
VSS in-vehicle Performance
Considerations and impact on architecture

Sebastian Schildt, ETAS GmbH,
COVESA AMM, September 25th 2024

| 1Copyright ©2022 COVESA27 September 2024 |

What we mean with “in-vehicle”

Compute units inside a car

• generate,
• consume and
• process

VSS data

| 3

Taxonomy of in-vehicle VSS components

Copyright ©2022 COVESA27 September 2024 |

▪ Holds current vehicle state in VSS format
▪ Provides an API to interact with VSS signals

▪ Interacts with Vehicle represented
by the VSS model
▪ Vehicle Computer function
▪ IVI App
▪ External consumer device

▪ VSS provider syncs of the vehicle with VSS
model of the server
▪ data-provider: makes sure that the actual

state of a vehicle is represented in VSS
(historically known as “feeder”)

▪ actuation-provider: makes ensure that the
target value of a VSS actuator is reflected by the
actual state of a vehicle

ht
tp

s:
//

gi
th

u
b.

co
m

/e
cl

ip
se

/k
uk

sa
.v

a
l/

bl
ob

/m
as

te
r/

d
oc

/t
er

m
in

o
lo

gy
.m

d

https://github.com/eclipse/kuksa.val/blob/master/doc/terminology.md

What happens in the stack

Automotive busses

Receive

Deserialize/Unpack

“Weather”

Not much to “do”/change here

Map/Convert to VSS

Southbound API

VSS Server

Northbound API

Application

Dynamic/Static Code-generation/runtime

Pr
ov

id
er

s
D

at
ab

ro
ke

r API Design Space
Communication paradigm?
Target platform/languages?
Interaction pattern?

Communication paradigm

Northbound API

Application

VSS DATA

Query Response

▪ “Polling” for high
frequency data not
optimal

▪ Overhead as “state”, e.g.
security needs to
reestablished #

▪ “Most” data in other
vehicle systems is not
using this

Publish Subscribe

▪ More efficient (less
messages, state
established once

▪ Fits patterns in
embedded (e.g. CAN)

▪ Asynchronous nature
can lead to challenges
handling errors

VISS

To Link or Not to Link?

Southbound API

VSS Server

Northbound API An “API” may just be a programming API that can be
programmed against linked to.

Then the “serialisation”/data exchange becomes just a
matter of the ABI of the platform

Southbound API

VSS Server

Northbound APIHowever, in modern vehicle systems/SDV systems we
prefer loosely-coupled systems, often distributed (e.g.
current E/E architectures are very distributed)

→ Likely looking into network APIs to cross system
boundaries

▪ Process boundaries
▪ OS / Hypervisor boundaries
▪ HW boundaries
▪ Safety Domain Boundaries
▪ …

.so

Be faster: Shared Memory / Zero Copy
Isn’t zero-copy
always fastest

anyway?

Zero copy a must for
• High bandwidth ADAS data
• Large volume (here (multiple) memcpy really hurt)

However, there is a price
▪ Tightly coupled systems
▪ Not easy between containers, compromising isolation

and security
▪ Not really possible in systems distributed across the

network* Whereas VSS data is often used in
▪ Loosely coupled, ”SDV” systems
▪ Not always in a single trusted domain
▪ Distributed

* In “datecenter IT” there is RDMA/RoCE etc, but this is not scaled to Autpmtive style platforms AND doesn’t really prevent copy if somebody
really NEED all the data (e.g. videostrms

Relax: Need for Speed?
Showing tire

pressure every 5
seconds – Why

even bother?

For applications: Yes

For VSS middleware: Used by ALL applications – has an
impact

Do not overestimate speed of modern Vehicle
Computers

Want to serve not only high end, but also mid/low

High Frequency for preprocessing (crash detection,
driving scores, tire state prediction,...)

Single Core Multi-Core

Laptop M3 3138 14128

iMX8 (Cortex A53) 188 557

Pi 4 (Cortex A72) 290 657

Example: High frequency actuation

Remote control from SofDCar Research project

 - Motion control based on a vehicle-independent VSS model
 - Running on a production telematic unit
 - User experience and safety (regulations!) depend on low cycle times

Fahrzeugkontrollsystem

LTE MobilfunkCAN

Ethernet

Ethernet

ECU

Vorderkamera

Rückfahrkamera

Truck

Tech Choice GRPC

One good base technology for VSS data in a vehicle is GRPC

VISS-GRPC option

Efficient Serialization: gRPC uses Protocol Buffers (Protobuf) as the default serialization
format, compact, strongly typed and fast (e.g. compared to JSON) and proven

HTTP2: gRPC uses HTTP/2 as the underlying transport protocol, allowing for multiplexing
requests and responses over a single connection, reducing overhead and improving
performance.

Language Agnostic gRPC supports multiple languages, in theory AND practice including but
not limited to Rust, C++, Java, Python, Go, C#.

Bi-Directional Streaming gRPC supports four types of APIs: unary (single request-response),
server streaming, client streaming, and bi-directional streaming. This allows for building
efficient applications where both clients and servers can send a continuous flow of data.

The details, the details!
“Let’s use GRPC and PubSub” can still lead to different approaches

?…

Benchmarking
Tech choices bring you in “order of magnitude” target range, the last 2x/3X difference is the result of “engineering”

• Benchmarking is hard - in an use case need to know the End-to-End performance.

• Having solid benchmarks of individual components is a good first step

𝔚𝔢𝔯 𝔪𝔦𝔰𝔰𝔱, 𝔪𝔦𝔰𝔰𝔱 𝔐𝔦𝔰𝔱!

In any case tread carefully, and take any results here or elsewhere with a grain of salt. Or as a
 German engineer would put it:

kuksa-perf

https://github.com/eclipse-kuksa/kuksa-perf

Made first synthetic benchmark of KUKSA API publicly available

While maybe not indicative of real-world performance it gives a repeatable base value: If this is below your app
requirements, this is not the right software for you or you have chosen the wrong hardware

t0: publish VSS DATA

t1: Receive VSS DATA

S32G (ECU, A53)
Avg. 237 µs

M1 (laptop)
avg. 69 µs

https://github.com/eclipse-kuksa/kuksa-perf

Go lower

▪ Run reasonable on anything
with a processor and a POSIX
OS

▪ Fast without sacrificing
developer productivity

• A lot of ECU running in µC using small
RTOS/AUTOSAR classic systems

• GRPC already considered “heavy”*
• Might not even have/want an IP stack

* Can be done though, see GRPC based Provider on Espressif ESP32: https://github.com/eclipse-kuksa/kuksa-incubation/tree/main/gRPC-on-ESP32

No VSS
here ?

https://github.com/eclipse-kuksa/kuksa-incubation/tree/main/gRPC-on-ESP32

Enter IEEE 1722 & Open1722

An efficient Ethernet L2 (UDP optional) transport protocol

and

Executive Summary
This runs easily on a µC
Does not need Linux/POSIX
Turns out can be easily adapted to support VSS natively

S32G
(CortexA53)

+ Ubuntu

Open1722 performance

Measurement PC DUT
Can to IEE1722

CAN

t0: CAN SenT

t1: Eth received Ethernet: IEEE1722 ACF_CAN

Avg: 63.6 uS

Avg: 41 uSPortenta H7
(CortexM7)

+ Zephyr

0

50

100

150

200

250

300

1
2

29
4

57
6

85
9

13
1

14
1

1
36

9
1

59
7

1
82

5
2

05
3

2
28

1
2

50
9

2
73

7
2

96
5

3
19

3
3

42
1

3
64

9
3

87
7

4
10

5
4

33
3

4
56

1
4

78
9

5
01

7
5

24
5

5
47

3
5

70
1

5
92

9
6

15
7

6
38

5
6

61
3

6
84

1
7

06
9

7
29

7
7

52
5

7
75

3
7

98
1

8
20

9
8

43
7

8
66

5
8

89
3

9
12

1
9

34
9

9
57

7
9

80
5

Ti
m

e
[u

s]

Number of Measurement

S32G3 1722 Talker - CAN (DLC 3, 500k) to Eth (100M) - Frequency 50ms

0

10

20

30

40

50

60

70

80

90

100

1
2

10

4
19

6
28

8
37

1
04

6
1

25
5

1
46

4
1

67
3

1
88

2
2

09
1

2
30

0
2

50
9

2
71

8
2

92
7

3
13

6
3

34
5

3
55

4
3

76
3

3
97

2

4
18

1
4

39
0

4
59

9
4

80
8

5
01

7
5

22
6

5
43

5
5

64
4

5
85

3
6

06
2

6
27

1
6

48
0

6
68

9

6
89

8
7

10
7

7
31

6
7

52
5

7
73

4
7

94
3

8
15

2
8

36
1

8
57

0
8

77
9

8
98

8
9

19
7

9
40

6

9
61

5
9

82
4

Ti
m

e
[u

s]
Number of Measurement

Portenta H7 - 1722 Talker - CAN (DLC 3, 500k) to Eth (100M) - Frequency 50ms

Same performance possible using ACF_VSS,
This is probably the best you can get performance –wise transmitting VSS data in a vehicle

Open1722 can also send VSS data
So _THIS_ is it? Forget
GRPC/KUKSA/VISS?

This is _just_ transport. No
broker/server no access
control, no “returns & error”

Summary & Final thoughts (1/2)

VSS in vehicle is cool, but need to ”aim carefully” with tech stack

▪ What use cases to support?

▪ How “deep” in the E/E architecture you want to use it?

▪ How “wide” you want to serve the market?

Mid/entry level architectures WILL have processors,

just not the 32core Qualcomm + 64GiB of RAM….

Summary & Final thoughts (2/2)

▪ Some things are “aligned” / evolved in parallel

▪ No question that PubSub is the way to go

▪ GRPC seeing general adoption in Automotive

▪ Open1722+VSS is a cool convergence technology to do for ”VSS” what

CAN did for, well bits & bytes

▪ In terms of efficient VSS in-vehicle APIs ther might be room for a

(COVESA) standard

| 23Copyright ©2024 COVESA

COVESA VSS https://covesa.github.io/vehicle_signal_specification/

/me http://sdv.expert

KUKSA https://eclipse.github.io/kuksa.website/

Examples https://wiki.covesa.global/

ETAS OSS https://www.etas.com/en/open-source-software.php

https://covesa.github.io/vehicle_signal_specification/
http://sdv.expert/
https://eclipse.github.io/kuksa.website/
https://www.etas.com/en/open-source-software.php

	Slide 1: VSS in-vehicle Performance
	Slide 2: What we mean with “in-vehicle”
	Slide 3: Taxonomy of in-vehicle VSS components
	Slide 4: What happens in the stack
	Slide 5: Communication paradigm
	Slide 6: To Link or Not to Link?
	Slide 7: Be faster: Shared Memory / Zero Copy
	Slide 8: Relax: Need for Speed?
	Slide 9: Example: High frequency actuation
	Slide 10: Tech Choice GRPC
	Slide 11: The details, the details!
	Slide 15: Benchmarking
	Slide 16: kuksa-perf
	Slide 17: Go lower
	Slide 18: Enter IEEE 1722 & Open1722
	Slide 20: Open1722 performance
	Slide 21: Summary & Final thoughts (1/2)
	Slide 22: Summary & Final thoughts (2/2)
	Slide 23

