Interoperability with AUTOSAR

Establishing interoperability of GENIVI CommonAPI-based systems and Adaptive
AUTOSAR systems by model-to-model transformations

Torsten GORG (itemis AG)

GENIVI Technical Summit, 12 November 2019

GENIVI

Agenda

Introduction / Motivation
Conceptual mapping
The FARACON tool
Q&A

W o=

o.:..:.
l"l
GENIVI

INTRODUCTION / MOTIVATION

o:...:.
l.'l
GENIVI

Introduction

SOA (service oriented architecture) is a clear SW design trend in

automotive.

SOA in Automotive can be represented in 3 layers

Interface Description Language
(IDL)

Middleware

Transport protocol

=
=

Define the contract between services and clients

Generates code (from IDL) and provides libraries
for SOA services and clients to communicate
Abstracts the underlying transport protocol

Provide rules to transport the messages
(message identification, serialization, ...)

GENIVI® ¢

Problem statement

GENIVI study demonstrated that 2 SOA technologies are under the

Automotive spotlights today.

« COMMONAPI + FIDL : strongly adopted in infotainment domain
« ARA:COM : AUTOSAR emerging technology

= How to ensure compatibility ?

iidi .
GE:\'IIVI' AUT@SAR
IDL ARXML
Middleware ARA::COM

[X]
SOME/IP !
GENIVI® 5

Transport protocol

Solution approach

Two major ideas:

1. Mapping of communication concepts of the IDL models
a. Choose one IDL as reference and translate it

=3 i. Either FRANCA IDL (better human readability) or ARXML
0o ii. Goalis the 2 ways translation
an b. IDL brings a set of communication concepts :

i. Message types : Event, RPC calls, ...
ii. Data types : unitary data (UInt8, Float, ...) and composed data (Struct, ...)

2. Transport the information in the same format

(a. Uniquely identify the messages
“000“ b. Serialize the data in the same order and the same encoding .
= SOME/IP is the solution to align transport format. .-',-‘,-.

GENIVI® ¢

CONCEPTUAL MAPPING

o:...:.
l.'l
GENIVI

Model transformation tooling

: Franca
AUTOSAR Adaptive . .
model (arxml) transformation interfaces model
G (Franca IDL)
code generator code generator
(AUTOSAR tooling) (CommonAPI C++)

Linux-based or
AUTOSAR-based data exchange via car

target system network (SOME/IP)

Real-time OS
target system

Major requirement: Transform models such that the resulting i

code on both sides will be compatible wrt. its IPC properties. !
GENIVI® s

Definition of mapping

e AUTOSAR metamodel defined by Artop metamodel (artop.org)
e Franca IDL metamodel defined by Franca Eclipse project

e mapping between both domains is defined
o each language concept is implemented by a metaclass
o mapping is defined on metaclasses and their attributes

o e.g., Servicelnterface < FInterface, ClientServerOperation < FMethod

e the metamodel level mapping is the starting point for tool
Implementation

e detailed mapping table (GoogleDocs format) i:..-..i
0
ISEI\'IIVI® 9

Detailed mapping table (aka specification)

Definition of Mapping Franca/AUTOSAR

This is the specification for the transformation AUTOSAR Adaptive <=> Franca.
We disregard all concepts of AUTOSAR which purely belong to AUTOSAR Classic

4

Group = Franca concept or one of = Franca = Franca = Franca = AUTOSAR concept or = Artop = Artop = Detail level (IDL, =
(IGNORE | ERROR | metamodel metamodel metamodel one of (IGNORE | del del Ser
EMULATE) export ID classifier attribute ERROR | EMULATE) classifier attribute CommonAPI,
(see A10) (see A10) SOMEIP)
structure version of typpe collection IDL1190 Class FVersion version see IDL1490 see IDL1490 see IDL1490 IDL
FTypeCollection (optional)
structure list of types (all with visibility IDL1200 Class List<FType>types package contents ARPackage List<Packageabl IDL
public) FTypeCollection eElement>
getElements()
structure list of constants (all with IDL1210 Class List<FConstantDef asked MBR... IDL
visibility public) FTypeCollection > constants
structure interface definition IDL1220 Class Finterface n/a interface definition Servicelnterface IDL
structure list of attributes IDL1230 Class Finterface List<FAttribute> fields of a service Servicelnterface List<Field>
attributes getFields()
structure list of methods IDL1240 Class Finterface List<FMethod> client server operations of a List<ClientServer IDL
methods service Operations> on
the service
Servicelnterface interface
structure list of broadcasts IDL1250 Class Finterface List<FBroadcast> events of a service List<VariableDat IDL
broadcasts aPrototype>
Servicelnterface getEvents()
structure optional interface contract IDL1260 Class Finterface FContract contract IGNORE n/a n/a n/a
(optional)
structure inheritance for interfaces IDL1270 Class Finterface Finterface base EMULATE n/a n/a IDL
(optional)
structure manages-relation for interfaces 1DL1280 Class Finterface List<FInterface> ERROR n/a n/a IDL
managedinterfaces
comm primitives method IDL1290 Class FMethod n/a operation ClientServerOper n/a IDL
ation
comm primitives fire-and-forget flag IDL1300 Class FMethod EBoolean fire-and-forget flag ClientServerOper boolean
fireAndForget ation isSetFireAndFor
(optional) get()

e read-only link to document on GoogleDocs: mapping table

GENIVI® ©

https://docs.google.com/spreadsheets/d/1O7gMTK1oaDHi43G2B6-Es5H4okzcjvmeRyW7sUPnAaQ/edit?usp=sharing

Main concept mappings

e interfaces, type collections

e namespaces, packages

e methods, broadcasts, attributes

e primitive types (booleans, integers, strings, ...)

e struct/union types, array types (implicit/explicit), map types

e annotations/structured comments

See detailed mapping table for a complete list. iiil
GENIVI®

Guidelines for resolving mapping problems

e objective: generated code is compatible

e principal reasons for incompatibilities:
a. no corresponding concept on metamodel level (e.g., inheritance)

b. generated code shows different behavior (e.g., error handling)
e options for resolving incompatibilities:

a. check if concept can be “emulated” (e.g., flattening inheritance)

b. check if code generation can be fixed (either by adapting the code
generator or indirectly by changing the mapping)

c. Iif all else fails: make user aware that concept cannot be mapped ;
(e.g., by attaching warnings/errors from validation) ii'ii
GENIVI® ©

Main concept emulation mapping

GENIVI AUTOSAR

Interface version |:> New AUTOSAR package is created for each given version of
the interface.
i > Flattening of interface hierarchy, i.e. the content of the parent
Interface hlerarChy @ interface is repeated in the child interface.
H > Flattening of type hierarchy, i.e. the content of the parent type is
Type hlerarChy @ repeated in the child type.
Interface local types and |:> An AUTOSAR package for the interface is created that contains
constants all local types and constants.
@ <:| AUTOSAR pac!(age _ Map single AUTOSAR file to multiple Franca files.
hierarchies in single file
. . . o:..:.o
See detailed mapping table for a complete list. |.i|

GENIVI®

Main concept mapping issues

GENIVI AUTOSAR

Selective Broadcast :> Allows to send broadcast to dedicated clients but against SOA
paradigm where only the middleware knows the registered clients.
Polvmorphic structures :> CommonAPI uses a tagged-value serialization with hash value
y P for the tag. But not defined in SOME/IP specification.
Introduced in AUTOSAR Adaptive 18.10. Field is present if tag is
x <:| Optiona| fields present in TLV serialization format. CommonAPI serializes structs
with LV (length presence and width is configurable in FDEPL).
< : Used to define the content of an unitary data (unit, max value...)
x Data semantic Not defined in FIDL.
Application errors are not transported on the same way. AUTOSAR
Method errors W Method errors uses SOME/IP error code to transport applicative errors.

CommonAPI generated code defines a mandatory error status.

See detailed mapping table for a complete list. iiil
GENIVI®

THE FARACON TOOL

o.....:.
l.'l
GENIVI

itemis

Connecting GENIVI'
and AUTOSAR

itemis

European R-CAR Consortium Forum, Diisseldorf,
March 2019

GENIVI’

Development cooperation

e cooperation partners:
o Renault
o Continental
o Visteon
e ensure to meet the really existing needs

e feedback from testing with real world system

ode

....

l...
GENIVI® 7

The FARACON tool

e transform Franca IDL models to Artop models and vice versa
e scope for Artop models is limited to AUTOSAR adaptive
e supported versions
o Franca 0.13.1
o Artop 4.12 (AUTOSAR Adaptive Platform R19-03)
e no full roundtrip (information loss due to mapping limitations)

e planned: mapping of deployment data for SOME/IP

-;
1 /\/\/\
' (X J
- | @ FNT. lig!
m AUTOSAR Tool Platform User Group ®
, GENIVI @

FARACON tool architecture

FARACON

Artop

Eclipse Sphinx

Eclipse Modeling Framework (EMF)

Eclipse (Oxygen)

Franca

Java

based on the Eclipse ecosystem

usable both from Eclipse IDE
and command-line

EMF as a common metamodel

transformations implemented
using Xtend language

additional tools/frameworks:
maven/Tycho, JUnit

Artop is available only to

AUTOSAR members ...
"
GENIVI® '

FARACON licensing and development

. FARACON iS Open—source ch or jump Pull requests Issues Marketplace Explore

. . . GENIVI/ franca_ara_tools O@unwatch~ 8 kstar 6 YFork 2
(Eclipse Public License v2 i Omm® riame® Bre® St Gty G
Translation between Franca Interface Description Language and AUTOSAR XML interface description language Edit
e FARACON development is
(D 186 commits 7 31 branches © 2 releases 42 6 contributors & EPL-2.0
.

funded by GENIVI Alliance

MLanghammer Releng: update version to 0.8.0 Latest commit abfdod4 on 13 Aug

last month

. "
o p u b | IC re po sitorv: — Releng: upate version 10050
y - B plugins Releng: update version to 0.8.0 Jast month

h tt . // -th b /G E N IV I /f t I I products/org.genivi.faracon.cli.product Releng: update version to 0.8.0 last month
ps.//gItnub.com ranca_ara_lools . pTR——

8 tests/org.genivi.faracon.tests Releng: update version to 0.8.0 last month

. B .gitignore Set up initial folder structure. 11 months ago

e Artop plugins have to be f -
[E) README.md README: Refer to documentation in Wiki 2 months ago

downloaded from artop.org, 5
AUTOSAR membershi P Franca/ARA Toolsuite
n e e d e d ! Translation between Franca Interface Description Lanquage (IDL) and AUTOSAR Adaptive models.

GENIVI®

https://github.com/GENIVI/franca_ara_tools

FARACON Release 0.9

e already available

e features:
o nearly 100% of transformation logic (both directions)
o |DE integration and command-line tool

e see mapping table on GoogleDocs for full details

e
o...:o
l"l
GENIVI® 2

https://docs.google.com/spreadsheets/d/1O7gMTK1oaDHi43G2B6-Es5H4okzcjvmeRyW7sUPnAaQ/edit?usp=sharing

FARACON Release 1.0

e available mid of November 2019
e additional features:

o prototypical mapping for SOME/IP deployment data
(i.e., to support fixed-sized arrays)

o configurable/customizable AUTOSAR primitive types

e plus bugfixes from beta testing feedback

o:'..o
o0
l"l
GENIVI® 22

Q&A

o...::.
l.'l
GENIVI

