
Leveraging Sparkplug for efficiently
transmitting VSS data between the
vehicle and the cloud

Dr. James J. Hunt | CTO & CEO aicas | September 25, 2024

| 2

Software Defined Data Collection

Copyright ©2024 COVESA25 September 2024 |

Evolution of Data Collection

Dynamic

Network &

Nodes

• Predefined Signals
• Limited control

• Downloadable Rules
• Predefined Signals
• Predefined Operations
• Frequency Control
• Event Triggers

• Network of Nodes
• Dynamically Updatable
• Dynamically Defined Nodes
• Based on Application Framework
• Eases Merging Multiple Data

Aquisition Plans
• VSS selfawareness

Static
Aquisition

Rules w/
Fixed

Operations

Dynamic
Network &

Nodes

| 3

Vehicle Data Collection Requirements

Copyright ©2024 COVESA25 September 2024 |

• Efficient Transport
• Flexible Interconnection of Vehicles and Cloud Services (Publish-Subscribe Messaging)
• Topic and Message Structure Compatible with VSS
• Address More than One Device in a Vehicle
• Fast Fail-Over
• Interoperable
• Selfaware Vehicles
• Flexibility (adaptable to current and upcoming business cases)
• Minimal Reinvention (avoid Not-Invented-Here Syndrome)
• Secure communication

| 4

Aspects of Data Collection

Copyright ©2024 COVESA25 September 2024 |

Architecture
• Data Model—VSS
• Data Conversion—vehicle specific formats to a standard format (Data Conversion Manifest)
• Data On-Board Processing—synthetic, composite, and predictive signals (Signal Apps)
• Data Collection—what should be collected when (Data Acquisition Plan)
• Data Transmission—standard means of bringing data efficiently and securely to the cloud

Software Defined Vehicle Concerns
• Combining Robustness and Dynamic Update
• Complete Data Types: Quantities vs. Raw Numbers
• Software Selfawareness
• Dynamic Test and Deployment

Vehicle Data Collection Process

25 September 2024 | Copyright ©2024 COVESA | 5

Conversion

• Convert native data to
vehicle independent
signals

• Partially covered by
VSS

• No filtering
• Only CAN &

AUTOSAR signals.

Signal Conversion
Manifest

Preprocessing

• Compose signals not
present natively.

• Compress & Store
data

• Local subsystem
modeling.

Software Bundles

Selection

• Decide what signals
to send when

• Uses both converted
signals and
preprossed data

• Describable as a
network

Data Acquisition Plan

Transmission

• Connect to server

• Transmit requested
data

• Handle all failure
modes such as
network disconnect
and server failure

Sparkplug

| 6

Sparkplug—Efficient VSS Data transmitting from Vehicle to Cloud

Copyright ©2024 COVESA25 September 2024 |

+ Interoperable Seamless communication between devices from different vendors.

Industry-Proven IoT Protocol over MQTT

+ Efficient Optimized data transmission for low-bandwidth networks.

+ Scalable Supports large deployments without overwhelming the system.

+ Time-saving Standardized communication simplifies development and custom coding.

+ Reliable Ensure data integrity and system operation regardless of network reliability.

| 7

Sparkplug B

Copyright ©2024 COVESA25 September 2024 |

• Broker based system (MQTT): a level of indirection provides loose coupling, which facilitates scalability
and flexibility in deployment and maintenance (unlike rest-based OPC/UA).

• Continuous Session Awareness: provides a standard for managing the session state of all connected
components, which facilitates coordination and synchronization.

• Persistent connections: all participants are connected continuously by default.
• Protocol build-in failover: avoids single point of failure by providing timely reaction to transmission and

broker faults by rolling over to another defined broker.
• Payload definition and interoperability: uses consistently interpreted data types across the ecosystem.

When a new device connects, the initial message exchange defines what to expect.
• Report by Exception: data and failure message sent only when data changes
• Build-in data encoding and compression: based on Protobuf, provides for interoperability and

bandwidth optimization.
• Defined topic naming: Aligns well with VSS.
• Standardized: ISO/IEC 20237:2023

| 8

Sparkplug for VSS Architecture

Copyright ©2024 COVESA25 September 2024 |

TCP/IP

• Vehicle Control
• Historian
• Analytics

(ProtoBuf)

| 9

Sparkplug Topics

Copyright ©2024 COVESA25 September 2024 |

namespace/group_id/message_type/edge_node_id/[device_id]

• namespace—The protocol version identifier, e.g., "spBv1.0"

This could be defined for VSS, e.g., "spvssv3.0"
• group_id—This would be reserved for an OEM fleet identifier.
• edge_node_id—This would be an OEM defined identifier for a vehicle.
• device_id—Optional device identifier, e.g., TPU (telematics Processing Unit)

Payload for data command (metric) and can be mapped directly to VSS.

| 10

Sparkplug Message Types

Copyright ©2024 COVESA25 September 2024 |

• NBIRTH—Birth certificate for MQTT EoN nodes.
• NDEATH—Death certificate for MQTT EoN nodes.
• DBIRTH—Birth certificate for Devices.
• DDEATH—Death certificate for Devices.
• NDATA—Node data message.
• DDATA—Device data message.
• NCMD—Node command message.
• DCMD—Device command message.
• STATE—Critical application state message.

| 11

JSON Serialization Example of NBIRTH Message

Copyright ©2024 COVESA25 September 2024 |

{
 "timestamp": 1486144502122,
 "metrics": [{
 "name": "bdSeq",
 "timestamp": 1486144502122,
 "dataType": "Int64",
 "value": 0
}, {
 "name": "Vehicle/Cabin/Tempature",
 "timestamp": 1486144502122,
 "dataType": "Tempature",
 "value": 3000
}, {
 "name": "Vehicle/Cabin/Humidity",
 "timestamp": 1486144502122,
 "dataType": "Humidity",
 "value": true
}],
"seq": 0
}

| 12

JSON Serialization Example of NDATA Message

Copyright ©2024 COVESA25 September 2024 |

{
 "timestamp": 1486144502122,
 "metrics": [{
 "name": "Vehicle/Cabin/Temperature",
 "timestamp": 1486144502122,
 "dataType": "Celsius",
 "value": 29.2
}, {
 "name": "Vehicle/Cabin/Humidity",
 "timestamp": 1486144502122,
 "dataType": "%",
 "value": 55.9
}],
 "seq": 0
}

| 13

Integrating a Data Acquisition Plan

Copyright ©2024 COVESA25 September 2024 |

1. Define a Data Acquisition Plan as
network description

2. Add a Data Acquisition Plan to
the rebirth command

3. Interpret a rebirth with a Data
Acquisition Plan to update the
data dictionary and the internal
Signal Conversion Manifest.

| 13Copyright ©2024 COVESA

| 14

Data Acquisition Plan Examples

Copyright ©2024 COVESA25 September 2024 |

1. Conditional
Pressure on
Brake & Throttle

2. Synthesis
Power from
RPMs & Torque

3. Conversion
Device binary or
text data stream
to VSS signal

| 15

Signal Data Safety

Copyright ©2024 COVESA25 September 2024 |

Why is it important?
• Prevents false interpretation of data
• Provided additional type checking on data transformations
• Ensures robust software defined systems
• Can prevent catastrophic failure when data is used for control

What does it mean?
• Every value is accompanied by its unit of measurement
• This includes boolen values, which should be tristate: on, off, or unknown

Reference

• https://jcp.org/aboutJava/communityprocess/mrel/jsr385/index2.html

https://jcp.org/aboutJava/communityprocess/mrel/jsr385/index2.html

| 16

Next Steps

Copyright ©2024 COVESA25 September 2024 |

• Start a subgroup in the Eclipse Sparkplug Working Group for Vehicle Data

• Propose Extension to Sparkplug for VSS

• Define VSS Mapping to Sparkplug Metrics

• Extend Rebirth Message to support sending a Data Acquisition Plan

• Defined the format for this Plan

• Discuss Vehicles (Nodes) could be addressed

| 17

Summary

Copyright ©2024 COVESA25 September 2024 |

• VSS is a great contribution to interoperability for automotive data collection

• Use industrial standard data transmission protocols: Sparkplug

• Vehicles should be selfaware (maintain their own VSS description)

• A flexible means of selecting, preprocessing, and sending data is needed

• Signal data should always carry its unit of measurement

• MQTT ACL should be used for securing communication

• Do not reinvent the wheel!

aicas. embedded. connected.

Simplify Edge-to-Cloud

aicas GmbH
76131 Karlsruhe, Germany
www.aicas.com
+49 721 66 39 68-0

Dr. James J. Hunt
Cofounder, CEO, and CTO

| 19

Technical Presentation

Copyright ©2024 COVESA25 September 2024 |

Leveraging Sparkplug for efficiently transmitting VSS data
between the vehicle and the cloud

How sparkplug can be used to transmit VSS data between the vehicle and the cloud.

2:00 PM – 2:25 PM Wednesday

Sparkplug is already widely used in industrial automation as a standard for transmitting
data between cloud services and devices. Based on MQTT and ProtoBuf, most of the
challenges of flexible data transmission have already been solved. VSS maps naturally
onto Sparkplug as a new profile. Combined with data access plans, full control over data
collection can be provided with an efficient and robust solution.

Dr. James J. Hunt
CEO & CTO - aicas GmbH

Related Material
Memory Safety

25 September 2024 | Copyright ©2024 COVESA | 20

| 21

Software Selfawareness: Tracing Software Providence

Copyright ©2024 COVESA25 September 2024 |

Cyber Security and Software Updating

• UNECE r155—vehicle cybersecurity and
cybersecurity management systems

• UNECE r156—vehicle software updates and
software update management systems

Road Vehicles

• ISO/SAE 21434:2021
Cybersecurity engineering

• ISO 24089:2023

Software update engineering

US Government: EO 14028—SECURING THE SOFTWARE SUPPLY CHAIN

Global RegulationsUN Guidance and Best PracticeISO

| 22

Memory Safety

Copyright ©2024 COVESA25 September 2024 |

Why is it important?
• ~70% of Security vulnerabilities are due to lack of memory safety.
• Found in iOS, Android, and Microsoft Products

What does it mean?
• Buffer overrun or out of bounds array reference
• Reference object with wrong type
• Use number as pointer
• Reference object that has been freed

References

• https://www.memorysafety.org/docs/memorysafety/

• https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF

• https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf

https://www.memorysafety.org/docs/memorysafety/
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf

| 23

DO-332 Memory Safety

Copyright ©2024 COVESA25 September 2024 |

Objectives

Technique
Unambiguous

Reference
Fragment
Avoidance

Timely
Deallocation

Reference
Consistency

Deterministi
c Allocation

Atomic
Move

Sufficient
Memory

Object Pooling AC AC AC AC MMI N/A AC

Stack Allocation AC MMI MMI AC MMI N/A AC

Scope Allocation MMI MMI MMI AC MMI N/A AC

Manual Heap
Allocation AC ? AC AC MMI MMI AC

Garbage Collection MMI MMI MMI MMI MMI MMI AC

AC = application code, MMI = memory management infrastructure, N/A = not applicable, and ? = difficult to ensure by either AC or MMI.

Related Material
Framework for Dynamic Software Deployment and Management

25 September 2024 | Copyright ©2024 COVESA | 24

| 25

Framework Requirements

Copyright ©2024 COVESA25 September 2024 |

Exact Garbage Collection

Minimize Context Switch and Serialization

Full Control of SoftwareProperly Prioritize Tasks

Prevent Service MismatchingOnly Run Validated Software
Software
Signature

Verification

Flexibly Combine Capabilities

Low
Latency

Realtime
Scheduling

SOA
Memory
Safety

Life Cycle
Management

Versioned
Service

Resolution

| 26

Adapting Java for OT Systems

Copyright ©2024 COVESA25 September 2024 |

Base Language

Undefined Scheduling:
assumes fair scheduling

Relies on JiT for performance

Little support for interacting w/
hardware

Conventional Java
Fairness

Refined semantics & additional
APIs (RTSJ)

Defined Scheduling:
preemptive priority & time-
sharing (fair)

Uses AoT for performance

Support for events, device
access, & interrupts

Realtime Java
Priority

Advantages of OSGi

25 September 2024 | Copyright ©2024 COVESA | 27

+

+

+

Nanoservices

Service-Oriented Architecture

Message Based

Very small Modules (< Containers)

Remote controlled deployment and update

Life-cycle management w/ version
tracking

Service Text

Standard Typed Data Bus

| 28

OSGi Challenge: Robustness and Realtime Scheduling

Copyright ©2024 COVESA25 September 2024 |

Resource Enforcement

• CPU Exhaustion
• Memory Exhaustion
• RT Scheduling makes this worst

• Priority Preemption

A high priority thread can block all
lower priority threads

• Resource Enforcement (limits)
• CPU Use
• Memory Use
• Thread Creation

• Safe bundle force termination
• Thread.stop is unsafe
• Ensure that finally clauses can run
• RTSJ: Asynchronous Task Termination

• RTSJ 2.0 provides infrastructure
• javax.realtime.control
• javax.realtime.enforce

System LockupProblem Resource EnforcementSolution

| 29

Framework Comparison

Copyright ©2024 COVESA25 September 2024 |

Memory
Safety

Realtime
Scheduling

Software
Validation

Service
Oriented
Architecture

Life Cycle
Management

Versioned
Service
Resolution

Low
Latency

AUTOSAR
Adaptive

Macchina.io

Container

Conventional
OSGi

Realtime
OSGi

Extra Material

| 30

A Business Prospective

Copyright ©2024 COVESA25 September 2024 |

Validation and Approval Staging Example

Copyright ©2024 COVESA25 September 2024 | | 31

Evolution of Data Collection

Dynamic

Network &

Nodes

Simulated
Device

Test
Device

Test
Fleet

Initial Development

• Select signals
• Design Preprocessing
• Test functionality with

simulated data

Integration Test

• Test with simulated data
• Integrate with other

data collection plans
• Check performance

Deployment Test

• Test with real-world data
• Check performance
• Test usefulness

| 32

Role-Based Access UI

Copyright ©2024 COVESA25 September 2024 |

Create FleetAdd Vehicle TypeCreate User

Create Campaign Authorize Campaign Deploy Campaign Create Data Visualization

Add Signals Add Decoders

Administrator Vehicle Engineer Embedded Software
Engineer

Vehicle Engineer Fleet Manager

Campaign Developer
or Data Engineer

Operations Manager Deployment Manager Data Engineer

| 33

Who needs Data Collection? Example Roles and Permissions

Copyright ©2024 COVESA25 September 2024 |

Acquisition Element Create Read Use Authorize Update Delete
Vehicle connector ESW Eng ESW Eng

SW Eng
ESW Eng
SW Eng

QA ESW Eng ESW Eng
Ops Mgr

Enterprise VSS catalog Vehicle Mgr Vehicle Mgr
SW Eng

Vehicle Mgr
SW Eng

QA Vehicle Mgr Ops Mgr

DB Schema IT Eng IT Eng
SW Eng

IT Eng
SW Eng

QA IT Eng Ops Mgr

Vehicle Data Vehicle Eng Vehicle Eng
Data User

Vehicle Eng
Data User

Vehicle Mgr Vehicle Eng Vehicle Mgr
Ops Mgr

Vehicle Definition (VSS) Vehicle Eng Vehicle Eng
Data User

Vehicle Eng
Data User

Vehicle Mgr Vehicle Eng Vehicle Mgr

Fleet Fleet Mgr Fleet Mgr
Data User

Fleet Mgr Deploy Mgr Fleet Mgr Fleet Mgr

Data Acquisition Plan Data User Data User Data User Deploy Mgr Data User Data User

Campaign Data User Data User Data User Ops Mgr Data User Data User

Visualization Template UI Design UI Design
Data User

UI Design
Data User

Data Mgr UI Design UI Design

	Slide 1: Leveraging Sparkplug for efficiently transmitting VSS data between the vehicle and the cloud
	Slide 2: Software Defined Data Collection
	Slide 3: Vehicle Data Collection Requirements
	Slide 4: Aspects of Data Collection
	Slide 5: Vehicle Data Collection Process
	Slide 6: Sparkplug—Efficient VSS Data transmitting from Vehicle to Cloud
	Slide 7: Sparkplug B
	Slide 8: Sparkplug for VSS Architecture
	Slide 9: Sparkplug Topics
	Slide 10: Sparkplug Message Types
	Slide 11: JSON Serialization Example of NBIRTH Message
	Slide 12: JSON Serialization Example of NDATA Message
	Slide 13: Integrating a Data Acquisition Plan
	Slide 14: Data Acquisition Plan Examples
	Slide 15: Signal Data Safety
	Slide 16: Next Steps
	Slide 17: Summary
	Slide 18
	Slide 19: Technical Presentation
	Slide 20: Related Material
	Slide 21: Software Selfawareness: Tracing Software Providence
	Slide 22: Memory Safety
	Slide 23: DO-332 Memory Safety
	Slide 24: Related Material
	Slide 25: Framework Requirements
	Slide 26: Adapting Java for OT Systems
	Slide 27: Advantages of OSGi
	Slide 28: OSGi Challenge: Robustness and Realtime Scheduling
	Slide 29: Framework Comparison
	Slide 30: Extra Material
	Slide 31: Validation and Approval Staging Example
	Slide 32: Role-Based Access UI
	Slide 33: Who needs Data Collection? Example Roles and Permissions

