"error": {"number": 404, "reason": "unavailable_data", "message":

"The requested data was not found."},

"ts": "2020-04-15T13:37:00Z"

§ 5.2.2.1 Read

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

28 von 40 07.01.2025, 14:37

 }

JWT tokens will be sent in the Authorization header, following with term Bearer and a space

character.

The following example assumes

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJuYW1lIjoiSm9obiBEb2UifQ.xuEv8qrfXu424LZk8bV

gr9MQJUIrp1rHcPyZw_KSsds is the actual token. A token header can be combined with all types of

read requests.

Example: Request:

 GET /Vehicle/Drivetrain/InternalCombustionEngine/RPM HTTP/1.1

 Host:127.0.0.1:1337

 Authorization:Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJuYW1lIjoiSm9obiBEb2UifQ.xuEv8qrfXu424LZk8

bVgr9MQJUIrp1rHcPyZw_KSsds

Successful response:

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

 ...

 {

"data":{"path":"Vehicle.Drivetrain.InternalCombustionEngine.RPM",

"dp":{"value":"2372", "ts":"2020-04-15T13:37:00Z"}

 }

 }

Error response:

HTTP/1.1 401 Unauthorized

§ 5.2.2.1.1 A��������� R���

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

29 von 40 07.01.2025, 14:37

WWW-Authenticate: Bearer realm="127.0.0.1:1337",

 error="invalid_token",

 error_description="The access token is

invalid or expired"

Content-Type: application/json; charset=utf-8

 ...

 {

"error": {"number": 401, "reason": "invalid_token", "message":

"Access token is invalid."},

"ts": "2020-04-15T13:37:00Z"

 }

The search read request uses the paths filter operation described in the [viss3-core] document to

provide one or more path expressions, relative to the path in the GET URL.

Example: Request:

GET /Vehicle/Cabin/Door?filter={"variant":"paths", "parameter":"*/

*/IsOpen"} HTTP/1.1

Host: 127.0.0.1:1337

Accept: application/json

 ...

Response:

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

 ...

 {

"data":[{"path":"Vehicle.Cabin.Door.Row1.Left.IsOpen", "dp":

{"value":"false", "ts":"2020-04-15T13:37:00Z"}},

 {...},…

 {"path":"Vehicle.Cabin.Door.Row4.Right.IsOpen", "dp":

{"value":"true", "ts":"2020-04-15T13:37:00Z"}}

§ 5.2.2.1.2 S����� R���

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

30 von 40 07.01.2025, 14:37

https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html#paths-filter-operation
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html#paths-filter-operation

]

 }

Error response:

HTTP/1.1 404 Not Found

Content-Type: application/json; charset=utf-8

 ...

 {

"error": {"number": 404, "reason": "unavailable_data",

"message": "The requested data was not found."},

"ts": "2020-04-15T13:37:00Z"

 }

The history read request uses the history filter operation described in the [viss3-core] document to

read recorded values for a given period backwards in time.

Example: Request:

GET /Vehicle.Acceleration.Longitudinal?filter={"variant":"history",

"parameter":"P2DT12H"} HTTP/1.1

Host: 127.0.0.1:1337

Accept: application/json

 ...

Response:

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

 ...

 {

"data":{"path":"Vehicle.Acceleration.Longitudinal", "dp":

§ 5.2.2.1.3 H������ R���

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

31 von 40 07.01.2025, 14:37

https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html#history-filter-operation
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html#history-filter-operation

[{"value":"0.123", "ts":"2020-04-15T13:00:00Z"}, ..., {"value":"0.125",

"ts":"2020-04-15T13:37:00Z"}]}

 }

The signal discovery request uses the static metadata filtering type as described in the [viss3-core]

document to retrieve metadata in the VSS tree. If the parameter object is set to an empty string, then

all metadata in the addressed VSS nodes is returned. If only specific metadata is desired, the value can

be set to this, e. g. "parameter":["type", "datatype"]. The values must be the names as defined in the

VSS specification.

Example: Request:

GET /Vehicle/Drivetrain/FuelSystem?filter={"variant":"static-

metadata", "parameter":""} HTTP/1.1

Host: 127.0.0.1:1337

Accept: application/json

 ...

Response:

 HTTP/1.1 200 OK

 Content-Type: application/json; charset=utf-8

 ...

 {

 "metadata": {"FuelSystem":{"type":"branch","description":"Fuel

system data.","children":{"HybridType, ... }}},

 "ts": "2020-04-15T13:37:00Z"

 }

§ 5.2.2.1.4 S����� D�������� R���

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

32 von 40 07.01.2025, 14:37

The dynamic metadata, i. e. any other metadata kept by the vehicle system, is retrieved by the setting

the "type" to "dynamic-metadata". The value MUST be set to one of the domain names as specified in

the [viss3-core], Dynamic Metadata Filter Operation chapter.

Example: Request:

GET /Vehicle?filter={"variant":"dynamic-metadata",

"parameter":"server_capabilities"} HTTP/1.1

Host: 127.0.0.1:1337

Accept: application/json

 ...

Response:

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

 ...

 {

"metadata": {"filter":["timebased", "change", "paths",

"curvelog", "dynamic-metadata"], "access_ctrl": ["short_term",

"signalset_claim"], "transport_protocol": "https", "wss"},

"ts": "2020-04-15T13:37:00Z"

 }

The client may request that the server sets the value of one or more signals e.g. to lock one or more

doors or open a window by sending an HTTPS POST request to the server. In the case of several

signals being set, they MUST all be of the same data type, and be set to the same value. If the server is

able to satisfy the request its response SHALL have a 200 OK status code set. If an error occurs e.g.

because the client is not authorized to set the requested value, or the value is read-only, the server

response SHALL have the status code set to indicate error.

§ 5.2.2.1.5 D������ M������� R���

§ 5.2.2.2 Update

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

33 von 40 07.01.2025, 14:37

https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html#dynamic-metadata-request
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html#dynamic-metadata-request

Example:

 POST /Vehicle/Drivetrain/Transmission/PerformanceMode HTTP/1.1

 Host: 127.0.0.1:1337

 Accept: application/json

 ...

 {

 "value": "sport"

 }

Successful response:

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

 ...

 {

"ts": "2020-04-15T13:37:00Z"

 }

Error response:

HTTP/1.1 404 Not Found

Content-Type: application/json; charset=utf-8

 ...

 {

"error": {"number": 404, "reason": "unavailable_data", "message":

"The requested data was not found."},

"ts": "2020-04-15T13:37:00Z"

 }

JWT tokens will be sent in the Authorization header, following with term Bearer and a space

§ 5.2.2.2.1 A��������� U�����

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

34 von 40 07.01.2025, 14:37

character.

The following example assumes

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJuYW1lIjoiSm9obiBEb2UifQ.xuEv8qrfXu424LZk8bV

gr9MQJUIrp1rHcPyZw_KSsds is the actual token. A token header can be combined with all types of

update requests.

 POST /Vehicle/Drivetrain/Transmission/PerformanceMode HTTP/1.1

 Host:127.0.0.1:1337

 Authorization:Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJuYW1lIjoiSm9obiBEb2UifQ.xuEv8qrfXu424LZk8

bVgr9MQJUIrp1rHcPyZw_KSsds

 {

 "value": "sport"

 }

As the MQTT protocol is based on a pub-sub model, while VISS is based on a client-server model, it

is necessary to apply a thin application level protocol on top of MQTT to abstract the client-server

specific behavior. This is done by embedding the VISS messages in he MQTT messages, together

with supplementary information that makes this abstraction possible, see the next chapter.

The VISS messages are adhering to the primary payload format without any deviations.

For MQTT to support the complete VISSv3 interface, as decribed in the interface chapter of the

[viss3-core] specification, an application level protocol that runs on top of MQTT is added. It is

described in the following, please also see the sequence diagram below. To emulate the client-server

pattern that is described in the [viss3-core] specification, the vehicle server, via its vehicle client,

issues a subscribe request to the broker on a topic named VID/Vehicle, where VID is an identity that

uniquely links to the vehicle in the access control ecosystem. This vehicle identity is not necessarily

the manufacturer's Vehicle Identification Number (VIN).

The client on the "cloud side" of the broker is expected to have access to this vehicle identity. How it

§ 5.3 MQTT

§ 5.3.1 Application Level Protocol

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

35 von 40 07.01.2025, 14:37

https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html#interface
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html#interface

obtains it is out of scope for this specification. When the cloud client wants to issue a request to the

vehicle server it first generates a unique topic name, which it subscribes to at the broker. It then

generates a JSON formatted payload with the general structure

{"topic":"aUniqueTopic", "request":"VISSv3Request"}

where "aUniqueTopic" is the uniques topic name it just subscribed to, and "VISSv3Request" is the

request for the vehicle server. This request MUST follow the payload format that is specified in the

Websocket chapter of this specification. This JSON message is then issued to the broker, associated to

the topic VID/Vehicle. This message will then be forwarded by the broker to the vehicle client, which

forwards the string being the value of the "request" key in the message to the vehicle server. When the

vehicle client receives the response to this request, it publishes it to the broker associated with the

topic name that was the string value of the "topic" key name in the message it previously received

from the broker.

The broker will then forward this message to the cloud side client that earlier subscribed to this topic

name, which concludes the client-server based request-response as described in the [viss3-core]

specification.

In the case of subscription requests the vehicle client needs to save the subscriptionId found in the

subscribe response, together with the topic name associated to the subscribe request. When the vehicle

server later issues event messages, the vehicle client must parse the subscriptionId from it, and retrieve

the topic name associated to it. The vehicle client shall delete the saved topic name and subscriptionId

when it receives an unsubscribe request in a message from the broker.

In following requests from the cloud side client, the unique topic name may be reused from the

previous request-response cycle, or a new unique topic name may be generated. If a new topic name is

generated, an unsubscribe should be issued on the old topic name. The vehicle client can continue to

use the topic name it subscribes to.

The payload format of the response/event messages SHALL follow the payload format that is specified

in the Websocket chapter of this specification. The access control model is applicable also over this

transport alternative. The Access Token server should then implement its own version of the

application level protocol described here, using the topic name "VID/ATS". The Access Grant Token

server may also do the same, with the topic name "VID/AGTS", or if it is deployed in the cloud it may

expose the HTTP interface that is defined in this specification.

VISSv3 over MQTT
Figure 1 Message flow of VISSv3 over MQTT

§ 5.3.2 Security Aspects

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

36 von 40 07.01.2025, 14:37

The MQTT architecture mandates a "broker" that acts as a middleman in between the client and server

endpoints (the subscriber and the publisher in MQTT terminology). This broker has full access to the

plaintext communication between the two endpoints as each of the endpoint's TLS channel terminates

at the broker. This aspect should be considered when selecting to use the MQTT protocol.

As mentioned in the "Application Level Protocol" chapter, the "request" messages issued to the broker

contains two JSON formatted key-value pairs, where the value of the "request" key is a string that

contains the request the vehicle server will respond to. The format of this request MUST follow the

payload format that is specified in the Websocket chapter of this specification.

The gRPC protocol uses protobuf for the serialization. The definition of protobuf messages shall be

expressed in a .proto-file. The proto file defining the encoding of the VISS primary payload format is

found in the [viss3-payload-encoding] document. A protobuf compiler is used to generate code from

the .proto-file that can then be called by the code executing the actual encoding/decoding between the

two payload formats. This code can be implemented in different languages, and is out-of-scope for

VISS standardization. An example of it in Go language can be found here.

Attribute Type Description

action Action The type of action requested by the client or delivered by the server.

path String The path to a node in the VSS tree, as defined by the Vehicle Signal

Specification (VSS).

§ 5.3.3 Transport Messages

§ 5.4 gRPC

§ 6. Definitions

§ 6.1 Term Definitions

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

37 von 40 07.01.2025, 14:37

https://github.com/COVESA/vissr/blob/master/utils/grcputils.go
https://github.com/COVESA/vissr/blob/master/utils/grcputils.go
https://github.com/COVESA/vehicle_signal_specification
https://github.com/COVESA/vehicle_signal_specification
https://github.com/COVESA/vehicle_signal_specification
https://github.com/COVESA/vehicle_signal_specification

requestId String Unique id value specified by the client. Returned by the server in the

response and used by the client to link the request and response

messages. The value MAY be an integer or a Universally Unique

Identifier (UUID).

subscriptionId String Value returned by the server to uniquely identify each subscription.

authorization string A JWT formatted security token.

data object Contains a path and one or more data points.

dp object The data point contains a value and a timestamp.

ts string The Coordinated Universal Time (UTC) time stamp that represents the

capture of the value.

value string The data value associated with the path.

filter string Provides a filtering mechanism to reduce the demands of a subscription

on the server. Query format, see [viss3-core], Filter Request chapter.

metadata object Metadata describing the potentially available signal (sub)tree.

error Error Returns an error code, reason and message.

The Action enumeration is used to define the type of action requested by the client. All client

messages MUST contain a JSON structure that has an action name/value pair and the value of the

action property MUST be one of the values specified in the enumeration:

get
Enables the client to read one or more values.

set
Enables the client to update one value.

subscribe
Enables the client to request event messages containing a JSON data structure with values for one

or more vehicle signal.

unsubscribe
Enables the client to request that it should no longer receive event messages based on that

subscription.

subscription
Enables the server to send event messages to the client containing a JSON data structure with

§ 6.2 Action Definitions

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

38 von 40 07.01.2025, 14:37

https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html#filter-request
https://github.com/COVESA/vehicle-information-service-specification/blob/gh-pages/spec/VISSv3.0_Core.html#filter-request

values for one or more vehicle signals.

The error number SHOULD be a status code defined in [RFC2616], c. f. chapter "Status codes". The

error reason SHOULD be short. two or three words connected by underscor. It SHOULD relate to the

reason-phrase from [RFC2616] for the corresponding status code. The error message is meant to give

a more precise description of the error.

Object Name Attribute Type Required

Error

number integer Yes

reason string Yes

message string Yes

Figure 1 Message flow of VISSv3 over MQTT

[MQTT]
Message Queuing Telemetry Transport (MQTT). OASIS. March 2019. 5.0. URL: https://

docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997. Best

Current Practice. URL: https://www.rfc-editor.org/rfc/rfc2119

[RFC2616]
Hypertext Transfer Protocol -- HTTP/1.1. R. Fielding; J. Gettys; J. Mogul; H. Frystyk; L.

Masinter; P. Leach; T. Berners-Lee. IETF. June 1999. Draft Standard. URL: https://www.rfc-

§ 6.3 Error Definitions

§ List of Figures

§ A. References

§ A.1 Normative references

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

39 von 40 07.01.2025, 14:37

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2616
https://www.rfc-editor.org/rfc/rfc2616
https://www.rfc-editor.org/rfc/rfc2616
https://www.rfc-editor.org/rfc/rfc2616
https://www.rfc-editor.org/rfc/rfc2616

editor.org/rfc/rfc2616

[RFC6455]
The WebSocket Protocol. I. Fette; A. Melnikov. IETF. December 2011. Proposed Standard. URL:

https://www.rfc-editor.org/rfc/rfc6455

[RFC8174]
Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF. May 2017. Best

Current Practice. URL: https://www.rfc-editor.org/rfc/rfc8174

[RFC9112]
HTTP/1.1. R. Fielding, Ed.; M. Nottingham, Ed.; J. Reschke, Ed. IETF. June 2022. Internet

Standard. URL: https://httpwg.org/specs/rfc9112.html

[viss3-core]
COVESA VISS version 3.0-Core. Ulf Bjorkengren. URL: https://raw.githack.com/COVESA/

vehicle-information-service-specification/main/spec/VISSv3.0_Core.html

[viss3-payload-encoding]
COVESA VISS version 3.0-Payload Encoding. Ulf Bjorkengren. URL: https://raw.githack.com/

COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_PayloadEncoding.html

↑

COVESA VISS version 3.0-Transport Examples https://raw.githack.com/UlfBj/vehicle-information-service-specification...

40 von 40 07.01.2025, 14:37

https://www.rfc-editor.org/rfc/rfc2616
https://www.rfc-editor.org/rfc/rfc2616
https://www.rfc-editor.org/rfc/rfc6455
https://www.rfc-editor.org/rfc/rfc6455
https://www.rfc-editor.org/rfc/rfc6455
https://www.rfc-editor.org/rfc/rfc6455
https://www.rfc-editor.org/rfc/rfc6455
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://httpwg.org/specs/rfc9112.html
https://httpwg.org/specs/rfc9112.html
https://httpwg.org/specs/rfc9112.html
https://httpwg.org/specs/rfc9112.html
https://httpwg.org/specs/rfc9112.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_Core.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_PayloadEncoding.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_PayloadEncoding.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_PayloadEncoding.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_PayloadEncoding.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_PayloadEncoding.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_PayloadEncoding.html
https://raw.githack.com/COVESA/vehicle-information-service-specification/main/spec/VISSv3.0_PayloadEncoding.html

