
Common Vehicle Interface Initiative
Session 2

Technology Stack Implementation
October 06 2021

CVII – Technology Stack

AGENDA

§ Overview of ongoing and planned tech-stack
components and projects

§ VSC: The potential for a common services
language and the vehicle-service-catalog

§ Why vehicles need an event-driven platform
(Bosch)

Technology Stack definition:

“Any and all (software) technologies
involved in the transfer and use of the
standard data model
and standard services description model”

Defined by:
- Implementation projects (e.g. open-source)
- Specifications.

Technology Stack
Overview and Introduction

October 06 2021

Technology Stack definition

“Any technologies (software) involved in the transfer and use of the
standard data model and standard services description model”

Defined by:

- Implementation (Community development projects)
- Specifications

Technology Stack

Web Protocols, HTTP/REST Protobuf, AVRO, NATS …
gRPC, GraphQL, Spark, Kafka, NiFi, …
SOME/IP, DDS, ARA:COM, D-Bus, … Time-series databases

Containers, cloud-deployment …

Tech Stack Projects

§ Specifications, such as W3C VISS Protocol specification
§ Implementations, e.g. servers/clients following W3C spec

§ VSS-Tools
§ Collection of tools of conversion from/to VSS
§ Code generation tools (more to do)
§ Franca, JSON, Protobuf, GraphQL,

support code for C programming API & Go-programming API
§ Android Automotive Vehicle API (Vehicle Properties) from VSS data server (code generation)

§ VSC-tools
§ Early implementation of service-to-code generation
§ Flexible, template-driven

§ Framework / larger combination projects
§ including Bosch IoT-event-analytics, vehicle-edge, KUKSA and related projects
§ AOS project
§ PoCs, demos, many internally/proprietary or under development

§ Company-internal tools, for VSS, Franca, not open-source
§ CCS architecture implementation

Vehicle Service Catalog
The case for a common services description language

October 06 2021

Why work on a
“common service description model”?
§ Possibly outlook for “common catalog(s)” of services, like we see for data
§ Capture all automotive systems (vehicle to cloud) needs in one IDL
§ Creation of a new, flexible and lightweight tool suite
§ Make the required bindings between technologies used in automotive

§ Bind ARXML to gRPC, Protobuf IDL to SOME/IP, FrancaIDL to OpenAPI, etc.
§ The Common Data Model, with VSS as its starting point, is clearly taking off

§ … but wherever there is data exchange, remote-procedure-calls are often requested
§ Move towards an industry-standard common language for describing behavior of any

subsystem
§ Bind ARXML to gRPC, Protobuf IDL to SOME/IP, FrancaIDL to OpenAPI, etc.

Consider Established Technologies

Interface/service descriptions

§ OpenAPI

§ AsyncAPI

§ Franca IDL

§ gRPC, …

Service invocation

§ Web protocols, gRPC, …

Established Auto technologies

§ SOME/IP, DDS, ARA:COM, …

Solution

§ Discuss preferences

§ Stay close to existing popular choices

§ Work in concert with VSS development

§ Use flexible, independent, intermediary
format (YAML based)

§ Develop better tools

§ Convert/migrate from legacy IDLs

§ Bind to established protocols/sw

“What about OpenAPI”
§ OpenAPI is optimized for RESTful HTTP interfaces

§ $NEW_IDL (and Franca IDL) is flexible for all types of interfaces

§ We aim to use a main IDL that is generic

§ OpenAPI should be part of the development ecosystem

§ (convert to/from existing interface descriptions,
leverage OpenAPI tools)

“What about AsyncAPI”
§ AsyncAPI describes publish/subscribe data exchange interfaces,

not generic method calls, etc.

§ $NEW_IDL (and Franca IDL) is flexible for all types of interfaces

§ We aim to use a main IDL that is generic

§ AsyncAPI should be part of the development ecosystem

§ (convert to/from existing interface descriptions, leverage OpenAPI tools)

§ Being pub/sub focused, it is rather a discussion for the VSS signal ecosystem

Planned approach
§ Define an automotive-tailored, generic YAML-based IDL description format

§ Stay close to established YAML-based formats (OpenAPI, AsyncAPI, …)

§ Stay semantically compatible with Franca IDL, and popular technologies

§ Learn from good Franca IDL design (IDL separate from deployment model)

§ Goal: Practical interoperability with VSS, covers data/services together

§ Seek alignment on which is the preferred description format for common service catalogs

§ Is it standard Franca IDL?

§ Is it YAML-based format?

§ Is it other, e.g. gRPC?

IVI
HVAC Service

Tools process preferred format
and enable interoperability
§ Example: Generate OpenAPI-based REST server from existing FrancaIDL

§ Automates error-prone protocol generation, integration, unit-test

hvac.fidl ${IDL_NAME}_convert hvac_openapi.yml

openapi-generator hvac_rest_serv.cpp

hvac_commonapi

hvac_rest_server

hvac_commonapi

SOME/IP

HVAC

SetTemperature(23.5)

vsc_convert

Generating in-vehicle code

• Conversion tool normalizes existing interface specs
to internal services model format

• Code generation tool creates automotive-targeted stub code

• Links to CommonAPI and other existing stacks

hvac.fidl hvac.yml

hvac.arxml

hvac_grpc.proto

vsc_generate

hvac_someip.cpp

hvac_other.cpp

hvac_commonapi.
cpp

(Output of internal
format is optional)

Generating non-vehicle code

vsc_converthvac.fidl

hvac.yml

hvac.arxml

hvac_grpc.proto

vsc_to_grpc

vsc_to_openapi

[Standard
gRPC tools]

[Standard
OpenAPI tools]

• Single IDL specification used as single source of truth that is fed into automated tool chains

• Normalized VSC specification can be converted to multiple other target IDL formats
• Standard target tooling used to create stub code for non-vehicle deployment

hvac.arxml

vsc_convert -i hvac.fidl -o hvac.yml

Where is Franca IDL in all this?

• Franca IDL could be the preferred input format

• Bidirectional translation between Franca IDL and Vehicle Service Catalog formats fully supported

l VSC could be seen as a YAML variant of Franca IDL with no loss of information

l VSC drives improvements to Franca IDL → next step in Franca evolution?

hvac.fidl

hvac.proto

${IDL_NAME}_convert -i hvac.arxml -o hvac.yml

${IDL_NAME}_convert -i hvac.proto -o hvac.yml

hvac.yml

Common Vehicle Interface Initiative (CVII)
Alignment recap
• CVII drives the automotive industry conversation around alignment of core standards and technologies

• CVII Tech Stack assumes data-model and services-model commonality have been or will be achieved in other tracks

• CVII Tech Stack selects/aligns on a reasonable number of protocols and technology bindings

Approach:

1) ? “Develop” a full-featured IDL with heavy influence from existing choices, Franca IDL in particular

2) Provide tools/bindings to core technologies with a simple and extensible approach

3) Create conversions to/from other choices where appropriate:
l To ensure smooth migration

l To ensure efficient leverage of existing ecosystems and implementations

4) Promote movement over time towards industry-standard IDL

5) Avoid everything-to-everything conversion approach, which simply continues fragmentation
Strategic and methodical avoidance of the XKCD standards effect

6) (*Google it if by any chance you need to)

Corporate adoption strategies

• Keep existing IDL specification library: minimize disruption

• Normalize library of definitions to VSC format
-> leverage conversion / generation tools

• Normalize a vendor-provided IDL spec to VSC format to
leverage same tool chain

• Use IDL spec to write automated tests that can validate
multiple service protocols (gRPC, SOME/IP, etc)

• Optionally, develop new specifications directly in VSC
format, gradually retiring original IDL format, participating
in the definition of industry-standard service catalog(s)

Common Vehicle Interface Initiative (CVII)
Alignment recap
• CVII drives the automotive industry conversation around alignment of core standards and technologies

• CVII Tech Stack assumes data-model and services-model commonality have been or will be achieved in other tracks

• CVII Tech Stack selects/aligns on a reasonable number of protocols and technology bindings

Approach:

1) ? “Develop” a full-featured IDL with heavy influence from existing choices, Franca IDL in particular

2) Provide tools/bindings to core technologies with a simple and extensible approach

3) Create conversions to/from other choices where appropriate:
l To ensure smooth migration

l To ensure efficient leverage of existing ecosystems and implementations

4) Promote movement over time towards industry-standard IDL

5) Avoid everything-to-everything conversion approach, which simply continues fragmentation
Strategic and methodical avoidance of the XKCD standards effect

6) (*Google it if by any chance you need to)

Why Yet Another Standard?

• Language and protocol agnostic
We need to try out different languages, protocols, and philosophies before we commit to
something we want to standardize

• Scale across 100s of interoperating services
Name spacing, interface imports, deployment models, and API vs. Implementation version
management are all needed in large-scale deployment

• Lightweight
CLI oriented. Five minutes to running tutorial. Small, componentized codebase

• Cross-IDL portability
We need to be able to import (and export) existing IDL formats into a generic, easy-to-parse
syntax while maintaining semantic equivalence

Market drivers to standardize services

• OEM drivers
• Use standardized APIs to decouple solutions from vendor-specific technologies
• Push for standard-compliance in RFIs & RFQs to ease side-by-side bid comparison
• Use open source, standardized tools, and joint industry effort to create a higher starting point, allowing programs to focus

resources on brand-differentiating experiences

• Tier 1 & 2 drivers
• Implement standardized API to minimize program customization and maintenance, migrating toward off-the-shelf offers to

OEMs
• Portal/Host value-added services from third parties

• Non-automotive drivers
• Manage mixed-asset fleets with minimum of system integration and maintenance
• Widen and accelerate market for new 3rd party automotive services

§ Are you on-board with the creation of the automotive-industry common services
description model?

§ Yes, No / Why not?

§ Preferred IDL for service catalog(s) in - VSC YAML or FrancaIDL?

§ Which input formats to support for carefully selected* interoperability

§ Which output formats to support

§ Which target protocols do we need to generate code for?

§ * (avoid everything-to-everything conversion strategy. Fight fragmentation)

Call to action!
Join to resolve open questions:

NEXT: Why vehicles need
an event based system?
(Bosch)

AFTER THE BREAK:
CVII Session 3

Alignment and Adoption
SOTA and Insurance

