
CAR API, HAL, ANDROID VHAL
COMMON VEHICLE DATA APIS

Jan Kubovy, BMW

| 2

How to get Car Data to the Apps

Copyright ©2025 COVESA20 February 2025 |

• Full custom solution
− fast API changes, high maintenance, proprietary, unmanaged API, no backward compatibility, apps

prepare data, high usage requirements, no-3rd-parties
• Vendor API

− fast API changes, high maintenance, proprietary, managed API, possible backward compatibility,
common API layer may prepare at least some data, high usage requirements, no-3rd-parties

• Standard API
− slower API changes, lower maintenance, standard, managed API, mostly backward compatibility, API

layer prepares data, lower usage requirements, 3rd-parties difficult (SDK, Appstore, License)
• AOSP VHAL with Vendor Properties

− slow API changes, low maintenance, standard, managed API, partially backward compatibility, API layer
prepares data, lower usage requirements, no-3rd-parties

• AOSP VHAL with Standard Properties
− slow API changes, low maintenance, standard, managed API, backward compatibility, API layer prepares

data, low usage requirements, 3rd-parties

| 3

Android HAL & VHAL

Copyright ©2025 COVESA20 February 2025 |

• Android HAL (Hardware Abstraction Layer)

− standard interface between the Android framework and device-specific hardware, allowing the Android
system to communicate with hardware components via vendor-specific implementations (i.e. driver)

• Android VHAL (Vehicle Hardware Abstraction Layer)

− specialized HAL in Android Automotive, enabling communication between the Android Automotive
framework and the vehicle's hardware, such as sensors, actuators, and control systems (also a driver
but with limited options to implement)

− employs VHAL properties - data points or control interfaces representing various vehicle attributes or
functions.

| 4

Android VHAL properties

Copyright ©2025 COVESA20 February 2025 |

• is identified by a unique ID (0xGATTDDDD)

− Group: 1 nibble

− Area: 1 nibble

− Type 1 byte

− iDentifier: 2 bytes - as sequence (max 65535!)

§ Google starts at 0x0100 (VIN)

§ VSS Mapper* starts at 0x8000

• has associated metadata

• access type (read, write)

• update frequency

/**
 * Declares all vehicle properties. VehicleProperty has a bitwise structure.
 * Each property must have:
 * - a unique id from range 0x0100 - 0xffff
 * - associated data type using VehiclePropertyType
 * - property group (VehiclePropertyGroup)
 * - vehicle area (VehicleArea)
 *
 * Vendors are allowed to extend this enum with their own properties. In this
 * case they must use VehiclePropertyGroup:VENDOR flag when the property is
 * declared.
 *
 * When a property's status field is not set to AVAILABLE:
 * - IVehicle#set may return StatusCode::NOT_AVAILABLE.
 * - IVehicle#get is not guaranteed to work.
 *
 * Properties set to values out of range must be ignored and no action taken
 * in response to such ill formed requests.
 */

Source: https://cs.android.com/android/platform/superproject/main/+/main:hardware/interfaces/automotive/vehicle/aidl_property/android/hardware/automotive/vehicle/VehicleProperty.aidl

enum VehiclePropertyGroup {
 SYSTEM = 0x10000000,
 VENDOR = 0x20000000,
 BACKPORTED = 0x30000000,
 MASK = 0xf0000000,
}

enum VehiclePropertyType {
 STRING = 0x00100000,
 BOOLEAN = 0x00200000,
 INT32 = 0x00400000,
 INT32_VEC = 0x00410000,
 INT64 = 0x00500000,
 INT64_VEC = 0x00510000,
 FLOAT = 0x00600000,
 FLOAT_VEC = 0x00610000,
 BYTES = 0x00700000,
 MIXED = 0x00e00000,
 MASK = 0x00ff0000,
}

Standard and Vendor properties differ by 2 bits

https://cs.android.com/android/platform/superproject/main/+/main:hardware/interfaces/automotive/vehicle/aidl_property/android/hardware/automotive/vehicle/VehicleProperty.aidl

| 5

Android Standard vs Vendor Properties

Copyright ©2025 COVESA20 February 2025 |

• Standard Properties

− predefined and standardized by Android Automotive

− to ensure interoperability across different vehicles

− covering only commonly used vehicle data like speed and fuel level

• Vendor Properties

− custom, vendor-specific extensions defined by manufacturers

− to expose additional vehicle data or features not covered by the standard properties

− not standardized across vehicles and OEMs, limiting interoperability and requiring tailoring apps for specific manufacturers

− accessible only to system-level apps or those with special permissions, reducing their utility for general app developers

− future updates to the Android Automotive framework may not support certain vendor-specific implementations

The Android Car API provides developers with a framework to build apps for Android Automotive, enabling them to access
vehicle-related data. This data is supplied through the Vehicle HAL (VHAL), which acts as the bridge between the Android
Automotive framework and the underlying vehicle hardware, translating API requests into hardware-specific interactions.

Common standard VSS VHAL proposal

20 February 2025 | Copyright ©2025 COVESA | 6

Common Gateway

SomeIP
Module

Tunnel
Module

XYZ …
Module

AOSP Build

API
Module

Android AOSP

Common
VSS VHAL

Car API

Car APICar APIApps

VSS VHAL

VSS Mapper
(VSS Tools)

Config

Phase 3

Phase 1
Phase 2

Ti
m

e

VSS

20 February 2025 | Copyright ©2025 COVESA | 9

OEM Apps
(1st party)Apps

Platform

HALs

External HW Generation X Generation Y

VHAL
(standard properties)

COVESA Vehicle Abstraction Layer (VAL)
(exposes vehicle capabilities & data, incl. COVESA mapping mechanism)

Standard AOSP VHAL Interfaces

Android Public Developer CarAPI

VHAL
(vendor properties)

Supplier Apps
(2nd party)

Apps from
AppStore

(3rd party)

OEM & Supplier only
Proprietary API only for OEM

and Supplier use-cases

Public
Standard

API

VSS-Based
(potential)

Access Control

Standard API

Vendor API

Proprietary

Standard Layer

Vendor Layer

Proprietary Layer

OEM Parametrization

COVESA
Mapping

Open Source
(or targeting)

Android

EvolutionOverview AOSP only

Data path over standard API
usable by 3rd party apps
 coming from app stores

| 11

Goal

Copyright ©2025 COVESA20 February 2025 |

• Relevant VSS subset is mapped deterministically to Android VHAL properties
− No extra alignment on mapping each time VSS is amended
− Ability to update mapping over the vehicle’s lifetime

• No extra SDK, no additional requirements for end-app-developer
• Access per property and per app

− Ability to change access over the vehicle’s lifetime
• Transition path between today and target

− Things have to work now and in the same way when target is reached without changes for OEMs

How do we get there?

| 12Copyright ©2025 COVESA20 February 2025 |

| 13

Phase 1: VSS Mapper VSS Tools

Copyright ©2021 COVESA20 February 2025 |

• Deterministically generating VSS to VHAL Properties mapping

− Alignment on mapper tooling (one-time) rather then each property (continuous)

• Main challenge

− Vendor property ID clash due to small space (2 bytes)

• Goal

− Establishing topic within community

− Standardization - alignment on basics

− No technical use

| 14

Phase 2: Standard VSS VHAL Building Block

Copyright ©2021 COVESA20 February 2025 |

• Standard, cross-OEM common VHAL implementation

− Configurable with the output of VSS VHAL Mapper

• Main challenge

− Dynamic access management per app changeable over the vehicle’s lifetime

− Mapping updateable over the vehicle’s lifetime

• Goal

− Common standard open-source implementation

− Cross-OEM VHAL properties

− Only vendor VHAL properties possible

§ 1st and 2nd party apps, no 3rd party apps

§ Backward compatibility not guaranteed

| 15

Phase 3: AOSP Patch

Copyright ©2021 COVESA20 February 2025 |

• Extending standard properties for standard, cross-OEM common VHAL implementation

• Main challenge

− Compatibility with future AOSP updates

− Contributing to AOSP upstream

− Maintaining patched AOSP till upstream contribution is accepted

• Goal

− No need to change AOSP code in the future, just VHAL and mapping configuration.

− VSS data available as standard VHAL properties

§ 3rd party app from app store can access any vehicle property which OEM allows

The solution may be as simple as this ;-)
… and then one can use the full 2byte ID space!!!

| 16

The Patch

Copyright ©2021 COVESA20 February 2025 |

project device/generic/car/
diff --git a/hardware/interfaces/automotive/vehicle/aidl_property/android/hardware/automotive/vehicle/VehiclePropertyGroup.aidl
index xxxxxx..xxxxxxx 100644
--- a/hardware/interfaces/automotive/vehicle/aidl_property/android/hardware/automotive/vehicle/VehiclePropertyGroup.aidl
+++ b/hardware/interfaces/automotive/vehicle/aidl_property/android/hardware/automotive/vehicle/VehiclePropertyGroup.aidl
@@ -21,6 +21,7 @@ enum VehiclePropertyGroup {
 SYSTEM = 0x10000000,
 VENDOR = 0x20000000,
 BACKPORTED = 0x30000000,
+ VSS = 0x40000000,
 MASK = 0xf0000000,
 }

