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CREDITS

• For VSS introduction these are reused slides from

except for the “Thin API” which was added

Bringing the Car to the Internet

October 10, 2018 | 
GENIVI and W3C – Enabling the Connected Car through Collaboration

Rudolf J Streif



Conventional Approach – “Fat API”

• An API for every signal or control:

• Issues with this approach:
– Addition of new signals and controls requires change of the specification.

– Challenges maintaining backwards compatibility.

– Complexity in providing per-API authorization and access control.

– Single end-point addressing.

var vehicle = navigator.vehicle;

vehicle.vehicleSpeed.get().then(function (vehicleSpeed) {

console.log("Vehicle speed: " + vehicleSpeed.speed);

}, function (error) {

console.log("There was an error"); });

var vehicleSpeedSub = vehicle.vehicleSpeed.subscribe(function (vehicleSpeed) {

console.log("Vehicle speed changed to: " + vehicleSpeed.speed);

vehicle.vehicleSpeed.unsubscribe(vehicleSpeedSub);

});



Friday, September 13, 2019   |.  Copyright © GENIVI Alliance 2019 
1

Dynamic “Thin API”

• One common access function for all data.

• For example a request by name or ID.  
Typically a string but a more efficient Identifier is theoretically possible
          getSignal(string signalname)

● +Create/Update/Modify, similarly

• Advantages:

● Flexible – named data item can exist or not exist. 
Add data dynamically if needed, add new services as needed.

● Reasonable to divide services up dynamically

● e.g. some service provides a subset of the whole data tree

● More WWW-like, Web protocols are often more like this.

• Disadvantages:

● No compile-time checking that signal/API actually exists

● Potentially less efficient to send the signal name (string) in, and on the service side “look it up”



New Approach – Services with Signal Tree

• The core services get, set, subscribe, unsubscribe, getVSS and 
authorize are provided by a network server.
– The services get, set, subscribe and unsubscribe provide access to 

vehicle signals and controls.

– The service getVSS allows clients to query the server for available 
signals.

– Using the authorize service, the client presents a security token to the 
server for authentication and authorization.

• Vehicle Signals and Controls are identified as nodes of a vehicle 
signal tree.
– A fully qualified signal name addresses a single signal node.

– Wildcards for branches and node names provide for addressing of 
signal groups.



Vehicle Signal Tree

• Tree structure provides 
for hierarchical access 
to signals and 
attributes.

• Branches group signals 
and attributes into 
entities that logically 
belong together.

• Wildcards allow access 
to entire sets of 
signals.
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Addressing

• Dot-notation for name path.

• Last path component, called node, represents the signal or 
attribute.

• Leading path components represent the branches.

• Wildcards can be used to address multiple signals and/or 
branches.

Signal.Chassis.Brake.FluidLevel

Signal.Drivetrain.FuelSystem.Level

Attribute.Cabin.Door.Count

Attribute.Engine.Displacement



Specification Format

• Formatted as YAML lists

• Simple conversion into other formats such as JSON, France IDL, CSV, 
and more

• # denotes a comment or a directive

- Signal.Drivetrain.Transmission:

type: branch

description: Transmission-specific data

- Signal.Drivetrain.Transmission.Speed:

type: Int32

min: -250

max: 250

unit: m/s

description: Current vehicle speed, sensed by gearbox
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Creating signal access with VSS + SOME/IP
• SOME/IP (and other communication methods) are available with CommonAPI framework & tooling

• capicxx-someip-runtime  connects the CommonAPI high-level C++ interface with 
the vSOMEIP implementation

• Observable “properties” are named Attributes in Franca IDL

• Franca Attributes are supported by CommonAPI and in this case they become SOME/IP properties

• A “Thin API” could be created.  Thee usage of an Interface Description Language has a smaller 
impact for such a small number of functions..  However, we get a useful high-level C++ programming 
API from the CommonAPI tooling.  In this case it creates a SOME/IP remote procedure call capable 
interface automatically, if we use Franca + CommonAPI.

• Note however, the following example shows converting each VSS signal to an attribute.  
Thus it is an example of a “FAT API” according to previous introduction.
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• Previous Franca generators created a datastructure holding 
definitions from the VSS

• This calls for an access API instead 
(using Attributes/Properties)

• Add new Franca IDL Attribute generator!

x 2
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Running vspec2franca_attributes 1

./tools/vspec2franca_attributes.py 
                 -p Vehicle.Drivetrain 
                 -m Vehicle.Drivetrain.FuelSystem 
                 -n FuelSystem 
                 -v $(cat VERSION) 
                 -i:spec/VehicleSignalSpecification.id 
                 -I ./spec ./spec/VehicleSignalSpecification.vspec 
                  vss_rel_$(cat VERSION)_attributes.fidl 

We want to generate the interface named FuelSystem, 
from all signals matching the VSS sub-tree Vehicle.Drivetrain.FuelSystem (only)
and put it in a package named Vehicle.Drivetrain

cat vss_rel_2.0.0-alpha+006_attributes.fidl
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Example results
// Copyright (C) 2019 
// Contributors to Vehicle Signal Specification
// (https://gitub.com/GENIVI/vehicle_signal_specification)
//
// This program is licensed under the terms and conditions of the
// Mozilla Public License, version 2.0.  The full text of the
// Mozilla Public License is at https://www.mozilla.org/MPL/2.0/

const UTF8String VSS_VERSION = "2.0.0-alpha+006"

// Vehicle signal attributes generated from VSS specification version ...

package Vehicle.Drivetrain {

  interface FuelSystem {

   attribute string HybridType                     /* Vehicle.Drivetrain.FuelSystem.HybridType */ 
   attribute uint16 TankCapacity                   /* Vehicle.Drivetrain.FuelSystem.TankCapacity */ 
   attribute float ConsumptionSinceStart          /* Vehicle.Drivetrain.FuelSystem.ConsumptionSinceStart */ 
   attribute boolean EngineStopStartEnabled         /* Vehicle.Drivetrain.FuelSystem.EngineStopStartEnabled */ 
   attribute uint8 Level                          /* Vehicle.Drivetrain.FuelSystem.Level */ 
   attribute float InstantConsumption             /* Vehicle.Drivetrain.FuelSystem.InstantConsumption */ 
   attribute uint32 TimeSinceStart                 /* Vehicle.Drivetrain.FuelSystem.TimeSinceStart */ 
   attribute boolean LowFuelLevel                   /* Vehicle.Drivetrain.FuelSystem.LowFuelLevel */ 
   attribute uint32 Range                          /* Vehicle.Drivetrain.FuelSystem.Range */ 
   attribute float AverageConsumption             /* Vehicle.Drivetrain.FuelSystem.AverageConsumption */ 
   attribute string FuelType                       /* Vehicle.Drivetrain.FuelSystem.FuelType */ 
  }
}
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Running vspec2franca_attributes 2

./tools/vspec2franca_attributes.py 
                 -p Vehicle 
                 -m Vehicle.Drivetrain.FuelSystem 
                 -n Drivetrain 
                 -v $(cat VERSION) 
                 -i:spec/VehicleSignalSpecification.id 
                 -I ./spec ./spec/VehicleSignalSpecification.vspec 
                  vss_rel_$(cat VERSION)_attributes.fidl 

We want to generate the interface named Drivetrain, 
from all signals matching the VSS sub-tree Vehicle.Drivetrain.FuelSystem (only)
and put it in a package named Vehicle

cat vss_rel_2.0.0-alpha+006_attributes.fidl
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Example results
// Copyright (C) 2019 
// Contributors to Vehicle Signal Specification
// (https://gitub.com/GENIVI/vehicle_signal_specification)
//
// This program is licensed under the terms and conditions of the
// Mozilla Public License, version 2.0.  The full text of the
// Mozilla Public License is at https://www.mozilla.org/MPL/2.0/

const UTF8String VSS_VERSION = "2.0.0-alpha+006"

// Vehicle signal attributes generated from VSS specification version ...

package Vehicle {

  interface Drivetrain {

   attribute string FuelSystem.HybridType          /* Vehicle.Drivetrain.FuelSystem.HybridType */ 
   attribute uint16 FuelSystem.TankCapacity        /* Vehicle.Drivetrain.FuelSystem.TankCapacity */ 
   attribute float FuelSystem.ConsumptionSinceStart /* Vehicle.Drivetrain.FuelSystem.ConsumptionSinceStart */ 
   attribute boolean FuelSystem.EngineStopStartEnabled /* Vehicle.Drivetrain.FuelSystem.EngineStopStartEnabled */ 
   attribute uint8 FuelSystem.Level               /* Vehicle.Drivetrain.FuelSystem.Level */ 
   attribute float FuelSystem.InstantConsumption  /* Vehicle.Drivetrain.FuelSystem.InstantConsumption */ 
   attribute uint32 FuelSystem.TimeSinceStart      /* Vehicle.Drivetrain.FuelSystem.TimeSinceStart */ 
   attribute boolean FuelSystem.LowFuelLevel        /* Vehicle.Drivetrain.FuelSystem.LowFuelLevel */ 
   attribute uint32 FuelSystem.Range               /* Vehicle.Drivetrain.FuelSystem.Range */ 
   attribute float FuelSystem.AverageConsumption  /* Vehicle.Drivetrain.FuelSystem.AverageConsumption */ 
   attribute string FuelSystem.FuelType            /* Vehicle.Drivetrain.FuelSystem.FuelType */ 
  }
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Conclusions
• CommonAPI + Franca IDL is an already existing way to get a high-level C++ 

programming interface that connects to SOME/IP communication.

• Converting VSS data to some kind of Franca interface enables leveraging this path to 
SOME/IP

• The generated code could be used to implement a vehicle data server, but it’s also 
possible that some vehicle data servers will be provided by AUTOSAR systems and use 
other software bindings to define the SOME/IP service.   Since CommonAPI generates 
both client and server APIs, the client API might still be useful to connect to the service, 
if the AUTOSAR vehicle signalling system is based on a VSS-style description of the 
data, and compatible SOME/IP usage

(Also, the Franca2ARA translation tool might be useful)

• Proof-of-concept implementation of VSS-to-Franca Attributes is available (open for 
changes)

https://github.com/gunnarx/vehicle_signal_specification/tree/franca_attributes

