
Interoperability with AUTOSAR
Establishing interoperability of GENIVI CommonAPI-based systems and Adaptive
AUTOSAR systems by model-to-model transformations

Torsten GÖRG (itemis AG)

GENIVI Technical Summit, 12 November 2019

2

1. Introduction / Motivation

2. Conceptual mapping

3. The FARACON tool

4. Q&A

Agenda

INTRODUCTION / MOTIVATION

4

Introduction

SOA (service oriented architecture) is a clear SW design trend in
automotive.
SOA in Automotive can be represented in 3 layers

Interface Description Language
(IDL)

Middleware

Transport protocol

Define the contract between services and clients

Generates code (from IDL) and provides libraries
for SOA services and clients to communicate
Abstracts the underlying transport protocol

Provide rules to transport the messages
(message identification, serialization, …)

5

Problem statement
GENIVI study demonstrated that 2 SOA technologies are under the
Automotive spotlights today.

• COMMONAPI + FIDL : strongly adopted in infotainment domain
• ARA::COM : AUTOSAR emerging technology

⇒ How to ensure compatibility ?

IDL

Middleware

Transport protocol

FRANCA IDL

COMMONAPI

SOME/IP

ARXML

ARA::COM

SOME/IP

6

Solution approach
Two major ideas:

1. Mapping of communication concepts of the IDL models
a. Choose one IDL as reference and translate it

i. Either FRANCA IDL (better human readability) or ARXML
ii. Goal is the 2 ways translation

b. IDL brings a set of communication concepts :
i. Message types : Event, RPC calls, …
ii. Data types : unitary data (UInt8, Float, …) and composed data (Struct, …)

2. Transport the information in the same format
a. Uniquely identify the messages
b. Serialize the data in the same order and the same encoding

⇒ SOME/IP is the solution to align transport format.

CONCEPTUAL MAPPING

8

Model transformation tooling

Major requirement: Transform models such that the resulting
code on both sides will be compatible wrt. its IPC properties.

Franca
interfaces model

(Franca IDL)

AUTOSAR Adaptive
model (arxml) transformation

Linux-based or
Real-time OS
target system

AUTOSAR-based
target system

data exchange via car
network (SOME/IP)

code generator
(CommonAPI C++)

code generator
(AUTOSAR tooling)

9

Definition of mapping

● AUTOSAR metamodel defined by Artop metamodel (artop.org)

● Franca IDL metamodel defined by Franca Eclipse project

● mapping between both domains is defined
○ each language concept is implemented by a metaclass

○ mapping is defined on metaclasses and their attributes

○ e.g., ServiceInterface ⇔ FInterface, ClientServerOperation ⇔ FMethod

● the metamodel level mapping is the starting point for tool
implementation

● detailed mapping table (GoogleDocs format)

10

Detailed mapping table (aka specification)

● read-only link to document on GoogleDocs: mapping table

https://docs.google.com/spreadsheets/d/1O7gMTK1oaDHi43G2B6-Es5H4okzcjvmeRyW7sUPnAaQ/edit?usp=sharing

11

Main concept mappings

See detailed mapping table for a complete list.

● interfaces, type collections

● namespaces, packages

● methods, broadcasts, attributes

● primitive types (booleans, integers, strings, …)

● struct/union types, array types (implicit/explicit), map types

● annotations/structured comments

12

Guidelines for resolving mapping problems

● objective: generated code is compatible

● principal reasons for incompatibilities:
a. no corresponding concept on metamodel level (e.g., inheritance)

b. generated code shows different behavior (e.g., error handling)

● options for resolving incompatibilities:
a. check if concept can be “emulated” (e.g., flattening inheritance)

b. check if code generation can be fixed (either by adapting the code
generator or indirectly by changing the mapping)

c. if all else fails: make user aware that concept cannot be mapped
(e.g., by attaching warnings/errors from validation)

13

Main concept emulation mapping

See detailed mapping table for a complete list.

Interface version New AUTOSAR package is created for each given version of
the interface.

Interface hierarchy Flattening of interface hierarchy, i.e. the content of the parent
interface is repeated in the child interface.

Type hierarchy Flattening of type hierarchy, i.e. the content of the parent type is
repeated in the child type.

Interface local types and
constants

An AUTOSAR package for the interface is created that contains
all local types and constants.

AUTOSAR package
hierarchies in single file

Map single AUTOSAR file to multiple Franca files.

14

Main concept mapping issues

See detailed mapping table for a complete list.

Selective Broadcast

Polymorphic structures

Optional fields

Data semantic

Method errors Method errors

Allows to send broadcast to dedicated clients but against SOA
paradigm where only the middleware knows the registered clients.

CommonAPI uses a tagged-value serialization with hash value
for the tag. But not defined in SOME/IP specification.

Introduced in AUTOSAR Adaptive 18.10. Field is present if tag is
present in TLV serialization format. CommonAPI serializes structs
with LV (length presence and width is configurable in FDEPL).

Used to define the content of an unitary data (unit, max value…)
Not defined in FIDL.

Application errors are not transported on the same way. AUTOSAR
uses SOME/IP error code to transport applicative errors.
CommonAPI generated code defines a mandatory error status.

THE FARACON TOOL

Technology Demonstrators in 2019/Q1

CES, Las Vegas, January 2019 European R-CAR Consortium Forum, Düsseldorf,
March 2019

17

Development cooperation

● cooperation partners:

○ Renault

○ Continental

○ Visteon

● ensure to meet the really existing needs

● feedback from testing with real world system

18

The FARACON tool

● transform Franca IDL models to Artop models and vice versa

● scope for Artop models is limited to AUTOSAR adaptive

● supported versions

○ Franca 0.13.1

○ Artop 4.12 (AUTOSAR Adaptive Platform R19-03)

● no full roundtrip (information loss due to mapping limitations)

● planned: mapping of deployment data for SOME/IP

19

FARACON tool architecture

● based on the Eclipse ecosystem

● usable both from Eclipse IDE
and command-line

● EMF as a common metamodel

● transformations implemented
using Xtend language

● additional tools/frameworks:
maven/Tycho, JUnit

● Artop is available only to
AUTOSAR members

Eclipse (Oxygen)

Java

Eclipse Modeling Framework (EMF)

Eclipse Sphinx

Artop
Franca

FARACON

20

FARACON licensing and development

● FARACON is open-source
(Eclipse Public License v2)

● FARACON development is
funded by GENIVI Alliance

● public repository:
https://github.com/GENIVI/franca_ara_tools

● Artop plugins have to be
downloaded from artop.org,
AUTOSAR membership
needed!

https://github.com/GENIVI/franca_ara_tools

21

FARACON Release 0.9

● already available

● features:

○ nearly 100% of transformation logic (both directions)

○ IDE integration and command-line tool

● see mapping table on GoogleDocs for full details

https://docs.google.com/spreadsheets/d/1O7gMTK1oaDHi43G2B6-Es5H4okzcjvmeRyW7sUPnAaQ/edit?usp=sharing

22

FARACON Release 1.0

● available mid of November 2019

● additional features:

○ prototypical mapping for SOME/IP deployment data
(i.e., to support fixed-sized arrays)

○ configurable/customizable AUTOSAR primitive types

● plus bugfixes from beta testing feedback

Q&A

