
Security Team
May 9, 2017 | Overview

Stacy Janes
Security Team Lead, GENIVI Alliance

Security Training

Security Education

3 | Month xx, 2017 | Copyright © GENIVI Alliance 2017

Existing
vulnerabilities

How to hack
a binary

Secure
Coding

Guidelines

Static Code
Analysis

See what happens when coding errors get into the wild

Some basics of log and trace, ELF headers, binary analysis

Learn some of the concepts of writing secure products

Learn the benefits of static analysis tools.

Security Education

4 | Month xx, 2017 | Copyright © GENIVI Alliance 2017

How to review
3rd party

software

Software
Security

technologies

Hardware
Security

technologies

Threat models

What software based security technologies

exist and what they are designed to do.

Hardware security. What does it do and why to use it.

Want to create your own attack trees?

Here’s how we do it.

How to mitigate the risk of 3rd party software.

Security Training – Day Schedule

5

9:30-10:00 Existing Vulnerabilities (Ben)

10:00-10:30 How to Hack a Binary (Jeremiah)

10:30-11:00 break

11:00-11:30 Secure Coding Guidelines (Assaf)

11:30-12:00 Static Code Analysis (Sergiu)

12:00-12:30 How to Review 3rd Party Software

(Sergiu, Ted)

12:30-14:00 lunch

14:00-14:30 Software Security (Stacy, Assaf)

14:30-15:00 Hardware Security (Erik)

15:00-15:30 Threat Models (Ben)

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries. Copyright © GENIVI Alliance 2016.

Existing Vulnerabilites
May 2017 | A Look at the Recent History of Vulnerabilities in Linux (and how a little

typo can make everything go wrong)

Ben Gardiner
Principal Security Engineer, Irdeto

Agenda

7

• 20 minutes:

• Exposition of vulnerabilities in Linux (the kernel or the

ecosystem) from recent history

• Non-exhaustive (we only have 20 minutes)

• Focus on ‘what went wrong?’ and ‘what was the impact?’

Heartbleed

8

• OpenSSL-served sockets leak data from freed memory to

unauthenticated clients.

• 2012-2014

Heartbleed (impacts)

9

• Remote attackers can siphon nearly anything from

memory that wasn’t sanitized before being freed

– e.g. private keys

– passwords

Heartbleed (fix, abridged)

10

/* Read type and payload length first */
hbtype = *p++;
n2s(p, payload);
+ if (1 + 2 + payload + 16 > s->s3->rrec.length)
+ return 0; /* silently discard per RFC 6520 sec. 4 */
pl = p;
…
/* Enter response type, length and copy payload */
*bp++ = TLS1_HB_RESPONSE;
s2n(payload, bp);
memcpy(bp, pl, payload);

theregister/…/heartbleed_explained/

Heartbleed (conclusion)

11

• Assume input data is attacker-controlled / Don’t trust input

data.

Shellshock

12

• Privilege Escalation enabling attacker to run code in the

context of the shell script whose input they control

• 1989-2014

Shellshock (impacts)

13

• CGI webserver scripts

• DHCP Clients

• OpenSSH (ForceCommand)

• Also spurred a slew of other bash-bugs (CVEs-2014-

6271 6277 6278 7169 7186 7186 7187)

Shellshock (sample exploits)

14

Shellshock (conclusion)

15

• Parsing is hard / Fuzz your own parsers and/or implement

the parsing code in memory safe, provably correct ways.

ImageTragick

16

• Parser bugs in ImageMagick can lead to Remote Code

Execution (RCE) – because ImageMagick is used by lots

of websites to proces user-submitted graphics

ImageTragick (impacts)

17

• Forums Posts and Profiles

• Social Media Sites Uploads and Profiles

• Album Art on Media Players (e.g Headunits)

ImageTragick (sample exploit)

18

exploit.mvg:
push graphic-context viewbox 0 0 640 480 fill
'url(https://example.com/image.jpg";|ls "-la)'
pop graphic-context

ImageTragick (sample exploit 2)

19

ImageTragick (conclusions)

20

• Parsing is (still) hard / Really focus on those parsers

DirtyCOW

21

• A race in the Copy-On-Write logic of the Kernel

• The winner gets to write to pages (they might not

otherwise have write access to)

• From 2007 to 2016

DirtyCOW (impacts)

22

• Write to file nomally unmodifable by the current user

• Applied: Escalate Privileges to root

– E.g. root (Android) phones

– Break out of containers/sandboxes

– Many many more

DirtyCOW (fix, summary)

23

“To fix it, we introduce a new internal FOLL_COW
flag to mark the "yes, we already did a COW"
rather than play racy games with FOLL_WRITE that
is very fundamental, and then use the pte dirty
flag to validate that the FOLL_COW flag is still
valid.” -- Linus

kernel.git/…/19be0eaffa3ac7d8eb6784ad9bdbc7d67ed8e619

DirtyCOW (exploit, summary)

24

void *madviseThread(void *arg)
{
int i,c=0; for(i=0;i<100000000;i++)
c+=madvise(map,100,MADV_DONTNEED);

}

void *procselfmemThread(void *arg)
{
int f=open("/proc/self/mem",O_RDWR);
int i,c=0; for(i=0;i<100000000;i++) {
lseek(f,(uintptr_t) map,SEEK_SET);
c+=write(f,str,strlen(str));

}
}

int main(int argc,char *argv[])
{
map=mmap(NULL,st.st_size,PROT_READ,MAP_PRIVATE,f,0);
pthread_create(&pth1,NULL,madviseThread,argv[1]);
pthread_create(&pth2,NULL,procselfmemThread,argv[2]);

...

from PoC Exploit

DirtyCOW (conclusion)

25

• Concurrency is hard / Use lock checkers and/or designs

that are provably correct

• But Also: Assume that the gatekeeper can be

compromised / Design your defenses against root.

Conclusions

26

• Treat input as attacker-controlled

• A stray pointer might not crash your program -- it might

give away secret info instead

• Parsers are hard.

• No, really: parsers are hard. Fuzz them.

• Concurrency can kill;

• But, more importantly: don’t trust your access control

gatekeepers (including the kernel).

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries. Copyright © GENIVI Alliance 2017.

Hacking Linux Binaries
May 2017 | Using ELF headers to make binaries do weird things

 Jeremiah C. Foster
 Open Source Technologist Pelagicore
 Community Manager GENIVI

2

●
●

■
●

■
●

●

●

●
○
○
○
○
○

●

○

●

○

jefo-debian ~/code/C> ./debugme
Hello world.
hello too

Starting program
/home/jeremiah/code/C/debugme
Hello world.

Breakpoint 1, main () at debugme.c 7
7 numb()

Debugging example

. . .
open("/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\320\3\2\0\0\0\0\0"..., 832) = 832
. . .

Disassembly

$ objdump -D ./debugme > debugme.asm

Dump out assembler code from your binary

$ objdump -Tt ./debugme

Dump out symbols

●

●

●

https://en.wikipedia.org/wiki/Peter_van_der_Linden

●

○
○
○
○
○
○

Resources

● http://www.bitlackeys.org/ -- Ryan “Elfmaster” O’Neill’s own web site
● http://vxheaven.org/lib/vrn00.html -- Modern Day ELF Runtime infection via GOT poisoning

http://www.bitlackeys.org/
http://www.bitlackeys.org/
http://vxheaven.org/lib/vrn00.html
http://vxheaven.org/lib/vrn00.html

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries. Copyright © GENIVI Alliance 2017.

Secure Coding
May 10, 2017 | GENIVI Security Team

Assaf Harel
Co-Founder and CTO, Karamba Security

Defensive Coding –

Understanding how attackers think

• Based on my experience managing Karamba’s Red Team

• Attackers will always look for low hanging fruits

– Open ports (using nmap)

– Easy passwords

– Boot sequence

– JTAG / Serial ports

Attackers approach

29
Copyright © GENIVI Alliance 2017 | May 10, 2017 |

• Based on my experience managing Karamba’s Red Team

• Attackers will always look for low hanging fruits

– Open ports (using nmap) –-- Authentication & Encryption
– Easy passwords –-------------- Different & Strong passwords

or other authentications
– Boot sequence ----------------- Hardware based secure boot
– JTAG / Serial ports ------------ Remove ports or secure the

protocol when impossible

Secure coding mitigations

30
Copyright © GENIVI Alliance 2017 | May 10, 2017 |

• When reviewing code

– They will prefer closed source over open source

– Look for memcpy() / strcpy() – buffer overflows

Attackers approach

31
Copyright © GENIVI Alliance 2017 | May 10, 2017 |

• When reviewing code

– They will prefer closed source over open source

• Use well maintained open source modules
• Update frequently and follow the security mailing lists

– Look for memcpy() or strcpy() – buffer overflows

• Use secure API flavors e.g. memccpy() / strncpy()

Secure coding mitigations

32
Copyright © GENIVI Alliance 2017 | May 10, 2017 |

• Black box research (reverse engineering)

– Obfuscation is an annoying obstacle

– ASLR, Canaries, NX, Heap protectors are an annoying obstacle

– Tools like IDA makes your code completely readable from binary

Attackers approach

33
Copyright © GENIVI Alliance 2017 | May 10, 2017 |

• Black box research (reverse engineering)

– Obfuscation is an annoying obstacle – Good Practice

– ASLR, Canaries, NX, Heap protectors are an annoying obstacle - Good
Practice

– Tools like IDA makes your code completely readable from binary – Prefer
data Encryption over Obfuscation, use only public keys in the code

Secure coding mitigations

34
Copyright © GENIVI Alliance 2017 | May 10, 2017 |

• ROP attacks

– Kept short

– Either from in-process memory or from libc memory

– Used to obtain code execution and run reverse shell (i.e. the shell from

the device connects to the attacker C&C)

Attackers approach

35
Copyright © GENIVI Alliance 2017 | May 10, 2017 |

3

6

• Execute machine instruction
sequences ("gadgets“)

• Gadgets ends with return, and
are located in existing libraries

• Chained together, gadgets allow performing arbitrary operations
• In libc sufficient gadgets exist for Turing-complete functionality

Understanding ROP

Copyright © GENIVI Alliance 2017 | May 10, 2017 |

3

7

Understanding ROP

Copyright © GENIVI Alliance 2017 | May 10, 2017 |

• ROP attacks

– Kept short

– Either from in-process memory or from libc memory

– Used to obtain code execution and run reverse shell (i.e. the shell from

the device connects to the attacker C&C)

Attackers approach

38
Copyright © GENIVI Alliance 2017 | May 10, 2017 |

• ROP attacks

– Kept short

– Either from in-process memory or from libc memory –

CFI tools fight ROP attacks and dramatically reduce the amount of
ROP gadgets
– Used to obtain code execution and run reverse shell (i.e. the shell from

the device connects to the attacker C&C)

Secure coding mitigations

39
Copyright © GENIVI Alliance 2017 | May 10, 2017 |

• Privilege escalation

– Hundreds of Kernel CVEs

– The 2nd step of the attack (1st step is code execution)

– Access Control tools are an annoying obstacle

Attackers approach

40
Copyright © GENIVI Alliance 2017 | May 10, 2017 |

• Privilege escalation

– Hundreds of Kernel CVEs

– The 2nd step of the attack (1st step is code execution)

– Access Control tools are an annoying obstacle

Good Practice

Secure coding mitigations

41
Copyright © GENIVI Alliance 2017 | May 10, 2017 |

Secure Coding best practices

https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices

1. Validate input
2. Use effective quality assurance techniques
3. Architect and design for security
4. Model threats
5. Default deny & the principle of least privilege
6. Practice defense in depth
7. Pay attention to compiler warnings
8. Adopt a secure coding standard

Secure Coding best practices

43
Copyright © GENIVI Alliance 2017 | May 10, 2017 |

• Be suspicious of:

– Command line arguments

– Network interfaces

– Environmental variables

– User controlled files

Validate input

44
Copyright © GENIVI Alliance 2017 | May 10, 2017 |

• Fuzz testing

• Penetration testing

• Source code audits

• Independent security reviews

– Bring an independent perspective identifying and correcting invalid

assumptions

Use effective quality assurance techniques

45
Copyright © GENIVI Alliance 2017 | May 10, 2017 |

• Architect and design your software to enforce security policies

• Define security requirements early in the development life cycle

• Keep it simple

• Complex designs => security mechanisms become more complex

Architect and design for security

46
Copyright © GENIVI Alliance 2017 | May 10, 2017 |

• Try to anticipate the threats:

– Attacker objectives

– Key assets

– Threats to each asset or component

– Rate the threats based on risk ranking

– Develop threat mitigation strategies

• (designs, code, and test cases)

Model threats

47
Copyright © GENIVI Alliance 2017 | May 10, 2017 |

• Access decisions based on permission not exclusion

– The default is that access is denied and the scheme identifies when

access is permitted

• Processes should execute with the least set of privileges

necessary to complete their job

– Elevated permission should be held for minimum time

Default deny & the principle of least privilege

48
Copyright © GENIVI Alliance 2017 | May 10, 2017 |

• Manage risk with multiple defensive strategies

– When one layer is inadequate, another layer can prevent

Practice defense in depth

49
Copyright © GENIVI Alliance 2017 | May 10, 2017 |

• Use the highest warning level available

• Eliminate warnings by modifying the code

• Use static and dynamic analysis tools to eliminate additional

security flaws

Pay attention to compiler warnings

50
Copyright © GENIVI Alliance 2017 | May 10, 2017 |

• Develop and/or apply a secure coding standard for your target

development language and platform

– Cert

– Open Web Application Security Project (OWASP)

– Berkeley

– Oracle

– Microsoft

Adopt a secure coding standard

51
Copyright © GENIVI Alliance 2017 | May 10, 2017 |

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries. Copyright © GENIVI Alliance 2017.

Security Training
May 10, 2017 | Static Code Analysis

Sergiu ZAHARIA
Technology Architect BearingPoint, GENIVI Alliance

Static Code Analysis

• Why security standards

• What can SAST scanners identify

• Deep dive into some vulnerabilities

• Solutions at code level and process level

Content

54
Copyright © GENIVI Alliance 2016 | Month XX 2016 |

Why Security Standards

55
Copyright © GENIVI Alliance 2017 | May 10 2017 |

February 23, 2017
Announcing the first SHA1 collision
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html

“Today, more than 20 years after of SHA-1 was
first introduced, we are announcing the first
practical technique for generating a collision.”

We are not all cryptologists!

Why Security Standards

56
Copyright © GENIVI Alliance 2017 | May 10 2017 |

Benchmark
OWASP Top 10

OWASP Top 10 Mobile

PCI DSS

Mitre CWE

SANS Top 25

FISMA

HIPAA

MISRA

BSIMM

NIST SP 800-53

DISA STIG 4.1

WASC 2.0

• Many security standards

• Mandatory or not, we have to follow them

• Groups of experts do a great job for us

• Not easy to know details of all standards

• SAST solutions use them when reviewing code

What can SAST scanners identify

57
Copyright © GENIVI Alliance 2017 | May 10 2017 |

• Vulnerabilities in the code (sample from Find Security Bugs):

MessageDigest sha1Digest = MessageDigest.getInstance("SHA1");

• How these vulnerabilities are propagated in the application

sha1Digest.update(password.getBytes());

byte[] hashValue = sha1Digest.digest();

• Which security standards are not fulfilled

OWASP Top 10, SANS Top 25

Types of findings (from a tool)

58
Copyright © GENIVI Alliance 2017 | May 10 2017 |

• WebGoat vulnerable application analyzed

• Findings based on Top 10 OWASP

• Most of us know about command injection,

SQL injection, hardcoded passwords and buffer

overflow vulnerabilities

• Let’s see in detail cryptology related findings

which otherwise would pass undetectable

• Cryptology is vital for automotive code; so risk

ratings given by SAST solutions may be lower

than real risk level

Exemplification on crypto-concepts

59
Copyright © GENIVI Alliance 2017 | May 10 2017 |

Exemplification on crypto-concepts. Solution

60
Copyright © GENIVI Alliance 2017 | May 10 2017 |

StandardPBEStringEncryptor myFirstEncryptor = new StandardPBEStringEncryptor();

myFirstEncryptor.setProvider(new BouncyCastleProvider());

myFirstEncryptor.setAlgorithm("PBEWITHSHA256AND128BITAES-CBC-BC");

Bouncy Castle is a powerful and

complete cryptography package.

After several minutes of research:

Holistic Solutions for Application Security

61
Copyright © GENIVI Alliance 2017 | May 10 2017 |

Zoom on Secure Code Review Process

62
Copyright © GENIVI Alliance 2017 | May 10 2017 |

False	Positives	
Reduction

The	security-aware	code	reviewers	analyze	the	findings	provided	by	SAST	and	identifies	the	ones	which	are	not	
posing	a	real	security	risk	(false	positives)	and	the	duplicates,	based	on	the	context	provided	by	the	application	
type,	the	IDE	content	and/or	the	involved	developers.	The	code	reviewers	have	access	to	all	code	required	by	a	
qualitative	analysis	of	true	positives.

True	Positives	
Fixing	Recommendation

For	the	true	positives	findings,	the	security-aware	code	reviewers	provide	fixing	recommendations	according	
to	the	programming	language,	context	and	type	of	flaw.	The	fixing	process	is	implemented	by	the	developers.

Programming	Language TOOL	1 TOOL	2
Java Yes Yes

.NET Yes Yes

C# Yes Yes
JavaScript Yes Yes
C/C++ Yes Yes

Go	(Golang) No No

Python Yes Yes
Ruby Yes Yes
ObjectiveC Yes Yes

SQL Yes Yes

XML Yes Yes
HTML5 Yes Yes

AngularJS No Yes

JEE Yes Yes
Django Yes Yes
JavaServer	Faces	JSF Yes Yes
Jersey Yes No
Spring Yes Yes

Which languages can SAST solutions cover?

63
Copyright © GENIVI Alliance 2017 | May 10 2017 |

Programming	Language TOOL	1 TOOL	2
Grails No Yes
Apigee No No
Scala No Yes
Groovy No Yes
Bash/Shell	Scripting No No
TypeScript No No
PHP Yes Yes
VB Yes Yes
Perl No Yes
Xamarin No No
XAML No Yes
Universal	framework Yes No
Player	framework No No
Galasoft	mvvm	light No No
ABAP/BSP Yes No
ActionScript/MXML	(Flex) Yes No
Clasic	ASP	(with	VBScript) Yes Yes

Cobol Yes No

ColdFusion	CFML Yes No
JSP Yes Yes
Swift Yes Yes

• Most of SAST tools cover between

1-3 languages like Java, C/C++, C#

• Some of them are freeware solutions

• There are commercial solutions

covering most common languages and

IDE/Build integration capabilities

• Let’s see quickly how SAST tools work!

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries. Copyright © GENIVI Alliance 2017.

Security Training
May 10, 2017 | Free and Open Source Software Security

Sergiu ZAHARIA
Technology Architect BearingPoint, GENIVI Alliance

Free and Open Source Software Security

• What means FOSS / Security?

• What developers can do?

• How automatic tools help?

• The holistic approach around FOSS / Security

Content

66
Copyright © GENIVI Alliance 2016 | Month XX 2016 |

What means FOSS(S)ecurity and why we need it?

67
Copyright © GENIVI Alliance 2017 | May 10 2017 |

FOSS(S) = Scanning and indexing the entire library of freeware and open source

components, to identify the already published vulnerabilities related to those components.

2014 analysis of Application Health Check results

(for an average application)

Do you remember the Bouncy Castle package?

68
Copyright © GENIVI Alliance 2017 | May 10 2017 |

https://www.cvedetails.com/vulnerability-list/vendor_id-7637/Bouncycastle.html

What should developers do?

69
Copyright © GENIVI Alliance 2017 | May 10 2017 |

• Each FOSS component may add critical

vulnerabilities to the application code

• Developers should be aware of each version of

each component and their level of risk

• Or maybe not… and use some automatic tools

and processes to do this work in background

• FOSS(S) tools estimate the application security

and compliance risk based on used components

“The Bouncy Castle Crypto

package is a Java implementation

of cryptographic algorithms.

The package is organized so that

it contains a light-weight API

suitable for use in any

environment (including the J2ME)

with the additional infrastructure

to conform the algorithms to the

JCE framework. “

Are we really vulnerable?

70
Copyright © GENIVI Alliance 2017 | May 10 2017 |

“The Unfortunate Reality of Insecure Libraries”

Let’s find out using FOSS(S) services!

71
Copyright © GENIVI Alliance 2017 | May 10 2017 |

• Bill of Material (BoM) with FOSS components and

their versions is generated per each project

• Components with known security vulnerabilities

are signaled, with their corresponding level of risk

• The resulting risk is assessed against the

acceptable risk threshold (the policy)

• There is a formal process of application security

risk management, protecting the developers

Screenshot from

Vulnerabilities are detailed for each component

72
Copyright © GENIVI Alliance 2017 | May 10 2017 |

Screenshot from

Vulnerability Management is a… managed process

73
Copyright © GENIVI Alliance 2017 | May 10 2017 |

Screenshot from

The holistic process around FOSS(S)Security

74
Copyright © GENIVI Alliance 2017 | May 10 2017 |

• Technical integration

• Processes integration

• IP rights analysis

• Enhancing SAST

Additional security layers might

help to see how

FOSS components behave in

operation!

Genivi AMM, Birmingham, UK

May 10, 2017

Network Concerns Ted Guild, W3C Automotive Lead

http://genivi.org/events

Attack Surface Size
Vehicle's interet connection is the biggest attack surface

• Reaction from technical peers

• Internet is a hostile environment

2

Genivi Security Expert Group
Sound Practices

• Education

• Coding Guidelines

• Code Analysis

• Threat Modeling

• Architecture

• Layering

• ...
3

High Level

• Connection Accounting

• External Site Security Evaluation

• Imposing Rigid Network Access

•

• Guidelines

4

Ecosystem
We are building a framework for 3rd party apps (FB, Waze, Pandora)

• HTML5/QT/Headless

• Signals

• Nav/LBS

• Media (services, library)

• NotiOcations

• Payments

• Wishlist: trafOc, weather, speech...
5

Other day job - Head of IT
• Domain hijacking

• DDoS

• State actor probes

• Phishing

• Misuse of services we provide

• Code Audits

• Penetration Testing

• Compromise Forensics

• Counter measures
6

Memories...
Remember when you could account for every network connection?

• IP logger in simpler times

• CDN, trackers, adverters, "like us"

• Blockers: Flash, Ads, Trackers, JS

7

Development and Testing

• Know every connection you require

• Run trafOc monitors during testing phases

• W3C's DTD trafOc problem

8

Lock it down
Possible package requirements for 3rd party apps. Suggestions partially

address OWASP top ten

• DNS zone Oles

• Accompanying Firewall rules

• Apparmor/SELinux/Smack rules

• Static SSL CertiOcates in /etc/ssl/certs

• All Javascript permitted to run should be packaged not fetched

• Might as well package all needed images, css, html etc
9

https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet

SSL hardening
merely using SSL alone is not enough

• HTTP Public Key Pinning (HPKP)

• Cert strength requirement - beyond merely no SHA1

• Site SSL evaluation tools

• HTTP Strict Transport Security (HSTS) & Upgrade Insecure Requests (UIR)

• Content Security Protection (CSP)

• Follow W3C's WebAppSec WG

10

https://www.w3.org/2017/Talks/tg-genivi-uk-sec/http-public-key-pinning
http://www.zdnet.com/article/google-accelerates-end-of-sha-1-support-certificate-authorities-nervous/
https://www.ssllabs.com/ssltest/
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet
https://www.w3.org/TR/upgrade-insecure-requests/
https://w3c.github.io/webappsec-csp/2/
https://www.w3.org/2011/webappsec/

Web Application Firewall (WAF)
Another idea

• Web Application Firewall - car does its own MiTM to outside world

• Can run same or another WAF as security layer to Web Sockets and HTTP

REST services on vehicle

• Apache mod_security example

• Limit methods (GET POST), inspect permitted parameters

• restrict which apps (token or other id)

• Control what data is allowed to leave the vehicle
11

https://en.wikipedia.org/wiki/Application_firewall
http://modsecurity.org/

Web Application Firewall (WAF)
Continued

• These rules for a given 3rd party app could again be part of package

• Limit content types - no Javascript from outside world

• Verify content types, ensure no injection of malicious (eg tainted media

Oles)

• Sensitive needed content can be signed with W3C WebCrypto API

• It can cache content too, useful for intermitten connectivity and

performance
12

https://en.wikipedia.org/wiki/Application_firewall
https://dvcs.w3.org/hg/webcrypto-api/raw-file/tip/spec/Overview.html

Open Browsing
Hearing some are considering allowing full open browsing from vehicles

• WTF, seriously?

• Yes the guy from W3C is saying he doesn't want your car on the web -

personal opinion

• Sales decision

• Fine, put it in its own vm

• Zero connection capabilities to APIs being exposed

• Immutable/Read-only FS or clean image on each reboot?
13

Feasability?

• Fragmented industry / multiple platforms

• Marketing & Business forces

• W3C Guidelines

• Genivi Platform implementation

• Get Involved!

14

Thank You

• Questions

• Follow up: ted+auto@w3.org

• https://www.w3.org/auto

15

mailto:ted+auto@w3.org
https://www.w3.org/auto

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries. Copyright © GENIVI Alliance 2016.

Software Security
May 11, 2016 | Overview

Stacy Janes Chief Security Architect - Irdeto

Assaf Harel CTO & Co-Founder – Karamba Security

Security Team, GENIVI Alliance

Software Security 101

Integrity and Confidentiality

77
Copyright © GENIVI Alliance 2016 | Month XX 2016 |

Integrity
Proving the

validity of

data.

Digital

Signature

Confidentiality
Protecting

the contents

of data.

Encryption

Hashing

78
Copyright © GENIVI Alliance 2016 | Month XX 2016 |

Unlike encryption, hashing is a “one

way” function

A hash is used to check the validity

of data. It does not protect data.

Passwords should be hashed and

not encrypted when stored.

Encryption – Symmetric Key

79
Copyright © GENIVI Alliance 2016 | Month XX 2016 |

Key management becomes

cumbersome beyond a few actors.

Encryption and decryption done

with the same key

Symmetric cryptography is fast

(relative to Asymmetric)

Encryption – Asymmetric Key

80
Copyright © GENIVI Alliance 2016 | Month XX 2016 |

Ø Encryption with Public Key

Ø Decryption with Private Key

Asymmetric cryptography is

slow(relative to Symmetric)

Private Keys are not shared

Public Keys can be shared with

many actors. PKI enable this.

Digital Signature

81
Copyright © GENIVI Alliance 2016 | Month XX 2016 |

plaintext

digest

digital signature

plaintext

digest

digital signature

digest

A

A

B

BA =
hashhash

encrypt with K Alice
private decrypt with K Alice

public

?

Encrypted Hash

Ø Encrypt with Private Key (Sign)

Ø Decrypt with Public Key (Verify)

X.509 Certificate around Public Key

for identity verification

Does not hide data

“Defeating” Crypto – Easier to Bypass

82
Copyright © GENIVI Alliance 2016 | Month XX 2016 |

Brute force is typically not a realistic attack

• Key lifting. Easy for software key if not properly protected

• Binary modification to “jam” logic branch for signature check

• Lifting clear data from memory after decryption

• Inserting malicious data to be signed/encrypted

• Shimming interfaces

End point access opens up attack vectors

Branch “Jamming”

83
Copyright © GENIVI Alliance 2016 | Month XX 2016 |

Let software verify signature

Find branch that checks return code

Reverse comparison opcode to

allow invalid signature to pass

“Shimming”

84
Copyright © GENIVI Alliance 2016 | Month XX 2016 |

When an application uses a shared

object, an attacker can interfere

with the boundary.

Attacker uses export table of .so to

generate a ‘shim’ to go between

application and .so.

All data (parameters and return

codes) can be siphoned and

modified.

Software Application

Shared Object

“Shimming”

85
Copyright © GENIVI Alliance 2016 | Month XX 2016 |

When an application uses a shared

object, an attacker can interfere

with the boundary.

Attacker uses export table of .so to

generate a ‘shim’ to go between

application and .so.

All data (parameters and return

codes) can be siphoned and

modified.

Software Application

Shared Object

Malicious Shim

Software Protections – Integrity Verification

86
Copyright © GENIVI Alliance 2016 | Month XX 2016 |

If software is running on a potentially hostile environment,

an attacker can have full control over software execution.

Attacker can use analysis tools to detect and circumvent

in-software checks.

• At install-time

• At start-time

• During run-time

Verification of software integrity should be done:

Software Protections - Obfuscation

87
Copyright © GENIVI Alliance 2016 | Month XX 2016 |

Ø Similar to integrity checks, code obfuscation is useful when software is

in a hostile environment.

Ø Code obfuscation can strongly mitigate static analysis of code.

Ø Data obfuscation can hide data after decryption to mitigate against

siphoning

Some form of code and data obfuscation is widely and expertly used by

authors of sophisticated malware.

Obfuscation of open source can be tricky. License issues. Leakage of

information through system calls.

Code Entanglement

88
Copyright © GENIVI Alliance 2016 | Month XX 2016 |

• Avoid assertion checks on sensitive decisions such as a digital signature or

password validation.

• “Entangle” the input value by using it to get to the asset. Eg: password is

decryption key to decrypt file.

pwHash = getPasswordHash();
if(pwHash == storedHash){

decryptFile(fn);
}

pwHash = getPasswordHash();
decryptFile(fn, pwHash);

Assertion Check Entangled

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries. Copyright © GENIVI Alliance 2016.

Platform Security Architecture
May 11, 2017| Hardware Enforced Security for Automotive

Erik Jacobson
Marketing Director, ARM Architecture Technology Group

Security: the climate change of engineering

Source: Barr Group
2017 Safety and Security Survey

• Costs of non-compliance
Violations/fines, higher insurance premiums, litigation…

• Regulatory
Critical Infrastructure Policy (ex. U.S. Federal EO 13636)
NIST Cybersecurity Framework

• Industry compliance (ex. ISA/IEC 62443:EDSA)

• Market pressures
Risk management from loss of credibility
Loss of proprietary or confidential information/assets

Security is critical for connected vehicles

Choose the right-sized security solution

SW only

HW enforced

Tamper
resistant
hardware

Robustness of platform security

Body
Chassis

Gateway
Sensor
IVI
V2x
Telematics

Functional
Safety
ADAS
Braking

Target security use cases

HW enforced security expands implementation options and
flexibility while still offering robust architecture options

SW & HW Attacks
• Physical access to device
– JTAG, Bus, IO Pins,
•Time, money & equipment.

Software Attacks
• Buffer overflows
• Interrupts
• Malware

Communication Attacks
•Man In The Middle
•Weak RNG
•Code vulnerabilities

Cost/Effort
To Attack

Cost/Effort
to Secure

OS
TLS

Secure Enclave,
HSM, TPM etc.

HW enforced
isolation

Security targets for different threats

Establishing trust and integrity based on hardware

Provisioned keys/certs

Initial Root of Trust: Dependable Security functions

Extended Root of Trust e.g. TrustZone based
TEE or Secure Processing Environment (SPE)

Trusted Apps/Libs

OS/RTOS

Apps

OS/RTOS

Trusted Software

TrustZone
SPE or TEE

iROT
TrustZone
CryptoCell

Keys

A Root of Trust starts at manufacturing time

Injection of
cryptographic

assets such as
unique keys

or
 ti

er
 1

Know your supply
chain!

Ideally a RoT lives in a security module…

Security Subsystem

Security subsystem
Highly evaluated code developed
by security specialists & built in by
silicon vendor

…and is exposed via hardware-enabled isolation layers

Security Subsystem

TrustZone

Normal World
IoT developer writes Apps
On top of his/her chosen OS/RTOS

Secure World
= Trusted code (mostly libs)
Often on top of an audited/reviewed
RTOS or similar – the Trusted
Execution Environment (TEE)

Security subsystem
Highly evaluated code developed
by security specialists & built in by
silicon vendor

(TCB)

SW needs a std way to access security functions…

… but we need to consider HW-enforced isolation

TrustZone

(TCB)

• To enable HW-enforced isolation, the most sensitive SW modules need
to be re-factored between “normal” and “trusted” (secure world)

• This can be time-consuming and involves effort

Architecture standards link the HW & SW communities

• Track 1: Standardize APIs for the
SW community, supporting TEEs
and an upcoming Platform Security
Architecture (PSA) specification

• Track 2: Guide the SoC design
community with Trusted Base
Security Architecture (TBSA)

• GENIVI architecture security
components can be mapped
through TEE/PSA onto TBSA.

Platform Security Architecture (PSA)

Platform Security Architecture

• ARM hopes to provide an interface to, and generic framework for, the
essential secure functional building blocks

• Reference implementations will provide models of how to construct the
security system, including integration of ARM security IP

Non-Secure Secure

OS Kernel

EL3 Monitor / Firmware

AppApp

T OS

TA TA

EL1

EL2 Hypervisor

OS Kernel

EL0 AppApp

Hardware Symmetric
Crypto Accl

Asymmetric
Crypto Accl

TRNG
(Entropy)

Counter /
Fuse Logic

Device
Lifecycle

Boot ROM

Trusted
Boot code

Trusted
Firmware

Discovery
API

Provisioned
Key Store

FW
Update

Asymmetric
Crypto
Serv.

Symmetric
Crypto
Serv.

Secure
Storage

GP TEE

Disk
Encryption

PS
A

I/
F

Security use-cases may be systematically
decomposed and repeatedly implemented
• TPMS messages can be protected by message

authentication code (MAC)
• Normally produced by a keyed cryptographic hash

function.
• This protects both message authenticity and

integrity.
• TPMS and ECU SoC contain shared secret key
• Key is securely stored and accessed by s/w using

PSA
• TPMS packet may containone-time data e.g.

sequence # , nonce etc, to protect against replay
attacks.

TRNG
(Entropy)

Counter /
Fuse Logic

On SoC NVM
(Fuses)

Provisioned
Key Store

Asymmetric
Crypto

Symmetric
Crypto (MAC)

TPMS
Processing

Received
TPMS Packet

Authenticated
Packet

NVM I/F
(eg. RPMB)

The role of Secure Boot

Legend

RAMCPU

NVMI/O

Drivers

OS

RAM

I/O

RAM

I/O

CPUMPU

I/OCrypto

RAM

NVM

Secure
partitioning

Secure IPC &
interrupts

Secure boot/
loader

Secure debug
control

TCB software

TCB hardware

Application hardware

Application software

Isolated software

Isolated hardware
Ap

pl
ica

tio
n

ta
sk

Ap
pl

ica
tio

n
ta

sk

Se
cu

re

fu
nc

tio
n

Se
cu

re

fu
nc

tio
n

Se
cu

re
 s/

w

up
da

te

Cr
yp

to

fu
nc

tio
ns

Re
m

ot
e

at
te

st
at

io
n

Se
cu

re

st
or

ag
e

Application
software

Secure boot -> secure services

Summary

• HW enforced isolation is an important next step-up from SW-only
security but is below tamper-resistant HW on the attack-value graph

• HW enforced security starts in the factory – know your supply chain!
• API standardisation is important (of course!)

– But think in 3D not 2D when dealing with secure memory and device HW
architectures

– Take advantage of TrustZone – but takes work to audit & re-factor code

• Platform Security Architecture (PSA) will standardize core secure
functions on ARM systems, underneath TEEs where present

1GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries. Copyright © GENIVI Alliance 2017.

Threat Assessments and Attack Trees
May 2017 | You Can Do This (!)

Ben Gardiner
Principal Security Engineer, Irdeto

• 20 minutes

• What are Attack Trees?
What are Threat
Assessments?

• How can I?
• Should I?

Agenda, etc.

• Fixing Later à
Overhauls

• Does take time now,
but could save time in
the long run

• And focuses efforts to
areas that need it

More Effective to Fix Early

• A model of…

• the many ways to
achieve a (nefarious)
goal

Steal (e.g
passport)

AND

Get Inside
House

Pick Locks

Break
Glass

Ladder To
Window

Bring
Ladder

Use Ladder
in Side Yard

Disable
Alarm (*)Victim

Brings Out

Attack Trees? …?
...

...

Implant
(e.g. bug)

...

...

Vandalize
...

...

Steal (e.g
passport)

...

...

Steal (e.g
passport)

AND

Get Inside
House

Disable
Alarm (*)Victim

Brings Out

Anatomy of an Attack Tree

Steal (e.g
passport)

AND

Get Inside
House

Pick Locks

Break Glass

Ladder To
Window

Bring
Ladder

Use Ladder
in Side Yard

Disable
Alarm (*)Victim

Brings Out

• Making a List: things an Attacker
might like to do.

• E.g. “Game Over”s or Attacker
Money Makers

• It helps to ask: ”What affects the
bottom line?”
– E.g. Revenue Loss, IP Theft, Brand

Damage …

$$$

Revenue /
Profit Loss
• Steal Money

Brand
Damage
• Vandalize

IP Theft
• Steal

Passport
• Implant (e.g.

bug)

To List Attacker Objectives…

• Attacker Objectives have both:
1. Clear Attacker Motivations
2. Clear Impacts (Severities) on the

Company/Org./Stakeholders

Attacker Objectives are…

7

Implant
(e.g. bug)

...

...

Vandalize
...

...

Steal (e.g
passport)

...

...

…?
...

...

• They are a Tool With Multiple
Applications:

• When Narrowly-Focused:
– Preparing Offensive Plans

(pentesting)
– Considering Causes of Bugs
– Brainstorming Defenses

• When Broadly-Focused:
– Threat Assessments

What Are They Good For?

8

1. …(revealed later)
2. …(revealed later)
3. …(revealed later)
4. A list of mitigations

Threat Assessments

• Your Domain-Specific knowledge is
key

• You know the data flow

You Are the Subject Matter Experts

• Create an Architecture Summary

• Do it from your (naïve) perspective

• The result will
– highlight knowledge gaps and
– establish a vocabulary for the Threat

Assessment

• Capture the data flows in the
system

Establish a Common Language

• Do a Tree for Each Asset

• Descend, descend, …

• Worry about what, not how
– Consult your data flows

Generating The Trees
Implant

(e.g. bug)

One way AND

step 1

step 2

step 3The Other i.e. like
this

Vandalize

by X

by Y

by Z

Steal (e.g
passport)

using W

using V

…?
...

...

1. A summary of all attacker
objectives

2. A detailed look at the attack vector
nodes of the trees

3. An analysis of risk (of the
objectives)

4. A list of mitigations

Threat Assessments

• Word Smart-Art
• Visio
• Omnigraffle
• Graphviz DOT
• Any indented text
• Mindmup (e.g. at right)

Tools For Attack Trees

• Threat Assessments up-front will
save time

• Threat Assessments up-front will
target efforts

• You are the SMEs. You can do this

Your Future:
• Releases with no re-designs
• Threat Assessments in the design

phases

See? You CAN do this!

Thank you!

Visit GENIVI at http://www.genivi.org or http://projects.genivi.org
Contact us: help@genivi.org

http://www.genivi.org/
http://projects.genivi.org/
mailto:help@mail.genivi.org

