

Hyperintegration

SDVs are increasingly complex and unified oversight is needed.

Continuous Integration & Development Developers need insights into SDV execution.

Operational Automation In-vehicle and cloud-based intelligent systems require telemetry.

To enable new intelligent SDV use cases, telemetry data is required.

→ to power the ML and Al-infused digital feedback loops.

Intelligent SDV Overview (project scope in bold) **Developers & Analytics Frontend** sysadmins Al developer bots & Cloud-based Cloud Automation Al sysadmin bots Telemetry persistence Analytics Backend & web APIs Cloudconnected Intelligent **SDV** Digital 5G/6G Fleet Feedback Loop In-vehicle Al sysadmin bots **Automation** In-vehicle Digital Intelligent **Telemetry Telemetry fusion* Feedback** SDV Collection and SDKs Loop SDV: Hypervisors, OSs, Instrumented **Containers, Services & Apps SDV**

* Contextual bundling of metrics, logs and traces.

- Make developer workflows faster/smarter.
 - → Enable systems to be observable, navigable and understandable.
- Create new operational use cases and user experiences
 - → Enable in-vehicle and cloud-based SDV intelligent monitoring and digital feedback loops.

SDV Telemetry Project *value delivery* ("how")

- Provide SDKs to the SDV ecosystem to instrument software explicitly.
- Provide collectors to gather data sources into a common telemetry format.
- Provide a telemetry engine for ML and rules-based telemetry processing.
- Provide low-code/no-code automated SDV monitoring with ML and wizards.
- Provide a single source of SDV truth for communication to the cloud.

The Observability* Problem

Observability is the measure of how well a systems internal operation can be known externally.

- Observable systems can be monitored to stop past failures from reoccurring.
 - → well suited to machine learning, predictive detection & automation to determine corrective action.
- Complex SoA-based systems require significant run-time instrumentation to be monitored adequately.
- Goal of observability is not just to monitor & detect issues, but also to understand system behavior.
- System metrics, logs and traces all improve system observability, which enables root cause analysis.
 - Metrics can be time measurements, counters or gauges (other measurements)
 - Logs (AKA events) provide detail (audit info, alarms, exceptions, state changes, etc.).
 - Traces capture a serial or parallel execution sequence of an instrumented workload.

^{*} https://linkedin.github.io/school-of-sre/level101/metrics_and_monitoring/observability

25 February 2022 | Copyright © 2021 COVESA | 6

Sources of SDV Telemetry Data

- COVESA Debug, Log & Trace
- AUTOSAR Log & trace
- Linux perf
- Android trace, systrace & perfetto
- ECU run-time monitoring
- Linux proc & syslog
- Application & service logs
- Logging and tracing SDKs
- Telemetry collectors
- Silicon performance counters

To analyze these using centralized automation, a standard to identify the data format and associated context is needed.

Scope of SDV Telemetry Project and Touchpoints

- SDV use cases
- SDV telemetry project focusses on in-vehicle telemetry:
 - → instrumentation SDKs, collection services, fusion, ML & rules, persistence, and cloud connectivity/spooling
- SDV telemetry project is SDV-platform independent
- → Will need to select a reference FOSS platform
- SDV telemetry project is cloud-platform independent
- → Will need to select a reference analytics backend and frontend
- SDV telemetry project will coordinate with other industry organizations to ensure alignment
 - → SOAFEE, Eclipse SDV, LF CNCF, AGL, other?

25 February 2022 | Copyright ©2021 COVESA | 8

Questions Discussion Next Steps

Thank you!

OpenTelemetry?

