
VSS to Franca to SOME/IP connections
Prepared by:

Gunnar Andersson,
Development Lead at GENIVI Alliance

10 September 2019

Tuesday, September 10, 2019 |. Copyright © GENIVI Alliance 2019
1

CREDITS

• For VSS introduction these are reused slides from

except for the “Thin API” which was added

Bringing the Car to the Internet

October 10, 2018 |
GENIVI and W3C – Enabling the Connected Car through Collaboration

Rudolf J Streif

Conventional Approach – “Fat API”

• An API for every signal or control:

• Issues with this approach:
– Addition of new signals and controls requires change of the specification.

– Challenges maintaining backwards compatibility.

– Complexity in providing per-API authorization and access control.

– Single end-point addressing.

var vehicle = navigator.vehicle;

vehicle.vehicleSpeed.get().then(function (vehicleSpeed) {

console.log("Vehicle speed: " + vehicleSpeed.speed);

}, function (error) {

console.log("There was an error"); });

var vehicleSpeedSub = vehicle.vehicleSpeed.subscribe(function (vehicleSpeed) {

console.log("Vehicle speed changed to: " + vehicleSpeed.speed);

vehicle.vehicleSpeed.unsubscribe(vehicleSpeedSub);

});

Friday, September 13, 2019 |. Copyright © GENIVI Alliance 2019
1

Dynamic “Thin API”

• One common access function for all data.

• For example a request by name or ID.
Typically a string but a more efficient Identifier is theoretically possible
 getSignal(string signalname)

● +Create/Update/Modify, similarly

• Advantages:

● Flexible – named data item can exist or not exist.
Add data dynamically if needed, add new services as needed.

● Reasonable to divide services up dynamically

● e.g. some service provides a subset of the whole data tree

● More WWW-like, Web protocols are often more like this.

• Disadvantages:

● No compile-time checking that signal/API actually exists

● Potentially less efficient to send the signal name (string) in, and on the service side “look it up”

New Approach – Services with Signal Tree

• The core services get, set, subscribe, unsubscribe, getVSS and
authorize are provided by a network server.
– The services get, set, subscribe and unsubscribe provide access to

vehicle signals and controls.

– The service getVSS allows clients to query the server for available
signals.

– Using the authorize service, the client presents a security token to the
server for authentication and authorization.

• Vehicle Signals and Controls are identified as nodes of a vehicle
signal tree.
– A fully qualified signal name addresses a single signal node.

– Wildcards for branches and node names provide for addressing of
signal groups.

Vehicle Signal Tree

• Tree structure provides
for hierarchical access
to signals and
attributes.

• Branches group signals
and attributes into
entities that logically
belong together.

• Wildcards allow access
to entire sets of
signals.

Body

Type

Body

Attribute Signal Private

Cabin

Refuel

Position

Door

Count

Body Chassis

Trunk

Open Locked

Body

Suspension

Mode

Signal

Attribute
Branch

Addressing

• Dot-notation for name path.

• Last path component, called node, represents the signal or
attribute.

• Leading path components represent the branches.

• Wildcards can be used to address multiple signals and/or
branches.

Signal.Chassis.Brake.FluidLevel

Signal.Drivetrain.FuelSystem.Level

Attribute.Cabin.Door.Count

Attribute.Engine.Displacement

Specification Format

• Formatted as YAML lists

• Simple conversion into other formats such as JSON, France IDL, CSV,
and more

• # denotes a comment or a directive

- Signal.Drivetrain.Transmission:

type: branch

description: Transmission-specific data

- Signal.Drivetrain.Transmission.Speed:

type: Int32

min: -250

max: 250

unit: m/s

description: Current vehicle speed, sensed by gearbox

Friday, September 13, 2019 |. Copyright © GENIVI Alliance 2019
1

Creating signal access with VSS + SOME/IP
• SOME/IP (and other communication methods) are available with CommonAPI framework & tooling

• capicxx-someip-runtime connects the CommonAPI high-level C++ interface with
the vSOMEIP implementation

• Observable “properties” are named Attributes in Franca IDL

• Franca Attributes are supported by CommonAPI and in this case they become SOME/IP properties

• A “Thin API” could be created. Thee usage of an Interface Description Language has a smaller
impact for such a small number of functions.. However, we get a useful high-level C++ programming
API from the CommonAPI tooling. In this case it creates a SOME/IP remote procedure call capable
interface automatically, if we use Franca + CommonAPI.

• Note however, the following example shows converting each VSS signal to an attribute.
Thus it is an example of a “FAT API” according to previous introduction.

Friday, September 13, 2019 |. Copyright © GENIVI Alliance 2019
1

• Previous Franca generators created a datastructure holding
definitions from the VSS

• This calls for an access API instead
(using Attributes/Properties)

• Add new Franca IDL Attribute generator!

x 2

Friday, September 13, 2019 |. Copyright © GENIVI Alliance 2019
2

Running vspec2franca_attributes 1

./tools/vspec2franca_attributes.py
 -p Vehicle.Drivetrain
 -m Vehicle.Drivetrain.FuelSystem
 -n FuelSystem
 -v $(cat VERSION)
 -i:spec/VehicleSignalSpecification.id
 -I ./spec ./spec/VehicleSignalSpecification.vspec
 vss_rel_$(cat VERSION)_attributes.fidl

We want to generate the interface named FuelSystem,
from all signals matching the VSS sub-tree Vehicle.Drivetrain.FuelSystem (only)
and put it in a package named Vehicle.Drivetrain

cat vss_rel_2.0.0-alpha+006_attributes.fidl

Friday, September 13, 2019 |. Copyright © GENIVI Alliance 2019
3

Example results
// Copyright (C) 2019
// Contributors to Vehicle Signal Specification
// (https://gitub.com/GENIVI/vehicle_signal_specification)
//
// This program is licensed under the terms and conditions of the
// Mozilla Public License, version 2.0. The full text of the
// Mozilla Public License is at https://www.mozilla.org/MPL/2.0/

const UTF8String VSS_VERSION = "2.0.0-alpha+006"

// Vehicle signal attributes generated from VSS specification version ...

package Vehicle.Drivetrain {

 interface FuelSystem {

 attribute string HybridType /* Vehicle.Drivetrain.FuelSystem.HybridType */
 attribute uint16 TankCapacity /* Vehicle.Drivetrain.FuelSystem.TankCapacity */
 attribute float ConsumptionSinceStart /* Vehicle.Drivetrain.FuelSystem.ConsumptionSinceStart */
 attribute boolean EngineStopStartEnabled /* Vehicle.Drivetrain.FuelSystem.EngineStopStartEnabled */
 attribute uint8 Level /* Vehicle.Drivetrain.FuelSystem.Level */
 attribute float InstantConsumption /* Vehicle.Drivetrain.FuelSystem.InstantConsumption */
 attribute uint32 TimeSinceStart /* Vehicle.Drivetrain.FuelSystem.TimeSinceStart */
 attribute boolean LowFuelLevel /* Vehicle.Drivetrain.FuelSystem.LowFuelLevel */
 attribute uint32 Range /* Vehicle.Drivetrain.FuelSystem.Range */
 attribute float AverageConsumption /* Vehicle.Drivetrain.FuelSystem.AverageConsumption */
 attribute string FuelType /* Vehicle.Drivetrain.FuelSystem.FuelType */
 }
}

Friday, September 13, 2019 |. Copyright © GENIVI Alliance 2019
4

Running vspec2franca_attributes 2

./tools/vspec2franca_attributes.py
 -p Vehicle
 -m Vehicle.Drivetrain.FuelSystem
 -n Drivetrain
 -v $(cat VERSION)
 -i:spec/VehicleSignalSpecification.id
 -I ./spec ./spec/VehicleSignalSpecification.vspec
 vss_rel_$(cat VERSION)_attributes.fidl

We want to generate the interface named Drivetrain,
from all signals matching the VSS sub-tree Vehicle.Drivetrain.FuelSystem (only)
and put it in a package named Vehicle

cat vss_rel_2.0.0-alpha+006_attributes.fidl

Friday, September 13, 2019 |. Copyright © GENIVI Alliance 2019
5

Example results
// Copyright (C) 2019
// Contributors to Vehicle Signal Specification
// (https://gitub.com/GENIVI/vehicle_signal_specification)
//
// This program is licensed under the terms and conditions of the
// Mozilla Public License, version 2.0. The full text of the
// Mozilla Public License is at https://www.mozilla.org/MPL/2.0/

const UTF8String VSS_VERSION = "2.0.0-alpha+006"

// Vehicle signal attributes generated from VSS specification version ...

package Vehicle {

 interface Drivetrain {

 attribute string FuelSystem.HybridType /* Vehicle.Drivetrain.FuelSystem.HybridType */
 attribute uint16 FuelSystem.TankCapacity /* Vehicle.Drivetrain.FuelSystem.TankCapacity */
 attribute float FuelSystem.ConsumptionSinceStart /* Vehicle.Drivetrain.FuelSystem.ConsumptionSinceStart */
 attribute boolean FuelSystem.EngineStopStartEnabled /* Vehicle.Drivetrain.FuelSystem.EngineStopStartEnabled */
 attribute uint8 FuelSystem.Level /* Vehicle.Drivetrain.FuelSystem.Level */
 attribute float FuelSystem.InstantConsumption /* Vehicle.Drivetrain.FuelSystem.InstantConsumption */
 attribute uint32 FuelSystem.TimeSinceStart /* Vehicle.Drivetrain.FuelSystem.TimeSinceStart */
 attribute boolean FuelSystem.LowFuelLevel /* Vehicle.Drivetrain.FuelSystem.LowFuelLevel */
 attribute uint32 FuelSystem.Range /* Vehicle.Drivetrain.FuelSystem.Range */
 attribute float FuelSystem.AverageConsumption /* Vehicle.Drivetrain.FuelSystem.AverageConsumption */
 attribute string FuelSystem.FuelType /* Vehicle.Drivetrain.FuelSystem.FuelType */
 }

Friday, September 13, 2019 |. Copyright © GENIVI Alliance 2019
1

Conclusions
• CommonAPI + Franca IDL is an already existing way to get a high-level C++

programming interface that connects to SOME/IP communication.

• Converting VSS data to some kind of Franca interface enables leveraging this path to
SOME/IP

• The generated code could be used to implement a vehicle data server, but it’s also
possible that some vehicle data servers will be provided by AUTOSAR systems and use
other software bindings to define the SOME/IP service. Since CommonAPI generates
both client and server APIs, the client API might still be useful to connect to the service,
if the AUTOSAR vehicle signalling system is based on a VSS-style description of the
data, and compatible SOME/IP usage

(Also, the Franca2ARA translation tool might be useful)

• Proof-of-concept implementation of VSS-to-Franca Attributes is available (open for
changes)

https://github.com/gunnarx/vehicle_signal_specification/tree/franca_attributes

