
Bring VSS to life

Data Model, Persistence
&
Real Time Sync

{
 "_id" : ObjectId("5ad88534e3632e1a35a58d00"),
 "name" : {
 "first" : "John",
 "last" : "Doe" },
 "address" : [
 { "location" : "work",
 "address" : {
 "street" : "16 Hatfields",
 "city" : "London",
 "postal_code" : "SE1 8DJ"},
 "geo" : { "type" : "Point", "coord" : [
 -0.109081, 51.5065752]}},
+ {...}
],
 "dob" : ISODate("1977-04-01T05:00:00Z"),
 "retirement_fund" : NumberDecimal("1292815.75")
}

Documents Are Objects
Related data contained in a single, rich document

Document Model or Object
Oriented Database

- Flexible
- Scalable
- Always On
- Freedom to run

anywhere
- …

“Realm” - Embedded OSS Database
Offline first paradigm

• Usage: 100k+ developers; 65% of Fortune
1000; 2B+ app installs

• 47k+ Github stars

• Apache 2.0 license

• Active community involvement

Easy for developers
• Designed and built for resource constrained

environments

• Just objects, with native code paradigms

• Live objects update automatically

• The class definitions are the database schema

Development started by two

former Nokia engineers

Official announcement of

Realm mobile platform

2010

Acquisition by MongoDB

2016 >2019

��
Device Sync integration into Atlas

>2022

Vehicle Signal Specification

Official VSS Documentation:
https://covesa.github.io/vehicle_signal_specification/

VSS Tree

https://covesa.github.io/vehicle_signal_specification/

Is a Tree of Objects

Device (Vehicle) Class

Relationships / References

Component A Class

Component B Class

Objects are Instances of Classes

export class Device {

 public _id = new ObjectId;
 public name = "";
 public owner_id = "";
 public isOn = false;
 public flexibleData?: Realm.Dictionary<string>;
 public components: Array<Component> = [];

 public static schema = {
 name: 'Device',
 primaryKey: '_id',
 properties: {
 _id: 'objectId',
 name: 'string',
 owner_id: 'string',
 isOn: 'bool',
 components: 'Component[]',
 flexibleData: 'string{}'
 }
 }
}

export class Component {

 public _id = new ObjectId;
 public name = "";
 public owner_id = "";

 public static schema = {
 name: 'Component',
 primaryKey: '_id',
 properties: {
 _id: 'objectId',
 name: 'string?',
 owner_id: 'string'
 }
 }
}

Keep the Object Tree in Sync

Physical Vehicle Cloud

Web

Mobile

Close Door

Sync Features
● Realtime
● Efficient

○ Compressed
○ Delta Only

● Conflict Resolution
● Offline First
● Dynamic Filtering

GraphQL

Device Sync

Device Sync

Plug n’ Play Sync

Device-Sync
Backend

MongoDB Atlas
Database

Onboard

Cloud
Backend

Data Flow Data Objects

All synced objects
for all vehicles in

distinct collections

All synced objects for
a specific vehicle

Dynamic Filter

Plug n’ Play Sync

Device-Sync
Backend

MongoDB Atlas
Database

Onboard

Cloud
Backend

Data Flow Data Objects

All synced objects
for all vehicles in

distinct collections

All synced objects for
a specific vehicle

Plug n’ Play Sync

Apps with
Realm SDK(s)

Sync Service

Device-Sync
Backend

MongoDB Atlas
Database

Domain / app specific
objects

Onboard

Cloud
Backend

App
A

Data Flow Data Objects

All synced objects
for all vehicles in

distinct collections

All synced objects for
a specific vehicle

App
A

Dynamic Filter

Plug n’ Play Sync

Apps with
Realm SDK(s)

Device-Sync
Backend

MongoDB Atlas
Database

Domain / app specific
objects

All synced objects for
a specific vehicle

All synced objects
for all vehicles in

distinct collections

Onboard

Cloud
Backend

App
B

App
C

App
AApp

A

App
B

App
C

Data Flow

Sync Service

Data Objects

Dynamic Filter(s)

That was just a glimpse

Curious? -> Reach out

felix@mongodb.com

