
Integrating the driver experience

public

Hypervisor Return of experience Session
Genivi AMM Munich 2019

2www.opensynergy.com | public

How Not to Share Virtualize Devices

3www.opensynergy.com | public

• Don’t Replace an existing user space library
with a hypervisor specific one

• Typical attempts

• libdrm.so

• libteec.so (trustzone access)

• The kernel is bypassed, therefore

• User space resources need to be managed in
hypervisor

• App lifecycle management leaks into
hypervisor

Better: Implement drivers using driver
frameworks provided by operating system

1. Do Not Replace User Space Libraries

Hypervisor

SoC

Kernel

Lib.so

A
p

p

A
p

p

A
p

p

4www.opensynergy.com | public

• Don’t Re-implement an operating system API

• Same operating system handle reference as
original device

• IOCTLs

• Read/Write Functions

• Typical approach

• Drm/kms

• Fbdev

• GPIOfs

• Complete implementations of “shim” layer
end up being really bad re-implementations of
existing subsystems

Better: Implement drivers using driver
frameworks provided by operating system

2. Do Not Replicate Kernel Subsystem APIs

Hypervisor

SoC

Kernel

A
p

p

A
p

p

A
p

p

API

5www.opensynergy.com | public

• Don’t Take existing device driver and cut it in half
• Leave upper half in guest kernel
• Move lower half into hypervisor

• Can be very efficient
• Possibly low overhead
• Looks very simple
• Many drivers have mid-layers where a cut is

easy
• Typical approach

• GPU drivers
• Most mid-layers are very leaky
• Modification of existing driver cuts off update

paths
• Very hardware specific
• The devil in the details, usually takes multiple

times longer than planned

Better: Find good functional abstractions and
implemented SoC agnostic drivers

3. Do Not Split a device driver

Hypervisor

SoC

Kernel

Driver

Frontend

Subsystem

Driver

Backend

6www.opensynergy.com | public

Problem

• Guest needs to allocate “special” memory

• Cache coherent

• Device accessible (<4gig)

Naïve solution

• Remote memory allocation

• Bookkeeping is distributed

• Memory owner might have different lifecycle
than Memory manager

• To avoid memory starvation

• Pooled allocations -> memory waste

Better: Import guest buffers, teach guest to
manage buffers himself, use iommus

4. Avoid Host side allocations

Hypervisor

SoC

Guest

Driver

Backend

Shared Memory

alloc

req

alloc

resp

7www.opensynergy.com | public

Virtualize device functions – not devices!

How VIRTIO avoids those fallacies

8www.opensynergy.com | public

Client VM Memory

BufferVQ SG list

Linux/Android user space

Linux kernel space

Device Guest (Client VM)

Kernel Subsystem

virtio_<transport>

virtio-<device>

Plumbing

Device

Virtualization

Framework

VQ=virt-queue

SG=Scatter Gather

Bulk data transport via DMA-like memory model

• Buffer allocations handled by „Driver“ part (client)

• Direct R/W access to allocated buffers in the „Device“ part (server)

Metadata transport via virt-queues (ring buffers, asynchronous pipeline)

Virtualized device Architecture with VIRTIO

Ref
Ref

• Drivers in

Kernel

• Uses existing

subsystems

• Only abstract

device functions

• All allocations in

guest memory

9www.opensynergy.com | public

System Management Architecture

10www.opensynergy.com | public

Classical Design (Example)

SoC

MCU

PMIC

The MCU controls the systems state, using its own state machine

11www.opensynergy.com | public

Android Design Assumption (example)

SoC

MCU

PMIC

The MCU is demoted, Android is the new master of the state

Android

12www.opensynergy.com | public

Example system (Android+Linux)

SoC

MCU

PMIC

Who is the new master?

Android

VM

Hypervisor

Linux

VM

13www.opensynergy.com | public

Example system (Android+Linux)

SoC

MCU

PMIC

Central decision point in hypervisor, but guests “believe” they are in charge

Android

VM

Hypervisor

Linux

VM

PM

OpenSynergy, COQOS Hypervisor SDK, Blue SDK, IrDA SDK, Voice SDK, Qonformat, and other OpenSynergy products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of OpenSynergy
GmbH in Germany and in other countries around the world. All other product and service names in this document are the trademarks of their respective companies. These materials are subject to change without notice. These materials are
provided by OpenSynergy GmbH for informational purposes only, without representation or warranty of any kind and OpenSynergy GmbH shall not be liable for errors or omissions with respect to the materials. © OpenSynergy GmbH 2018

Headquarter

Berlin

OpenSynergy GmbH

Rotherstraße 20
D-10245 Berlin
Germany
Phone +49 30 / 6098 5400

E-Mail info@opensynergy.com
Web www.opensynergy.com

Further Locations

California

OpenSynergy, Inc. (USA)

501 W. Broadway, Suite
832
San Diego, California 92101
USA
Phone +1 619 962 1725

Shanghai

OpenSynergy GmbH

2608, Enterprise Square
228 Mei Yuan Road
Shanghai
P.R. of China
Phone: +86 132 6277 7738

Utah

OpenSynergy, Inc. (USA)

765 East 340 South
Suite 106
American Fork, Utah 84003
USA

Munich

OpenSynergy GmbH

Starnberger Str. 22
D-82131 Gauting / Munich
Germany
Phone: +49 89 / 2153 9073

