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How Not to Share Virtualize Devices
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• Don’t Replace an existing user space library 
with a hypervisor specific one

• Typical attempts

• libdrm.so

• libteec.so (trustzone access)

• The kernel is bypassed, therefore

• User space resources need to be managed in 
hypervisor

• App lifecycle management leaks into 
hypervisor

Better: Implement drivers using driver 
frameworks provided by operating system

1. Do Not Replace User Space Libraries
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• Don’t Re-implement an operating system API

• Same operating system handle reference as 
original device

• IOCTLs

• Read/Write Functions

• Typical approach

• Drm/kms

• Fbdev

• GPIOfs

• Complete implementations of “shim” layer 
end up being really bad re-implementations of 
existing subsystems

Better: Implement drivers using driver 
frameworks provided by operating system

2. Do Not Replicate Kernel Subsystem APIs
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• Don’t Take existing device driver and cut it in half
• Leave upper half in guest kernel
• Move lower half into hypervisor

• Can be very efficient
• Possibly low overhead
• Looks very simple
• Many drivers have mid-layers where a cut is 

easy
• Typical approach

• GPU drivers
• Most mid-layers are very leaky
• Modification of existing driver cuts off update 

paths
• Very hardware specific
• The devil in the details, usually takes multiple 

times longer than planned

Better: Find good functional abstractions and 
implemented SoC agnostic drivers

3. Do Not Split a device driver
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Problem

• Guest needs to allocate “special” memory

• Cache coherent

• Device accessible (<4gig)

Naïve solution

• Remote memory allocation

• Bookkeeping is distributed

• Memory owner might have different lifecycle 
than Memory manager

• To avoid memory starvation

• Pooled allocations -> memory waste

Better: Import guest buffers, teach guest to 
manage buffers himself, use iommus

4. Avoid Host side allocations
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Virtualize device functions – not devices!

How VIRTIO avoids those fallacies
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Client VM Memory

BufferVQ SG list

Linux/Android user space

Linux kernel space

Device Guest (Client VM)

Kernel Subsystem

virtio_<transport>

virtio-<device>

Plumbing

Device 

Virtualization 

Framework

VQ=virt-queue

SG=Scatter Gather

Bulk data transport via DMA-like memory model

• Buffer allocations handled by „Driver“ part (client)

• Direct R/W access to allocated buffers in the „Device“ part (server)

Metadata transport via virt-queues (ring buffers, asynchronous pipeline)

Virtualized device Architecture with VIRTIO

Ref
Ref

• Drivers in 

Kernel

• Uses existing 

subsystems

• Only abstract 

device functions

• All allocations in 

guest memory
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System Management Architecture
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Classical Design (Example)
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The MCU controls the systems state, using its own state machine
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Android Design Assumption (example)
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The MCU is demoted, Android is the new master of the state

Android
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Example system (Android+Linux)
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Example system (Android+Linux)
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Central decision point in hypervisor, but guests “believe” they are in charge 
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