EANDY

VSS in-vehicle Performance il

Considerations and impact on architecture : C OV E S A
Sebastian Schildt, ETAS GmbH, LN
CO%MM, September 25" 2024

[! .'. "~.‘ Acceleratmgthe future of connected vehicles

NN | A

)

What we mean with “in-vehicle’

Compute units inside a car

e generate,
e consume and
* process

VSS data

o e e i]
e[1w o[HH w] [=] [H{=]
([« t{w] [@iH{w] [@f{{w] [w o] S
= COVESA
[P w] [wF w] o Ffw] [e f(——

Taxonomy of in-vehicle VSS components

Client
VSS Consumer

VSS Server e Vehicle
Signal
Specification
Y
Client Client Client
VSS Provider VSS Provider VSS Provider
data-provider actuation-provider

®

KUKSA

l

Interacts with Vehicle represented

by the VSS model
= Vehicle Computer function
= IVIApp

- External consumer device

Holds current vehicle state in VSS format
Provides an APl to interact with VSS signals

VSS provider syncs of the vehicle with VSS
model of the server

Ll F1E:R o)V« [SYd makes sure that the actual

state of a vehicleis represented in VSS

historically known as “feeder”)
= makes ensure that the
target value of a VSS actuator is reflected by the
actual state of a vehicle

27 September 2024 | Copyright ©2022 COVESA

- COVESA

https://github.com/eclipse/kuksa.val/blob/master/doc/terminology.md

What happens in the stack

®KUKS/\

Databroker

Providers

Application

Northbound API

VSS Server

Southbound API

Map/Convert to VSS

Deserialize/Unpack

Receive

Automotive busses

APl Design Space
Communication paradigm?
Target platform/languages?
Interaction pattern?

“Weather”

Not much to “do”/change here

COVESA

Communication paradigm

{ REST } VISS

®KUKS/\

== Nl

Northbound API Query Response Publish Subscribe

= “Polling” for high
frequency data not
optimal

= Qverhead as “state”, e.g.
security needsto
reestablished #

= “Most” datain other
vehicle systems is not
using this

= More efficient (less
messages, state
established once

= Fits patternsin
embedded (e.g. CAN)

= Asynchronous nature
can lead to challenges
handling errors

- COVESA

Rznlen

To Link or Not to Link?

—SQ " e = o e e
| Northbound AP| l An “API” may just be a programming APl that can be
| I programmed against linked to.
VSS Server I
| Then the “serialisation”/data exchange becomes justa
| Southbound API I matter of the ABI of the platform
N ———

However, in modern vehicle systems/SD\(sygtems we Northbound AP
prefer loosely-coupled systems, often distributed (e.g.
current E/E architectures are very distributed)
VSS Server
- Likely looking into network APIs to cross system - e —_—-_--——-——-—_-——-——
boundaries Southbound API
. Process boundaries

OS/Hypervisor boundaries
HW boundaries

Safety Domain Boundaries

- COVESA

Be faster: Shared Memory / Zero Copy

Isn’t zero-copy Zero copy a must for
always fastest * High bandwidth ADAS data
anyway? * Large volume (here (multiple) memcpy really hurt)
[CEeOryX

However, there is a price
= Tightly coupled systems
= Not easy between containers, compromisingisolation
and security
= Not really possible in systems distributed across the
network* Whereas VSS data is often used in
= |Loosely coupled, ”SDV” systems
= Not alwaysin asingle trusted domain
= Distributed

*|n “datecenter IT” thereis RDMA/RoCE etc, but thisis notscaled to Autpmtive style platforms AND doesn’t really prevent copy if somebody
really NEED all the data (e.g. videostrms

- COVESA

Relax: Need for Speed?

Showing tire
pressure every 5
seconds - Why

even bother?

Forapplications: Yes

ForVSS middleware: Used by ALL applications — has an
impact

Do not overestimate speed of modern Vehicle
Computers

Want to serve not only high end, but also mid/low

Laptop M3 3138 14128
iIMX8 (Cortex AS3) 188 997 High Frequency for preprocessing (crash detection,
Pi4 (CortexA72) 290 657 driving scores, tire state prediction,...)

_ COVESA

Rznlen

Example: High frequency actuation Sof =Car

Remote control from SofDCar Research project

- Motion control based on avehicle-independent VSS model
- Running on a production telematic unit
- User experience and safety (regulations!) depend on low cycle times

Vorderkamera

LTE Mobilfunk

ECU
Fahrzeugkontrollsystem

Rickfahrkamera

Tech Choice GRPC 6 R PC

One good base technology for VSS data in a vehicle is GRPC

J
KUKSA
Efficient Serialization: gRPC uses Protocol Buffers (Protobuf) as the default serialization ®
format, compact, strongly typed and fast (e.g. compared to JSON) and proven ~

p -t
remotiveLabs

HTTP2: gRPC uses HTTP/2 as the underlying transport protocol, allowing for multiplexing
requests and responses over a single connection, reducing overhead and improving VISS-GRPC option
performance.

Language Agnostic gRPC supports multiple languages, in theory AND practice including but
not limited to Rust, C++, Java, Python, Go, CH.

Bi-Directional Streaming gRPC supports four types of APIs: unary (single request-response),
server streaming, client streaming, and bi-directional streaming. This allows for building
efficient applications where both clients and servers can send a continuous flow of data.

- COVESA

The details, the details!

“Let’s use GRPC and PubSub” can still lead to different approaches

Actuation - kuksa.val.v2 Draft

Broker only exposes current value

Actuation - VISSv3

Can set target value. Through actuation but gets dropped if
no provider is previously subscribed ->stateless actuation

Actuate has error response that can be influenced by
provider ‘

VISSv3 only exposes current values and allows to update
with target values which are not exposed through the API

Interaction between providers and VSS server
undefined/magic

vSS Server

Interaction between providers and VSS server uses same

1

Unclear when actuation provider should perform actuation
(When Update is executed, when provider wakes up again)

Advantage of this approach is that the Error handling can
be extended down to the provider

Limited Error Handling (Signal in Read/Subscribe has not

changed but Why?)

" Cllent
VSS Provider VSS Provider

Client
VSS Provider

®
®
COVESA
Actuation - kuksa.val.v1
« Set, Read, Subscribe cover both Current or Target value
« Interaction between providers and VSS server uses same remohveLubs
API BlackBerry IVY
* Unclear when actuation provider should perform actuation

(When Update is executed, when provider wakes up again) ‘ o

Limited Error Handling (Signal in Read/Subscribe has not

changed but Why?) f ‘[

Ciient Client
V8S Provider VSS Provider
[data-provider

COVESA

"COVESA

Mocplenn i ng TH e 2l oneded veicha

Benchmarking

Tech choices bring you in “order of magnitude” target range, the last 2x/3X difference is the result of “engineering”

* Benchmarking is hard - in an use case need to know the End-to-End performance.

* Having solid benchmarks of individual components is a good first step

In any case tread carefully, and take any results here or elsewhere with a grain of salt. Oras a
DE German engineer would put it:

MWer misst, misst Iiist!

- COVESA

Rznlen

kuksa-perf () <uxsn

Made first synthetic benchmark of KUKSA API publicly available

While maybe not indicative of real-world performance it gives a repeatable base value: If this is below your app
requirements, this is not the right software for you or you have chosen the wrong hardware

[] M kuksa-databroker-perf — root@6cafd9a36a2b: [— -zsh — 98x38
root@6cafd9a36a2b: | —-zsh
scs2rng@RNG-C-@01JT kuksa-databroker-perf % ./target/release/databroker-perf --port 55556

MEECET BNl oo e e] 1000/

1608 iterations Client

Summary: tl: ReCElve VSS DAT ARy

API: KuksaValvi

Elapsed time: ©.88 s M1 (lapto p) A
Rate limit: None

Sent: 1000 iterations % 1 signals = J#®
Skipped: 10 updates

Received: 990 updates

Fastest: 0.0

A

Slowest,
Average

VSS Server

Latency histograme
9.045 ms [216

Vehicle
signal
specification

9.863 ms [531

9.881 ms [95
9.899 ms [35
9.117 ms [75

8.135 ms [28 1

9.153 ms [5 to . p'lJ.bll Sh VSS DAT 3 A4
9.171 ms [2

0.189 ms [2 Client Client

09.2087 ms [@
09.225 ms [@
09.243 ms [1

VSS Provider VSS Provider VSS Provider

data-provider actuation-provider

Latency distribution:
1% in under 0.050 ms
25% in under ©.054 ms
50% in under 0.066 ms
75% in under ©.871 ms
98% in under ©.112 ms
95% in under @.121 ms
99% in under @.146 ms
ScS2rng@RNG-C-@01JT kuksa-databroker-perf % I

https://github.com/eclipse-kuksa/kuksa-perf

https://github.com/eclipse-kuksa/kuksa-perf

* Can be donethough, see GRPC based Provider on Espressif ESP32: https://github.co

Go lower

®KUKS/\

" Runreasonable on anything
with a processor and a POSIX N Pr— N N

OS
= Fastwithout sacrificing
developer productivity

* Alotof ECU runningin pC using small
RTOS/AUTOSAR classic systems

* GRPC already considered “heavy”*

* Might not even have/want an IP stack

. COVESA

https://github.com/eclipse-kuksa/kuksa-incubation/tree/main/gRPC-on-ESP32

Enter IEEE 1722 & Open1722

An efficient Ethernet L2 (UDP optional) transport protocol

L 2 2 Presentation time/Deadline
ayler \ Acquisition time

AN Join Open172 oy

IEEE 1722 t
2011: % :)
2016: CAN a %ﬁaﬂ

soon: CONXL 12C and e Specifcation

Executiv mmar

This runs easilyona uC

Does not need Linux/POSIX

Turns out can be easily adapted to support VSS natively

- COVESA

Rznlen

Open1722 performance

t0: CAN SenT

DUT
Canto|EE1722

Measurement PC

e ——— Ethernet: IEEE1722 ACF_CAN

A cnes| AvgessuS MHMWH!\»\lww\wM'M

+ Ubuntu

Portenta H7

(CortexM?7) Avg: 41 uS
Zephyr” +Zephyr g 7

LA

Same performance possible using ACF_VSS,

Fadding: QBe8un

r ACF Message: Reserved (0x42)

b ACF Header: Reserved (0x42), 28 bytes with header
- ACF VSS Header
Bl.. = V55 Padding: 8x1
..8. = V55 Timestamp Valid: 0x@
...0 B... = V55 Addressing Mode: INTEROP MODE (@x8)
.... .BB0 = VSS Opcode: TARGET VALUE (8x0)
VS5 Datatype: UTFB-STRING (0x8b)
V55 T.Lmestamp. Jan 1, 1970 08:00:00.000000880 UTC

b WSS Path

- V55 Data
VSS Data: World!
Padding: @0

r ACF Message: Reserved (8x42)

b ACF Header: Reserved (0x42), 28 bytes with header

- AFE USS Hondar

Open1722 can also send VSS data

PP So _THIS_isit? Forget

% GRPC/KUKSA/VISS?

This is _just_transport. No
broker/server no access
control, no “returns & error”

This is probably the best you can get performance —wise transmitting VSS data in a vehicle

”_'COVESA

=105 mzpenming sv e 3l wonecded

Summary & Final thoughts (1/2)

VSS in vehicle is cool, but need to ”aim carefully” with tech stack
= \What use cases to support?
= How “deep”in the E/E architecture you want to use it?
= How “wide” you want to serve the market?
Mid/entry level architectures WILL have processors,

just not the 32core Qualcomm + 64GiB of RAM....

- COVESA

Summary & Final thoughts (2/2)

= Some things are “aligned” / evolved in parallel ,g RPC
= No question that PubSub is the way to go
= GRPC seeing general adoption in Automotive
= Open1722+VSS is a cool convergence technology to do for ”VSS” what 22
CAN did for, well bits & bytes]7
= |nterms of efficient VSS in-vehicle APls ther might be room for a

(COVESA) standard

. COVESA

\x\\\\V///

N2
/NCOVESA

B covesavss @

uuuuuuuuuuuuu

I /me @ http//sdv.expert

I KUKSA ® https://eclipse.github.io/kuksa.website/

I Examples https://wiki.covesa.global/

I ETAS OSS €TAS https://www.etas.com/en/open—source—Asoftware.php

Copyright ©2024 COVESA

https://covesa.github.io/vehicle_signal_specification/
http://sdv.expert/
https://eclipse.github.io/kuksa.website/
https://www.etas.com/en/open-source-software.php

	Slide 1: VSS in-vehicle Performance
	Slide 2: What we mean with “in-vehicle”
	Slide 3: Taxonomy of in-vehicle VSS components
	Slide 4: What happens in the stack
	Slide 5: Communication paradigm
	Slide 6: To Link or Not to Link?
	Slide 7: Be faster: Shared Memory / Zero Copy
	Slide 8: Relax: Need for Speed?
	Slide 9: Example: High frequency actuation
	Slide 10: Tech Choice GRPC
	Slide 11: The details, the details!
	Slide 15: Benchmarking
	Slide 16: kuksa-perf
	Slide 17: Go lower
	Slide 18: Enter IEEE 1722 & Open1722
	Slide 20: Open1722 performance
	Slide 21: Summary & Final thoughts (1/2)
	Slide 22: Summary & Final thoughts (2/2)
	Slide 23

