Security Team

May 9, 2017 | Overview

Stacy Janes
‘Security Team Lead, GENIVI Alliance

Security Training

Security Education

Existing See what happens when coding errors get into the wild

vulnerabilities

Some basics of log and trace, ELF headers, binary analysis

Secure

Coding Learn some of the concepts of writing secure products
Guidelines

Sieli[eN0fele[B Learn the benefits of static analysis tools.

Analysis

3 | Month xx, 2017 | Copyright © GENIVI Alliance 2017 GEN'V|®

Security Education

How to review
3rd party How to mitigate the risk of 3 party software.

software

Software What software based security technologies

Security exist and what they are designed to do.
technologies

Hardware

Security Hardware security. What does it do and why to use it.
technologies

Want to create your own attack trees?
LUCEIRNCRERR Here's how we do it.

4 | Month xx, 2017 | Copyright © GENIVI Alliance 2017 GEN'V|®

Security Training — Day Schedule

9:30-10:00 Existing Vulnerabilities (Ben) 12:30-14:00 lunch

10:00-10:30 How to Hack a Binary (Jeremiah) 14:00-14:30 Software Security (Stacy, Assaf)

10:30-11:00 break 14:30-15:00 Hardware Security (Erik)

11:00-11:30 Secure Coding Guidelines (Assaf) 15:00-15:30 Threat Models (Ben)
11:30-12:00 Static Code Analysis (Sergiu)

12:00-12:30 How to Review 3" Party Software
(Sergiu, Ted)

5 GENIVI’

May 2017 | A Look at the Recent History of Vulnerabilities in Linux (and how a little
typo can make everything go wrong)

Ben Gardiner

Principal Security Engineer, Irdeto

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries. Copyright © GENIVI Alliance 2016.

Agenda

e 20 minutes:

» Exposition of vulnerabilities in Linux (the kernel or the
ecosystem) from recent history

* Non-exhaustive (we only have 20 minutes)
* Focus on ‘what went wrong”?’ and ‘what was the impact?’

i
7 GENIVI

Heartbleed

* OpenSSL-served sockets leak data from freed memory to
unauthenticated clients.

» 2012-2014

Heartbleed (impacts) W

* Remote attackers can siphon nearly anything from
memory that wasn't sanitized before being freed
— e.g. private keys
— passwords

i
9 GENIVI

Heartbleed (fix, abridged) W

/* Read type and payload length first */

hbtype = *p++;

n2s(p, payload);

+ if (1 + 2 + payload + 16 > s->s3->rrec.length)

+ return 0; /* silently discard per RFC 6520 sec. 4 */

pl = p;

/* Enter response type, length and copy payload */
*bp++ = TLS1 HB_ RESPONSE;

s2n(payload, bp);

memcpy(bp, pl, payload); i
Hi]
theregqister/.../heartbleed explained/ 10 GEI\'IIVI®

Heartbleed (conclusion) W

» Assume input data is attacker-controlled / Don't trust input
data.

i
11 GENIVI’

Shellshock

* Privilege Escalation enabling attacker to run code in the
context of the shell script whose input they control

« 1989-2014

Shellshock (impacts) \‘ ll?

* CGI webserver scripts
 DHCP Clients
* OpenSSH (ForceCommand)

» Also spurred a slew of other bash-bugs (CVEs-2014-
62716277 6278 7169 7186 7186 7187)

i
13 GENIVI’

Shellshock (sample exploits)

echo vulnerable®™ bash

"

DASIN -C cCrno

SYNncax error nedar

GENIVI’

Shellshock (conclusion) \l Il?

* Parsing is hard / Fuzz your own parsers and/or implement
the parsing code in memory safe, provably correct ways.

i
1 5 GENIVI

ImageTragick

» Parser bugs in ImageMagick can lead to Remote Code
Execution (RCE) — because ImageMagick is used by lots
of websites to proces user-submitted graphics

16

ImageTragick (impacts)

* Forums Posts and Profiles
» Social Media Sites Uploads and Profiles
« Album Art on Media Players (e.g Headunits)

i
1 7 GENIVI

ImageTragick (sample exploit)

exploit.mvqg:
push graphic-context viewbox @ 6 640 480 fill
'url (https://example.com/image.jpg"; [Ls "-la)'
pop graphic-context —

i
18 GENIVI’

ImageTragick (sample exploit 2)

hexdump rcel.jpg | head

00000000 75 73 68 20 67 |push graphic-conl
00000010 65 78 74 Qa 76 | text.viewbox 0 Ol
00000020 36 34 30 20 34 | 640 480.fill 'ul
00000030 b6c 28 68 74 74 lrlChttps://127.01|
00000040 30 2e 30 2f of |.0.0/00ps.jpg" |t
00000050 75 63 68 20 22 louch "rcel)'.popl
00000060 67 72 61 70 68 | graphic-context|
00000070 |,

00000071

identify rcel. jpg
identify: unrecognized color “https://127.0.0.0/00ps.jpg" Ltouch "rcel. @ warni

— P

identify: unable to open image " /var/tmp/magick-49419pGsKz O such fi
identify: unable to open file " /var/tmp/magick-49419pGsK2PNsCdc(': No such filg
rcel.jpg MVG 640x480 640x480+0+0 16-bit sRGB 113B 0.000u 1:15.490

identify: non-conforming drawing primitive definition "fill' @ error/draw.c/Drqg

1s rcel
rcel

19 GENIVI’

ImageTragick (conclusions)

* Parsing is (still) hard / Really focus on those parsers

20 GENIVI’

DirtyCOW

* Arace in the Copy-On-Write logic of the Kernel

* The winner gets to write to pages (they might not
otherwise have write access t0)

* From 2007 to 2016

21 GENIVI’

DirtyCOW (impacts)

mhv cow
» Write to file nomally unmodifable by the current user

» Applied: Escalate Privileges to root
— E.g. root (Android) phones
— Break out of containers/sandboxes
— Many many more

i
29 GENIVI’

DirtyCOW (fix, summary) e
DIRTY COW

“To fix it, we introduce a new internal FOLL COW
flag to mark the "yes, we already did a COW"
rather than play racy games with FOLL WRITE that
is very fundamental, and then use the pte dirty
flag to validate that the FOLL COW flag is still
valid.” -- Linus

K .git/.../19beOeaffa3ac7/d8eb6784ad9bdbc/d67ed8e619 0
ernel.gl evealiaocac e d C edoe 23 GENIVI

DirtyCOW (exploit, summary)

@ void *madviseThread(void *arg)
{
int i,c=0; (1=0;1<100000000 ; i++)
IIICEED }

c+=madvise(map, 100 ,MADV_DONTNEED);
void *procselfmemThread(void *arg)

{
int f=open("/proc/self/mem",0_RDWR);

int i,c=0; for(i=0;1<100000000;i++) {
lseek(f,(uintptr_t) map,SEEK_SET);
}
e }

int main(int argc,char *argv[])

{
map=mmap(NULL,st.st_size,PROT_READ,MAP_PRIVATE,f,0);
pthread_create(&pthl,NULL,madviseThread,argv[1]);
pthread_create(&pth2,NULL,procselfmemThread,argv[2]);

c+=write(f,str,strlen(str));

R
24 from PoC EXH|O“ vI°

DirtyCOW (conclusion) e
DIRTY COW

» Concurrency is hard / Use lock checkers and/or designs
that are provably correct

* But Also: Assume that the gatekeeper can be
compromised / Design your defenses against root.

i
25 GENIVI

Conclusions

* Treat input as attacker-controlled

* A stray pointer might not crash your program -- it might
give away secret info instead

» Parsers are hard.
* No, really: parsers are hard. Fuzz them.
» Concurrency can Kill;

* But, more importantly: don't trust your access control

gatekeepers (including the kernel). R
H
26 GE:\'IIVI®

GENIVI

Hacking Linux Blnarles[j

May 2017 | Using ELF headers to make binaries do weird things

Jeremiah C. Foster

Open Source Technolog/st Pelagicore

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries. Copyright © GENIVI Alliance 2017.

Agenda

® 20-ish minutes:
e Can you crack a GNU/Linux binary for fun and pro

m Yes |
e How?

m Lemme show you 4
® This is only one way to do it, there are other ways to
compromlse binaries or a GNU/Llnux system

iiiu
GENIVI'

How do you ‘crack’ a linux binary?

® One might begin with ‘fingerprinting’ the binary much like o
site. That is to say, gather as much information as possible to
are already known exploits.

® Aset of tools is highly useful for this type of work
GDB -- GNU debugger

strace -- system call trace

ltrace -- library trace

objdump and objcopy -- from GNU binutils
readelf

O O O O O

GENIVI’

GENIVI

,* ¢
v
Y 4 |
xiLd , \
Vo7 h £y e
yor j’\
¢ X
. W\
. ¢ f

Learning Linux
Binary Analysis

Uncover the secrets of Linux binary analysis with this handy guide

PACKT i

’ ’

Y

GDB GNU debugger, ptrace

® Works best with debugging symbols and, like ptrace and other tools it is an
assisted application.

o Binaries are often ‘stripped’ of their debugging symbols making them harder
to reverse engineer. The ‘file’ command can tell if a binary is stripped
® ptrace is a Linux system call that can attach to a process address space and
modify it.
o This too requires a good deal of manual intervention. ptrace is in the kernel,
so you'll need to have elevated permission already to use it. Since GENIVI

code is delivered as source that means that nearly anyone can do this
however.

iiii
GENIVI

GENIVI’

Debugging example

Minclude <stdio.h>

int main (void)

{
printf ("Hello world.\n");

numb();
return O;

}

int numb (void)

{
printf ("hello too\n");
return 0;

B

jefo-debian:~/c
Hello world.
hello too
Starting program:
/home/Jerem|ah/code/C/debu e
Hello world.

Breakpoint 1, main () at d'éb agr
7 numb(); -

strace -- trace system calls and signa

strace “intercepts and records the system calls which are called
signals which are received by a process. The name of each syste
and its return value are printed on standard error”

;).p.en("/lib/x86_64—linux—gnu/libc.so.6", O_RDONLY|O_CLOEXEC) =3
read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\320\3\2\0\0\0\0\0"..., 832) = 832

GENIVI’

Disassembly

$ objdump -D ./debugme > debugme.asm

Dump out assembler code from your binary

$ objdump -Tt ./debugme

Dump out symbols

GENIVI’

Let’s look at ELF

GENIVI’

Executable and Linkable Format

A common standard file format for executable
files, object code, shared libraries, and core

dumps. First published in the specification for the Program header table
application binary interface (ABI) of the UNIX

ELF header

operating system. ’
text
Used in Linux, Solaris, QNX, FreeBSD, Playstation 3 *
& 4, Android 5|nFe Lollipop 5.0, Windows (rodata
Subsystem for Linux, and a lot more.
(wikipedia)
.data
Section header table
o:...::.
l'.l
GENIVI’

Memory

GENIVI

An ELF executable is nearly the same in memory as it is on disk
exception of changes to the .bss section.
The .bss section the data section that holds the length of the local varlables but
not the values. :
Peter van der Linden, a C programmer and author, says, "Some people like tc
remember it as 'Better Save Space.' Since the BSS segment only holds vari '
that don't have any value yet, it doesn't actually need to store the in :

variables. The size that BSS will require at runtime is recorded in the ob
but BSS (unlike the data segment) doesn't take up any actual space in ‘t_ ob]
file.”

https://en.wikipedia.org/wiki/Peter_van_der_Linden

Memory

Complex malware can live in memory and remain undetected as it is very hard to find

Ty
e Since virus and rootkit techniques used in ELF binares can also M to

runtime code, hackers prefer to remain hidden and use various techniques;
o GOT infection

Procedure linkage table infection

Function trampolines

Shared library injection

Relocatable code injection

Direct modification to the text segment

O O O O O

GENIVI’

Resources

o http://www.bitlackeys.org/ -- Ryan “Elfmaster” O’Neill's own web
o http://vxheaven.org/lib/vrn00.html -- Modern Day ELF Runtime ini

GENIVI’

http://www.bitlackeys.org/
http://www.bitlackeys.org/
http://vxheaven.org/lib/vrn00.html
http://vxheaven.org/lib/vrn00.html

Secure Coding

May 10, 2017 | GENIVI Security Team

Assaf Harel

O-Fouhader ana (). Karambé =

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries. Copyright © GENIVI Alliance 2017.

Defensive Coding —

" a

N ()
’ ’
4
'o"

Understanding how attackers think

Attackers approach

* Based on my experience managing Karamba’s Red Team

 Attackers will always look for low hanging fruits
— Open ports (using nmap)
— Easy passwords

— Boot sequence
— JTAG / Serial ports

oS
A
'0 [J
"
Copyright © GEN?gance 2017 | May GENIVI®

Secure coding mitigations

* Based on my experience managing Karamba’s Red Team

 Attackers will always look for low hanging fruits
— Open ports (using nmap) —- Authentication & Encryption

— Easy passwords —-------------- Different & Strong passwords
or other authentications

— Boot sequence ----------------- Hardware based secure boot

— JTAG / Serial ports ------------ Remove ports or secure the

protocol when impossible

Copyright © GENg/(Dance 2017 | May GENIVI®

Attackers approach

 When reviewing code
— They will prefer closed source over open source

— Look for memcpy() / strcpy() — buffer overflows

oS
A
'0 [J
"
Copyright © GENgAJliance 2017 | May GENIVI®

Secure coding mitigations

 When reviewing code

— They will prefer closed source over open source
« Use well maintained open source modules
» Update frequently and follow the security mailing lists

— Look for memcpy() or strcpy() — buffer overflows

» Use secure API flavors e.g. memCcpy() / strNcpy()

Copyright © GENg?ance 2017 | May GENIVI®

Attackers approach

* Black box research (reverse engineering)
— Obfuscation is an annoying obstacle

— ASLR, Canaries, NX, Heap protectors are an annoying obstacle

— Tools like IDA makes your code completely readable from binary

oS
A
'0 [J
"
Copyright © GENggance 2017 | May GENIVI®

Secure coding mitigations

* Black box research (reverse engineering)
— Obfuscation is an annoying obstacle — Good Practice

— ASLR, Canaries, NX, Heap protectors are an annoying obstacle - Good
Practice

— Tools like IDA makes your code completely readable from binary — Prefer
data Encryption over Obfuscation, use only public keys in the code

Copyright © GENgﬂance 2017 | May GENIVI®

Attackers approach

« ROP attacks

— Kept short
— Either from in-process memory or from libc memory

— Used to obtain code execution and run reverse shell (i.e. the shell from
the device connects to the attacker C&C)

oS
A
'0 [J
"
Copyright © GENg}gance 2017 | May GENIVI®

Understanding ROP

 Execute machine instruction

sequences ("gadgets”) me RN

» Gadgets ends with return, and @Enﬂd _f
are located in existing libraries P[Eo gAI“g

» Chained together, gadgets allow performing arbitrary operations
* In libc sufficient gadgets exist for Turing-complete functionality

ole
0. ° []
l..l

3 Copyright © GENIVI Alliance 2017 | May GBENIVI®

Program Flow:

Understanding ROP

sub5to8

Instruction

Instruction

Instruction

Instruction

D |lJ|]| U,

return

sub9toll

Instruction

Instruction

Instruction

return

Attacker
Controlled:

subl2to20
Instruction 12

Instruction 13
Instruction 14

Instruction 15

Instruction 16
i‘ Instruction 17
Y Instruction 18

Instruction 19

Q Instruction 20
] return

Copyright © GENIVI Alliance 2017 | May (BEINIVI®

Attackers approach

« ROP attacks

— Kept short
— Either from in-process memory or from libc memory

— Used to obtain code execution and run reverse shell (i.e. the shell from
the device connects to the attacker C&C)

oS
A
'0 [J
"
Copyright © GENg,gance 2017 | May GENIVI®

Secure coding mitigations

 ROP attacks
— Kept short
— Either from in-process memory or from libc memory —

CFl tools fight ROP attacks and dramatically reduce the amount of
ROP gadgets

— Used to obtain code execution and run reverse shell (i.e. the shell from
the device connects to the attacker C&C)

Copyright © GENggance 2017 | May GENIVI®

Attackers approach

* Privilege escalation
— Hundreds of Kernel CVEs
— The 2" step of the attack (15t step is code execution)
— Access Control tools are an annoying obstacle

oS
A
'0 [J
"
Copyright © GENZ_,C)ance 2017 | May GENIVI®

Secure coding mitigations

* Privilege escalation
— Hundreds of Kernel CVEs
— The 2" step of the attack (15t step is code execution)
— Access Control tools are an annoying obstacle
Good Practice

Copyright © GENM-AJliance 2017 | May GENIVI®

Secure Coding best practices

Secure Coding best practices

Validate input

Use effective quality assurance techniques
Architect and design for security

Model threats

Default deny & the principle of least privilege
Practice defense in depth

Pay attention to compiler warnings

Adopt a secure coding standard

© NSRS

oSe
0. °® [4
l..'
Copyright © GEngance 2017 | May GENIVI®

Validate input

* Be suspicious of:
— Command line arguments
— Network interfaces
— Environmental variables
— User controlled files

Copyright © GENZ-ﬁance 2017 | May GENIVI®

Use effective quality assurance techniques

* Fuzz testing
* Penetration testing
e Source code audits

* Independent security reviews

— Bring an independent perspective identifying and correcting invalid
assumptions

oS
A
'0 [J
"
Copyright © GEqugance 2017 | May GENIVI®

Architect and design for security

 Architect and design your software to enforce security policies

* Define security requirements early in the development life cycle
« Keep it simple

» Complex designs => security mechanisms become more complex

oS
A
'0 [J
"
Copyright © GEngance 2017 | May GENIVI®

Model threats

* Try to anticipate the threats:
— Attacker objectives
— Key assets
— Threats to each asset or component
— Rate the threats based on risk ranking

— Develop threat mitigation strategies
 (designs, code, and test cases)

Copyright © GENM-Tnce 2017 | May GENIVI®

Default deny & the principle of least privilege

* Access decisions based on permission not exclusion

— The default is that access is denied and the scheme identifies when
access is permitted
* Processes should execute with the least set of privileges
necessary to complete their job
— Elevated permission should be held for minimum time

oS
A
'0 [J
"
Copyright © GEngance 2017 | May GENIVI®

Practice defense in depth

« Manage risk with multiple defensive strategies
— When one layer is inadequate, another layer can prevent

oS
A
'0 [J
"
Copyright © GEngance 2017 | May GENIVI®

Pay attention to compiler warnings

« Use the highest warning level available
» Eliminate warnings by modifying the code

« Use static and dynamic analysis tools to eliminate additional
security flaws

oSe
0. °® [4
l..'
Copyright © GENB,C)ance 2017 | May GENIVI®

Adopt a secure coding standard

* Develop and/or apply a secure coding standard for your target
development language and platform
— Cert
— Open Web Application Security Project (OWASP)
— Berkeley
— QOracle
— Microsoft

Copyright © GENSAJliance 2017 | May GENIVI®

® : S 2
€ e 2 3 v]
; S asrs . -y 5 3 :
: A T [L
! e} :\, : DR |
\ ; THEE I A B v
Y - > ¥ > ‘v L .
. ’ 4 & ar ! _", 4 :
- . - Py ——y vt
- ? ,.Q" By %1 =]
+ - 3’ a - - o % \ '
{ - 2 hbsiisa e [SEERCE Rl
/ ! - AR - !
. 1 N » :
- 0
- S SR RS- — - .
S m l T n n : -

May 10, 2017 | Static Code Analysis

Sergiu ZAHARIA

cachnoloqy Arcn

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries. Copyright © GENIVI Alliance 2017.

Static Code Analysis

Content

* Why security standards

 What can SAST scanners identify

* Deep dive into some vulnerabilities

» Solutions at code level and process level

oSe
0. °® [4
l..'
Copyright © GENIV5IH40e 2016 | Month BBENIVI®

Why Security Standards

SHAttered

The first concrete collision attack against SHA-1
https://shattered.io

Google

February 23, 2017

A collision is when two different documents have the same hash fingerprint

Announcing the first SHA1 collision a o 2 & o
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.htm| e o B e o o
“Today, more than 20 years after of SHA-1 was o N o “
first introduced, we are announcing the first a o = =2 o
practical technique for generating a collision.” Doc 2 3E24.AF baddoc?
Normal behavior - different hashes Collision - same hashes

Potentially Impacted Systems

We are not all cryptologists!
Y =m P o

Document HTTPS Version Backup
signature certificate control (git) System
[NP

Copyright © GEI\B 5iance 2017 | MayBENIVI®

Why Security Standards

Benchmark
OWASP Top 10
OWASP Top 10 Mobile
PCI DSS

Mitre CWE
SANS Top 25
FISMA

HIPAA

MISRA

BSIMM

NIST SP 800-53
DISA STIG 4.1
WASC 2.0

Many security standards

Mandatory or not, we have to follow them
Groups of experts do a great job for us
Not easy to know details of all standards

SAST solutions use them when reviewing code

Copyright © GEV\g Sance 2017 | May@GBENIVI®

What can SAST scanners identify

* Vulnerabilities in the code (sample from Find Security Bugs):

MessageDigest sha1Digest = MessageDigest.getinstance("SHA1");

 How these vulnerabilities are propagated in the application

sha1Digest.update(password.getBytes());
byte[] hashValue = sha1Digest.digest();

« Which security standards are not fulfilled
OWASP Top 10, SANS Top 25

Copyright © GErg 7ance 2017 | May@GBENIVI®

Types of findings (from a tool)

500 findings listed, 0 filtered
Analyzed: 2017-03-31 10:35:02

WebGoat vulnerable application analyzed
Findings based on Top 10 OWASP

Most of us know about command injection,

SQL injection, hardcoded passwords and buffer
overflow vulnerabilities

Let’s see in detail cryptology related findings
which otherwise would pass undetectable

Cryptology is vital for automotive code; so risk
ratings given by SAST solutions may be lower
than real risk level

Tags:OWASP Top10 Problem Type Rating <> Category Classification

A1l:Injection (74)
A 2: Broken Authentication and Session Management (81)
A 3: XSS (69)
A 4: Insecure Direct Object References (17)
A 5: Security Misconfiguration (10)
A 6: Sensitive Data Exposure (32)
A9: Using Components with Known Vulnerabilities (21)
A10: Unvalidated Redirects and Forwards (3)
4 <none> (193)

O O O O O O O O O O O O O O 0w

Applied Java Reflection (4)

Usage of 'java.util.Random’ (2)

10 Stream Resource Leak (71)

Socket Resource Leak (2)

Trust Boundary Violation: HTTP Session (5)

FindSecBugs: Cipher is susceptible to Padding Oracle (2)
FindSecBugs: Cipher with no integrity (2)

FindSecBugs: Cookie without the HttpOnly flag (4)
FindSecBugs: Potential XPath Injection (1)

FindSecBugs: Predictable pseudorandom number generator (2)
FindSecBugs: Regex DOS (ReDOS) (2)

FindSecBugs: Tainted filename read (6)

Findbugs: Class defines equals() and uses Object.hashCode() (2)
Findbugs: Class inherits equals() and uses Object.hashCode() (73)

Findbugs: Field isn't final and can't be protected from malicious code (1)

Copyright © GEr\g 8iance 2017 | May@GBENIVI®

CWE Number

Reviewed State

Date

S

m

Exemplification on crypto-concepts

AL DIUKET AULTIETILICAUIUT dIu 531011 IVIdlIdgC"ICIIL \oL1)
A 3: XSS (69)
A 4: Insecure Direct Object References (17)
! A 5: Security Misconfiguration (10)
4 A 6: Sensitive Data Exposure (32)
Cryptographic Algorithms Used in Project (7)
Cryptographic Algorithms w/o Specified Crypto-Provider (7)
) Rating: 1.00 (7)

/i

m

[
A O o®

Encodinglesson.java:319 - Cryptographic Algorithms w/

-

[\

%, Encodinglesson.java:321 - Cryptographic Algorithms w/

> [.‘;,

E\

% Encodinglesson.java:366 - Cryptographic Algorithms w/

=
-
-

Encodinglesson.java:461 - Cryptographic Algorithms w/
Encedinglesson.java:485 - Cryptographic Algorithms w/
%, HttpOnly.java:186 - Cryptographic Algorithms w/o Spec
Weak Hash Algorithm (1)

Unsecured Cookie (7)

Privacy Leak (5)

FindSecBugs: Cookie without the secure flag (4)

FindSecBugs: MD2, MD4 and MD5 are weak hash functions (1)
A 9: Using Components with Known Vulnerabilities (21)

C

.
-
=

A

o® o o oW oW

% Encodinglesson.java:364 - Cryptographic Algorithms w/|

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
37
372
373
374
375
376
377
378
379

EY-V.%

public static synchronized String encryptString(String str, String pw) throws SecurityException

{

try

{

PBEParameterSpec ps = new javax.crypto.spec.PBEParameterSpec(salt, 20);

SecretKeyFactory kf = SecretKeyFactory.getnstance("PBEWithMD5AndDES");

Cipher passwordEncryptCipher = Cipher.getlnstance("PBEWithMD5AndDES/CBC/PKCS5Padding");
char[] pass = pw.toCharArray();

SecretKey k = kf.generateSecret(new javax.crypto.spec.PBEKeySpec(pass));
passwordEncryptCipher.init(Cipher.ENCRYPT_MODE, k, ps);

byte[] utf8 = str.getBytes("UTF-8");

byte[] enc = passwordEncryptCipher.doFinal(utf8);

return encoder.encode(enc);

Al10: Unvalidated Redirects and For S
< | 1]

_1 Finding Lo... | “- Finding De... Y Prob

\=| Encodinglesson.java (<Source Cod

SecretKeyFactory kf = SecretKeyFactory.getinstance("PBEWithMD5AndDES");

Cipher passwordEncryptCipher = Cipher.getinstance("PEEWithMD5AndDES/CBC/PKCS5Padding”);

Copyright@GEr\Bgance 2017 | May@GBENIVI®

Exemplification on crypto-concepts. Solution

After several minutes of research:

Bouncy Castle is a powerful and
complete cryptography package.

StandardPBEStringEncryptor myFirstEncryptor = new StandardPBEStringEncryptor();
myFirstEncryptor.setProvider(new BouncyCastleProvider());
myFirstEncryptor.setAlgorithm("PBEWITHSHA256AND128BITAES-CBC-BC");

Copyright © GEV\B Gance 2017 | May@GBENIVI®

Holistic Solutions for Application Security

@)

AiA

Security Fix

Open Source
Code analysis

o Security Architecture (
Assessment
o Security Requirements (O
AiA Definition Sk
O Secure Code

Contextual

Requirements

Review

Improvement Training

a

Technical Security
Requirements for used

Business Application

1010100
0010001

programming languages

N

Requirements Code

Automated and Manual
Testing

Contextual
Training

Continuous security improvement
via Technical Security Advisory

Secure Application
RISK MANAGEMENT

Security-Aware
Developers

AiA

O Penetration Testing /
Dynamic Analysis

|

X L

Developers

General Secure
Coding training

O Security Acceptance
Tests

Copyright © GEI\G AIIiance 2017 | MayBENIVI®

Zoom on Secure Code Review Process

; Security-Aware

SASTTOOLS ! | Code Reviewers E

Industry average

s

Java 500 flaws '\ _+Java 500 fmdlhgs Java 80 true positives Developers

C++ 250 flaws C++ 250 findings C++ 50 true positives Secure code
/ 10k LOC 1010100 / 10k LOC | /10k LOC
) oo | > 4iA | > lhmd‘ >
00117 i

Unsecure code 001/ Include false pokitives lnclude mitigation Includes low level risk flaws
pol | g . . risk f
/Before testing B and duplicates puplicate identification réecommendations IXIng All high an_d_ medium risks
| False positive reduction | mitigated

Secure code [.)
' Fixing recommendations

analysis
False Positives The security-aware code reviewers analyze the findings provided by SAST and identifies the ones which are not
Reduction posing a real security risk (false positives) and the duplicates, based on the context provided by the application

type, the IDE content and/or the involved developers. The code reviewers have access to all code required by a
gualitative analysis of true positives.

True Positives For the true positives findings, the security-aware code reviewers provide fixing recommendations according
Fixing Recommendation to the programming language, context and type of flaw. The fixing process is implemented by the developers.

Copyright © GEV\G gance 2017 | May@GBENIVI®

Which languages can SAST solutions cover?

Programming Language TOOL1 TOOL?2
Java Yes Yq

Most of SAST tools cover between Ner es | v T
1-3 languages like Java, C/C++, C# " tes | Vohwiee
avascrip Yes gScala
C/C++ Yes Y;Groo}/y
. o (Golan Bash/Shell Scripting
Some of them are freeware solutions > Emesmpt
Ruby Yes YEC:P
]] ObjectiveC Yes Yéper|
There are commercial solutions - W I
covering most common languages and e RS
IDE/Build integration capabilities Angularss Bl e
JEE Yes Y4ABAP/BSP
Django Yes YdActionScript/MXML (Flex)
Let's see quickly how SAST tools work! jasenerfacesis | ves & SRt
ersey es obo
Spring Yes HColdFusion CFML
JSP Yes Yes
Swift Ye_s_‘ Yes

Copyright © GEV\B 3iance 2017 | May@GBENIVI®

3o y)
4 ~ 2 3 - '
-~ gy - . L
, (=~ =~y
5 : s Fid -
@ N > . ™ "'A\': - A o = \ -.‘f'/‘— g
\ £ - < B\ TN —— L | —
e Jde i ey ¥ y: “ N
" and y @~ . e - _—— 0 'y < y ‘\
. Aty g PR . S -
. 4 A -,
d Tohedll TN b - » 4 ~ . "
B Py SN R . =
" - 4t 9 ol A o . » 1004 3 .
» [~ - et ", 14 ' | 13 -
- : , ————s - Py | At e TSy s -1 - -l =
» i '\ _ - T ST 1 » - 3 L,
: v y) - ™ - A X
3 R it W

Security Training »

May 10, 2017 | Free and Open Source Software Security

Sergiu ZAHARIA

achhnoloqy Arch

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries. Copyright © GENIVI Alliance 2017.

) R it Y
'

Free and Open Source Software Security

Content

 What means FOSS / Security?

* \What developers can do?

* How automatic tools help?

* The holistic approach around FOSS / Security

oSe
0. °® [4
l..'
Copyright © GENIV6I60e 2016 | Month BBENIVI®

What means FOSS(S)ecurity and why we need it?

FOSS(S) = Scanning and indexing the entire library of freeware and open source
components, to identify the already published vulnerabilities related to those components.

Known Critical
or Severe Known restrictive
Security licenses
Vulnerabilities

Components

106 24 9

Sonatype 2014 analysis of Application Health Check results
(for an average application)

Copyright@GEhG?ance 2017 | May@GBENIVI®

Do you remember the Bouncy Castle package?

CVE Details

The ultimate security vulnerability datasource

Bouncycastle : Security Vulnerabilities

CVSS Scores Greater Than: 0 1 2 3 4 5 6 7 8 &
Sort Results By : CVE Number Descending CVE Number Ascending CVSS Score Descending Number Of Exploits Descending

Copy Results Download Results

CVEID CWEID #of Exploits Vulnerability Type(s) Publish Date Update Date Score Gained Access Access Complexity Authentication Conf. Integ. Avail.
Level
1 CVE-2016-2427 00 +Info 2016-04-17 2016-08-18 4.3 None Remote Medium Not required Partial None None

** DISPUTED ** The AES-GCM specification in RFC 5084, as used in Android 5.x and 6.x, recommends 12 octets for the aes-ICVlen parameter field, which might make it easier for attackers to defeat a cryptographic
protection mechanism and discover an authentication key via a crafted application, aka internal bug 26234568. NOTE: The vendor disputes the existence of this potential issue in Android, stating "This CVE was raised
in error: it referred to the authentication tag size in GCM, whose default according to ASN.1 encoding (12 bytes) can lead to vulnerabilities. After careful consideration, it was decided that the insecure default value of

12 bytes was a default only for the encoding and not default anywhere else in Android, and hence no vulnerability existed.”
2 CVE-2015-7540 310 2015-11-09 2016-12-07 5.0 None Remote Low Not required Partial None None

The Bouncy Castle Java library before 1.51 does not validate a point is withing the elliptic curve, which makes it easier for remote attackers to obtain private keys via a series of crafted elliptic curve Diffie Hellman

(ECDH) key exchanges, aka an "invalid curve attack.”
3 CVE-2013-1624 310 2013-02-08 2014-04-19 4.0 None Remote High Not required Partial Partial None

The TLS implementation in the Bouncy Castle Java library before 1.48 and C# library before 1.8 does not properly consider timing side-channel attacks on a noncompliant MAC check operation during the processing of
malformed CBC padding, which allows remote attackers to conduct distinguishing attacks and plaintext-recovery attacks via statistical analysis of timing data for crafted packets, a related issue to CVE-2013-0169.

4 CVE-2007-6721 2009-03-29 2012-11-15 - None Remote Low Not required Complete Complete Complete

The Legion of the Bouncy Castle Java Cryptography API |before release 1.38, §s used in Crypto Provider Package before 1.36, has unknown impact and remote attack vectors related to “a Bleichenbacher vulnerability in
simple RSA CMS signatures without signed attributes.”

https://www.cvedetaiIs.com/vuInerabiIity-Iist/vendor_id-7637/Boupcycastle.htmI
e

Copyright © GEV\G 8iance 2017 | May@GBENIVI®

What should developers do?

f w
NEWS ?

Friday 23rd December 2016

“The Bouncy Castle Crypto
package is a Java implementation
of cryptographic algorithms.

The package is organized so that
it contains a light-weight API
suitable for use in any
environment (including the J2ME)
with the additional infrastructure
to conform the algorithms to the
JCE framework. *

Each FOSS component may add critical
vulnerabilities to the application code

Developers should be aware of each version of
each component and their level of risk

Or maybe not... and use some automatic tools
and processes to do this work in background

FOSS(S) tools estimate the application security
and compliance risk based on used components

Copyright©GEV\8gance 2017 | May@GBENIVI®

Are we really vulnerable?

L on)

 { CONTRAS T‘The Unfortunate Reality of Insecure Libraries”

SECURITY

Total Downloads of Vulnerable Libraries

(Logarithmic)
100,000,000
10,000,000 -
1,000,000 -~
100,000
10,000 -
1,000 -
100 -
10 -
1 T T T T
o L \ & 0 A% W & O & A
© e}& V§ \?;\/ '?,d~ \& 0‘\ z“"& '\" v o’é\ (p‘} ¥ @q} N <<'b& .<.;b‘°
+-°0‘\°‘°"}"(\Q'®(’Q$ & QA W el X
¢ & g & o2 A? > L O ¥ @
& R S & & L & F & & ¢ .
g ° v LN X7 P R 9 5
W R Ke o 5
V.Q \'b .’.‘:o
"n!

Copyright © GEN7| Gance 2017 | MayBENIVI®

Let’s find out using FOSS(S) services!

Security Risk
Y High s IR
Yt”e‘““m g « Bill of Material (BoM) with FOSS components and
ow
None - their versions is generated per each project
« Components with known security vulnerabilities
[s are signaled, with their corresponding level of risk
@ OpenSSL 0.9.5a 13 |
 The resulting risk is assessed against the
© Apache Stuts (125 o acceptable risk threshold (the policy)
@ Apache Commons FileUpload 1.1
Flasticsearch | 1.4.2 [« There is a formal process of application security
OpenStack | 0.5.0 risk management, protecting the developers
jQuery 1.6.2
Screenshot from @BLACKDUCK .:.o.:.
l..l

Copyright © GEN7| Alliance 2017 | May@GBENIVI®

Vulnerabilities are detailed for each component
OpenSSL » 0.9.5a

Versions: 275 | Phase: Released |

Displaying 88 Vulnerabilities for OpenSSL 0.9.5a

Identifier
> CVE-2009-3245
> CVE-2016-2108
> CVE-2016-2109
> CVE-2006-2940
> CVE-2002-0656
> CVE-2002-0655
> CVE-2010-4252
> CVE-2016-6303
> CVE-2016-2182
> CVE-2016-2177
> CVE-2012-2110
> CVE-2010-0742
> CVE-2014-3567
> CVE-2015-0209

Published
Mar 8, 2010
Dec 28,2016
Dec 28,2016
Oct 2, 2006
Jan 1,2004
Jan 1, 2004
Dec7,2010
Feb 23, 2017
Feb 23,2017
Feb 23, 2017
Oct7,2013
Jun 4, 2010
Jul 8, 2016

Mar 20, 2015

Distribution: External

Base Score ¥
10 I

10 I

7.8 I
7.8 I
7.5 I
7.5 I
7.5 I
7.5 IS
7.5 I
7.5 I
7.5 I
7.5 I
7.1

6.8 I

Exploitability

10 I
10 I
10 I
10 I
10 I
10 I
10 I
10 I
10 I
10 I
10 I
10 I

8.c I
8.6 I

Screenshot from @ BLACKDUCK

Y Filg

Impact Status
10 I
10 I
6.9
6.9 .

6.4 .
6.4 .
6.4 .
6.4 IS
6.4 .
6.4 .
6.4
6.4 .
6.9

6.4 .

88

Vulnerabilities

Description

The OpenSSL Project is a collaborative effort to develop a
robust, commercial-grade, full-featured, and Open Source
toolkit implementing the Secure Sockets Layer (SSL v2/v3)
and Transport Layer Security (TLS v1) protocols as well as a
full-strength general purpose cryptography library. The
project is managed by a worldwide community of
volunteers that use the Internet to communicate, plan, and
dev

Show Less

of Released on Apr 3, 2000

€, Licenses

Permissive

SSLeay License | |

OpenSSL Combined License

l.il
Copyright © GEN7I 2ance 2017 | MayBENIVI®

Vulnerability Management is a... managed process

Remediation Status

VI New

Remediation Required
Mitigated

[Vl Remediation Complete
[V Patched

Ignored

BB@NEQ

Identifier

[[WwbD] CVE-2016-3082
[[nwD | CVE-2013-4316
(WD] CVE-2017-5638
(WD] CVE-2012-0838
[Wwp] CVE-2016-0799
[[nvD] CVE-2016-0785
WD] CVE-2016-2842
(Wb] CVE-2009-3245
[[WwB] CVE-2016-2108
o) CVE-2016-0705
vulnDB | 145647

vulnpe | 103918
[[Wwp] CVE-2016-3081
[[awD | CVE-2013-2251
[[Wwbp] CVE-2013-2135

[(nvD | CVE-2013-2134

Published
May 17, 2016
Dec 7, 2016
Mar 27, 2017
Mar 5, 2012
Dec 28, 2016
Apr 12,2016
Jan 26, 2017
Mar 8, 2010
Dec 28, 2016
Dec 28, 2016
Oct 14, 2016
Mar 4, 2014
Nov 1, 2016
Mar 31, 2016
Jul17,2013

Jul17, 2013

Aff. Versions

3

2

Base Score

10 I
10 I
10 I
10 I
10 I
10 I
10 I
10 I
10 I
10 I
10 I
10 I
9.3 I
9.3 I
9.3 I

9.3 I

Exploitability

10 I
10 I
10 I
10 I
10 I
10 I
10
10 I
10 I
10 I
10 I
10 I
8.c IS
8.c IS
8.c I

8.6 N

Impact

10 I
10 I
10 I
10 I
10 I
10 I
10 I
10 I
10 I
10 I
10 I
10 I
10 I
10 I
10 I

10 I

Screenshot from ?LACKD UCK

Copyright © GEN7I 3iance 2017 | May@GBENIVI®

The holistic process around FOSS(S)Security

S {C::‘:s::::' hhA J
. : A Developers . . .
: IDE/Build System P — ’ « Technical integration
DA ~/
internal Code /Apps | ’N ” ml * Processes integration
- ! Developers/QA .

Open Source Software
Software Frameworks

D, > E * [P rights analysis

Secure and Compliant

ITAcOmpnance Application « Enhancing SAST

o
Ul'ﬂl | |
2.0 | OFWL !

B |

|
Technology Maintenance’
(e.g. Black Duck, Cx 0SA) Support /)

Validation

Open Source RISK MANAGEMENT
Real Time Qualitative input to
Developers and QA

Additional security layers might

l help to see how
& open Source FOSS components behave in
‘m Compllance and Securlty Continuous Check for Ope ratl on '
vulnerable dependencies e
oJe,

Copyright © GEN7I ql-iance 2017 | May@GBENIVI®

Network Concerns Ted Guild, W3C Automotive Lead

GENIVI

http://genivi.org/events

Attack Surface Size

Vehicle's interet connection is the biggest attack surface

Reaction from technical peers

Internet is a hostile environment

Genivi Security Expert Group

Sound Practices

Education

Coding Guidelines
Code Analysis
Threat Modeling
Architecture

Layering

High Level

Connection Accounting
External Site Security Evaluation

Imposing Rigid Network Access

Guidelines

Ecosystem

We are building a framework for 3rd party apps (FB, Waze, Pandora)

HTML5/QT/Headless
Signals

Nav/LBS

Media (services, library)
Notifications

Payments

Wishlist: traffic, weather, speech...

Other day job - Head of IT

Domain hijacking

DDoS

State actor probes

Phishing

Misuse of services we provide
Code Audits

Penetration Testing
Compromise Forensics

Counter measures

Memories...

Remember when you could account for every network connection?

IP logger in simpler times
CDN, trackers, adverters, "like us”

Blockers: Flash, Ads, Trackers, JS

Development and Testing

Know every connection you require
Run traffic monitors during testing phases

W3(C's DTD traffic problem

Lock it down

Possible package requirements for 3rd party apps. Suggestions partially

address OWASP top ten

DNS zone files

Accompanying Firewall rules

Apparmor/SELinux/Smack rules

Static SSL Certificates in /etc/ssl/certs

All Javascript permitted to run should be packaged not fetched

Might as well package all needed images, css, html etc

https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet

SSL hardening

merely using SSL alone is not enough

HTTP Public Key Pinning (HPKP)

Cert strength requirement - beyond merely no SHA1

Site SSL evaluation tools

HTTP Strict Transport Security (HSTS) & Upgrade Insecure Requests (UIR)
Content Security Protection (CSP)

Follow W3(C's WebAppSec WG

10

https://www.w3.org/2017/Talks/tg-genivi-uk-sec/http-public-key-pinning
http://www.zdnet.com/article/google-accelerates-end-of-sha-1-support-certificate-authorities-nervous/
https://www.ssllabs.com/ssltest/
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet
https://www.w3.org/TR/upgrade-insecure-requests/
https://w3c.github.io/webappsec-csp/2/
https://www.w3.org/2011/webappsec/

Web Application Firewall (WAF)

Another idea

Web Application Firewall - car does its own MiTM to outside world

Can run same or another WAF as security layer to Web Sockets and HTTP

REST services on vehicle

Apache mod_security example

Limit methods (GET POST), inspect permitted parameters
restrict which apps (token or other id)

Control what data is allowed to leave the vehicle

11

https://en.wikipedia.org/wiki/Application_firewall
http://modsecurity.org/

Web Application Firewall (WAF)

Continued

These rules for a given 3rd party app could again be part of package
Limit content types - no Javascript from outside world

Verify content types, ensure no injection of malicious (eg tainted media
files)

Sensitive needed content can be signed with W3C WebCrypto API

It can cache content too, useful for intermitten connectivity and

performance

12

https://en.wikipedia.org/wiki/Application_firewall
https://dvcs.w3.org/hg/webcrypto-api/raw-file/tip/spec/Overview.html

Open Browsing

Hearing some are considering allowing full open browsing from vehicles

WTF, seriously?

Yes the guy from W3C is saying he doesn't want your car on the web -
personal opinion

Sales decision

Fine, put it in its own vm

Zero connection capabilities to APIs being exposed

Immutable/Read-only FS or clean image on each reboot?

13

Feasability?

Fragmented industry / multiple platforms
Marketing & Business forces

W3C Guidelines

Genivi Platform implementation

Get Involved!

14

Thank You

Questions
Follow up: ted+auto@w3.org

https.//www.w3.0org/auto

15

mailto:ted+auto@w3.org
https://www.w3.org/auto

@ ‘.-l‘ p
- - fm be 7} R ." .\:‘;"-
-t SR u o -
3 / 9
- 27 .:._t y A N Ax 128
- d : ... R o s \ 554 1
jo 3 % 5 -
‘n’.'

May 11, 2016 | Overview

Stacy Janes chief Security Architect - Irdeto

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries. Copyright © GENIVI Alliance 2016.

Software Security 101

Integrity and Confidentiality

Proving the
validity of
data.

Digital
Signature

Protecting
Confidentiality the contents
of data.

ose

) o0 [J

l...
Copyright © GEN|v71ri7|ce 2016 | Month (BENIVI®

Hashing

[)
Unlike encryption, hashing is a “one
way” function

\. J

()
A hash is used to check the validity
of data. It does not protect data.

\.

Passwords should be hashed and
not encrypted when stored.

\. J

Alice Bob
plaintext, plaintextyg
hash hash

?
digesty digesty = digesty

Copyright © GENIVTgce 2016 | Month BENIVI®

Encryption — Symmetric Key

()
Encryption and decryption done
with the same key

\. J

é)
Symmetric cryptography is fast
(relative to Asymmetric)

\. J

é)
Key management becomes
cumbersome beyond a few actors

\. J

Alice . Bob
% L1) TI— %
secret
plaintext plaintext
encrypt with K decrypt with K
ciphertext ciphertext

eQVe\s. df’op
Pe,.s.,

Copyright © GEva-?u@ce 2016 | Month BENIVI®

Encryption — Asymmetric Key

"> Encryption with Public Key
L> Decryption with Private Key

rAsymmetric cryptography is
 slow(relative to Symmetric)

Private Keys are not shared

Public Keys can be shared with
many actors. PKI enable this.

~ Alice Bob
xﬁ-% %Kpm
plaintext plaintext
. Bob
encrypt with Kpgblic decrypt with KBP:.’R,“,_
ciphertext ciphertext

eQVes df‘op
Pe,-sl

Copyright © GENIV8I@ce 2016 | Month BENIVI®

Digital Signature

7

Encrypted Hash

V.

> Encrypt with Private Key (Sign) w
> Decrypt with Public Key (Verify))

rX.509 Certificate around Public Key \
Lfor identity verification

J

Does not hide data

A

laintext
plai A

hash l

digest,

Ali
encrypt with K pr:-\c,ztel

digital signature

Bob
Kpr'ivcn'e

plamfex'rB

l hash
p)

digesTA = digesTB

. Alice
Idecryp’r with K public

digital signature

Copyright © GENIV8IIi1nce 2016 | Month BENIVI®

“Defeating” Crypto — Easier to Bypass

Brute force is typically not a realistic attack

s E£Nd point access opens up attack vectors

 Key lifting. Easy for software key if not properly protected
 Binary modification to “jam” logic branch for signature check
* Lifting clear data from memory after decryption

* Inserting malicious data to be signed/encrypted

* Shimming interfaces

oo

o...

l...
Copyright © GENIV8I?ce 2016 | Month BBENIVI®

Branch “Jamming”

~

Let software verify signature

\.

vy

loc_100000D12: ; char *

rdi, [rbp+var_20]
rsi, cs:_storedPW ; char *

~

Find branch that checks return code

\.

loc_100000D58

r :
Reverse comparison opcode to
_allow invalid signature to pass

v
(M
loc_100000D58: ; "password correct. \n"
lea rsi, aPasswordCorrec
mov rax, cs:___stdoutp_ptr
mov rdi, [rax] ; FILE *
mov al, 0
call _fprintf
mov rdi, cs:_£fn ; char *
mov rsi, cs:_MODE ; char *
mov [rbp+var_254], eax
call _fopen
mov [rbp+var_240], rax
cmp [rbp+var_240], O
jnz loc_100000DD2

1

il s =
loc_:
jmp
‘o
°
(]
0e @
o..O

Copyright © GEN|V8||3ce 2016 | Month BENIVI®

“Shimming”

object, an attacker can interfere
\with the boundary.

(When an application uses a shared\

J

generate a ‘'shim’ to go between
\application and .so.

rAttacker uses export table of .so to B

y,

4 ™)
All data (parameters and return
codes) can be siphoned and

\modified.)

Software Application

g

Shared Object

Copyright © GENIV8IIi4:|ce 2016 | Month BBENIVI®

“Shimming”

(When an application uses a shared\
object, an attacker can interfere
\with the boundary.

Software Application

J

rAttacker uses export table of .so to B

generate a ‘'shim’ to go between I_I—
\application and .so. y

Malicious Shim
fAII data (parameters and return h I—I
codes) can be siphoned and
\modified. y Shared Object

Copyright © GENIV8II'50e 2016 | Month BBENIVI®

Software Protections — Integrity Verification

If software is running on a potentially hostile environment,
an attacker can have full control over software execution.

Attacker can use analysis tools to detect and circumvent
in-software checks.

Verification of software integrity should be done:

« At install-time
« At start-time
e During run-time

Copyright © GENIV8I@ce 2016 | Month BBENIVI®

Software Protections - Obfuscation

é)
» Similar to integrity checks, code obfuscation is useful when software is

In a hostile environment.
» Code obfuscation can strongly mitigate static analysis of code.
» Data obfuscation can hide data after decryption to mitigate against

L siphoning)
rSome form of code and data obfuscation is widely and expertly used by)
Lauthors of sophisticated malware.)
rObfusc:ation of open source can be tricky. License issues. Leakage of)
Linformation through system calls.)
|°i'i'|

Copyright © GENIV8IH7|ce 2016 | Month BENIVI®

Code Entanglement

Avoid assertion checks on sensitive decisions such as a digital signature or
password validation.

“‘Entangle” the input value by using it to get to the asset. Eg: password is
decryption key to decrypt file.

Assertion Check Entangled

pwHash = getPasswordHash () ;
1f(pwHash == storedHash) {
decryptFile (fn) ;

pwHash = getPasswordHash() ;
decryptFile (fn, pwHash);

} .‘:

i

Copyright © GENIV8II'80e 2016 | Month BENIVI®

. =
¥ ; : A s . = - -
GENIVI v

1}‘%}”,

Platform Securlt \’Arch eC ure __,.\ |

May 11, 2017| Hardware Enforced Security for Automotive

Erik Jacobson

Aarketing Director, ARM Architecture Technolog oup

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries. Copyright © GENIVI Alliance 2016.

Security: the climate change of engineering

Seriously, people? . .
ilang Security Required?

-3

Source: Barr Group
2017 Safety and Security Survey

|njure/Kill? Internet?

I+)

Security is critical for connected vehicles

Costs of non-compliance
Violations/fines, higher insurance premiums, litigation...

Regulatory
Critical Infrastructure Policy (ex. U.S. Federal EO 13636)
NIST Cybersecurity Framework

Industry compliance (ex. ISA/IEC 62443:EDSA)

Market pressures
Risk management from loss of credibility
Loss of proprietary or confidential information/assets

Choose the right-sized security solution

+Robustness of platform security , Target security use cases

Tamper Functional
‘ resistant Safety
HW enforced hardware Gateway ADA.S

Sensor Braking

° Bod VI

SW only ody , V2x

Chassis _
Telematics
4 I

HW enforced security expands implementation options and

flexibility while still offering robust architecture options
N/

Security targets for different threats

‘Secure Enclave,
Cost/Effort . HSM, TPM etc.
To Attack
HW enforced |
isolation

J

SW & HW Attacks
 Physical access to device
— JTAG, Bus, IO Pins,
*Time, money & equipment.

OS
TLS

[
\‘,‘ Software Attacks
(‘¢\ « Buffer overflows
«»’ « Interrupts
N2

* Malware

"Communication Attacks
*Man In The Middle

*Weak RNG

*Code vulnerabilities

YT H Cost/Effort
GENIVI to Secure

Establishing trust and integrity based on hardware

OS/RTOS

Trusted Software

Trusted Apps/Libs

TrustZone
SPE or TEE
=T Extended Root of Trust e.g. TrustZone based

TrustZone TEE or Secure Processing Environment (SPE)

CryptoCell
Initial Root of Trust: Dependable Security functions

Provisioned keys/certs

A Root of Trust starts at manufacturing time

SILICON VENDOR

OEM

DEPLOYED

or tier 1

Chip Manufacturing

Test &
Manufacturing

'

Silicon Vendor
Configuration

h 4

v

Production
Personalisation

Development

. . o
Perscnalisation

Device
Manufacturing

OEM Production
Configuration

In-field
Configuration

B

Deployed

v

OEM Development
Configuration

Development

Personalisation
may be done at
/Sul con Vendor,

/ |JOEM or beth

Injection of)
cryptographic
assets such as

unique keys)

-

Know your supply
chain!

~

J

Ideally a RoT lives in a security module...

Control interface

<«—— Security subsystem

Security resources Asymmetric ~ Symmetric Data ngh|y evaluated code developed
crypro crypointerface by security specialists & built in by

silicon vendor

Roots
of trust

Security Subsystem

Always
on

...and Iis exposed via hardware-enabled isolation layers

Secure world
(TCB)

Normal world

Normal World
loT developer writes Apps
On top of his/her chosen OS/RTOS

<«— Secure World
= Trusted code (mostly libs)
Often on top of an audited/reviewed
RTOS or similar — the Trusted

Non secure Execution Environment (TEE)
RTOS Secure RTOS

g Non secure app Secure app/libs

Control interface

<«—— Security subsystem

Security resources Asymmetric ~ Symmetric Data nghly evaluated code developed
Sk crypro.interface by security specialists & built in by

silicon vendor

Roots
of trust

Security Subsystem

Always
on

SW needs a std wav to access securitv functions...

Ma aged “Apps*, e.g. Commercial Music Services Weather Social Networks... E.g. Vehicle Functions Climate (HVAC) Navigation Radio

age@ | M 7T T : Native
~~~~~~~~~~~~~~~~~ lications | System User Interface | Applications

Application Manager Web App Runtime Java App Runtime Prog. framework/abstraction (Qt and others)

Navigation/LBS Media Framework Media Sources

Radio & Tuners

Telephony. Intemnet Functions

Telephony iqati Usb i Bluetooth
Broadcast Traffic Navigation Ma Playback Commercial uetoo! Web
AM/FIM "DAB/DRMl Data aenices Stack | info Care " |[ viewer Control || Browser Mass Streaming Stream DUMMI| Browser
(eg.Ofono) Storage
Terres- : T Map Data P Music Identi- Interpet i Cloud Based
SDARS || Ferres, (| Hp Radio || VMY P ntallpositioning|| POI Mar [ | [ indexer |[MUsic Ider mTe || 'HERS! || Aux |[oLnal| AP LotEl

Bluetooth F?Jra{:r’][%?s CE Device Integration Vehicle Interface
Mess- Phone Bluetooth Rear View Speech Speecn Graohical Smart ™ Shared Internet Seat Ciimate
aging || Book || (egBiz) Camera A ‘,1‘}) I Su)t 118N & L10N |[eERERT ] [Device Link|[ ©2rP1ay Address Book Ggﬁ‘;g’;tr Heating || Control
Hands- || Media : Guidance / Speech |[ Speechio 98- Hand- Android . Device Hieme Vehicl Vehicle
Tethering : Text § Buttons il MirrorLink Calendar, ccoun jicte
free || Playback € Sett Interface
Y Overlay ialog Dictation Mar writing Auto Sync sync etings ) ol (Eq AMB)

Device Mgmt Audio Mgmt Audio/Video Processing Graphics Support
Advanced - - rayer i
r Audio Video Ipputs Y OpenGL Traffic Vehicle Bus Pro CommonAPI
Hgi?é’é’&’r? Manager EC/NR ] Alsa g_e. \}]&5 M?r?:n c- (FI)EGL) ConnManshaping EAVB [[SOME-IP (CAN, FIexRay)gy DBUS || Runtime
: IVI Compositor Firewall c Message
uevent / udev Pulse Audio SRC || Codecs || Gstreamer (Wayland Protocol) l\l}grlﬁt 'Efg%hg Broker/Roguters

—

Housekeeping Security Infrastructure Diagnostics

Persistence SW Management

Persistence » [SW Loading| [ Package Node Node User Ermor/Event Encryption, Automotive
Client Lip | [Pers- Admin Mgr : Mgrg state Mgr || Startup Identification Logging(DLT) HSM Sigr% ures Diagnostics
SQLIE, Node Node
Pers. Health| Module SOTA User |[| User Data it Anomal - ; ;
oo Monitor Loader Client Regource || et switch || Migration Statistics MAC | petection R

Generic libraries (libc, etc.) Low-level system libraries (libusb etc.)

Drivers. BSP. Linux Kernel



... but we need to consider HW-enforced isolation

 To enable HW-enforced isolation, the most sensitive SW modules need
to be re-factored between “normal” and “trusted” (secure world)

 This can be time-consuming and involves effort

: Normal world Secure world
Security Infrastructure (TCB)

Secure app/libs
—
Non secure S RTOS
RTOS ecure

Encryption,
HSM || Signatures

Anomaly
Detection




Architecture standards link the HW & SW communities

Security Infrastructure

 Track 1: Standardize APIs for the

S | R SW community, supporting TEEs
and an upcoming Platform Security
‘ Architecture (PSA) specification

Network interface Cloud Trusted firmware
service (PSA)

clients * Track 2: Guide the SoC design
Operating system community with Trusted Base
Security Architecture (TBSA)

Applications

« GENIVI architecture security

Application hardware Security hardware

il components can be mapped
through TEE/PSA onto TBSA.

] 74




Platform Security Architecture (PSA)

‘iii
GENIVI



Platform Security Architecture

 ARM hopes to provide an interface to, and generic framework for, the

essential secure functional building blocks

« Reference implementations will provide models of how to construct the

ELO

ELI

EL2

EL3

Hardware

Non-Secure

App App App App

OS Kernel OS Kernel

Hypervisor

Monitor / Firmware

Secure

security system, including integration of ARM security IP

: _//—  Disk Secure
Encryption Storage
TA TA

T OS

GP TEE

Trusted r PEisk;d ll r _FW_ ll r chov:y I

Fi Key St Updat: API

irmware I ey Store I I pdate I I I
|
|

Asymmetric Symmetric Trusted I
Crypto Crypto Boot code I
Serv. Serv.

Asymmetric Symmetric Device Counter / TRNG Boot ROM
Crypto Accl Crypto Accl Lifecycle Fuse Logic (Entropy)



Security use-cases may be systematically
decomposed and repeatedly implemented

TPMS
Processing

Authenticated
Packet

« TPMS messages can be protected by message
authentication code (MAC)

* Normally produced by a keyed cryptographic hash
function.

* This protects both message authenticity and 1
integrity. Provisioned Asymmetric Symmetric

Key Store Crypto Crypto (MAC)
« TPMS and ECU SoC contain shared secret key o
« Key is securely stored and accessed by s/w using - - :
PSA Received Counter / I
-« TPMS packet may containone-time data e.g. TPMS Packet Fuse Logic l
sequence #, nonce etc, to protect against replay T :
attacks. |
TRNG On SoC NVM NVM I/F

(Entropy) (Fuses) (eg. RPMB)



The role of Secure Boot

Secure boot -> secure services

Legend

Application software

update

S
S~
(%p]
()
rl
-]
O
()]
(V)

function

function

functions
attestation

Application hardware

Application

software

Isolated software Secure debug

control

Secure IPC &
interrupts

Secure

partitioning

Isolated hardware

Secure boot/
loader

TCB software

TCB hardware




Summary

 HW enforced isolation is an important next step-up from SW-only
security but is below tamper-resistant HW on the attack-value graph

HW enforced security starts in the factory — know your supply chain!

API standardisation is important (of course!)

— But think in 3D not 2D when dealing with secure memory and device HW
architectures
— Take advantage of TrustZone — but takes work to audit & re-factor code

Platform Security Architecture (PSA) will standardize core secure
functions on ARM systems, underneath TEEs where present



Threat Assessments arﬂi Attack Téés |

May 2017 | You Can Do This (!)

Ben Gardiner

Principal Security Engineer, Irdeto

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries. Copyright © GENIVI Alliance 2017.



Agenda, etc.
. Subtree 5.0 RVI Cert is validly signed by Root CA
« 20 minutes

* 8.4 Deploy 'different root’ CA public key
5.0 RVI Cert is validly signed AND in RVI_Core instance
by Root CA 6.1 Compromise the deployed Root CA « 8.5 Create RVI Cert and sign with that
Public 'different root' CA private

® 7.2 Tamper Verification Routine via
Persistent Modification

6.2 Tamper Verification Routine
* 8.6 Hot patch erlang

7.3 Tamper Verification Routine via Runtime o g8 7 Runtime Modification of Verification

* What are Attack Trees”?

5.0 RVI Cert is validly signed by Root CA Attack Subtree

Wh at a re Th re at Attack Vector Node 8.4 Deploy 'different root' CA public key in

RVI_Core instance

AS S e S S m e n tS ’? An attacker tampers with a deployed RVI_Core instance's resources where the public key of
. the root CA is stored. They replace this public key with their own so that they can spoof the
authentication server. If they spoof the authentication server then they can generate their
own credentials.

) HOW Can I? Mitigation Required

For Implementors of RVI

°® ’? Credentials for RVI_Core need to be protected a rest and in memory against tampering (and
O u - replacement).

GENIVI'



More Effective to Fix Early

* Fixing Later -
Overhauls
 Does take time now,

but could save time In
the long run

 And focuses efforts to
areas that need it

HH
GENIVI



Attack Trees?
A model of...

Implant

* the many ways to
achieve a (nefarious)

goal
Steal (e.g Disable ’<
passport) Y Alarmet
. Victim Steal (e.g Disable
. Brings Out . Alarm (*)

‘iii
GENIVI’




Anatomy of an Attack Tree

‘ Plck Locks

Get Inside AN

‘Break Glass
N 4

LadderTb
Window

Brlng
Ladder

Steal (e.g | Dlsable
passport) | -y




To List Attacker Objectives...

» Making a List: things an Attacker

miaht lik _ Revenue /
9 tlike to do Profit Loss

 Steal Money

« E.g. “Game Over’s or Attacker
Money Makers

It helps to ask: "What affects the

bottom line?”
— E.g. Revenue Loss, IP Theft, Brand IP Theft
Damage ... - Steal
Passport
* Implant (e.g.
; bug)
l|'l

GENIVI’

Brand
Damage

* VVandalize




Attacker Objectives are...

« Attacker Objectives have both:

1. Clear Attacker Motivations

2. Clear Impacts (Severities) on the
Company/Org./Stakeholders

GENIVI

p—

Implant

(e.g. bug)

v
55255
R

Vandalize

Steal (e.g
passport)




What Are They Good For?

* They are a Tool With Multiple
Applications:

 When Narrowly-Focused:

— Preparing Offensive Plans
(pentesting)

— Considering Causes of Bugs
— Brainstorming Defenses

 When Broadly-Focused:
— Threat Assessments

GENIVI'



Threat Assessments

1. ...(revealed later)
2. ...(revealed later)
3. ...(revealed later)
4. Alist of mitigations

iiii
GENIVI



You Are the Subject Matter Experts

* Your Domain-Specific knowledge is

key
 You know the data flow —
| 1 [E—

HH
GENIVI



Establish a Common Language

* Create an Architecture Summary
* Do it from your (naive) perspective

* The result will
— highlight knowledge gaps and

— establish a vocabulary for the Threat
Assessment

« Capture the data flows in the
. System
i
GENIVI'



Generating The Trees

« Do a Tree for Each Asset
« Descend, descend, ...

* Worry about what, not how
— Consult your data flows

GENIVI

Implant
(e.g. bug)

Vandalize

Steal (e.g
passport)




Threat Assessments

1. A summary of all attacker
objectives

2. A detailed look at the attack vector
nodes of the trees

3. An analysis of risk (of the
objectives)

4. A list of mitigations

GENIVI

Subtree 5.0 RVI Cert is validly signed by Root CA

Compromise Root CA Secret (6.0)

8.4 Deploy 'different root' CA public key
5.0 RVI Cert is validly signed - AND in RVI_Core instance
by Root CA 6.1 Compromise the deployed Root CA 8.5 Create RVI Cert and sign with that
Public 'different root' CA private

* 7.2 Tamper Verification Routine via
Persistent Modification

6.2 Tamper Verification Routine
* 8.6 Hot patch erlang

7.3 Tamper Verification Routine via Runtime 4 8,7 Runtime Modification of Verification
Modification Routine in RVI_Core code

5.0 RVI Cert is validly signed by Root CA Attack Subtree

Attack Vector Node 8.4 Deploy 'different root' CA public key in
RVI_Core instance

An attacker tampers with a deployed RVI_Core instance's resources where the public key of
the root CA is stored. They replace this public key with their own so that they can spoof the
authentication server. If they spoof the authentication server then they can generate their
own credentials.

Mitigation Required
For Implementors of RVI

Credentials for RVI_Core need to be protected a rest and in memory against tampering (and
replacement).



Tools For Attack Trees

C | & https://app.mindmup.com/map/bengardineratirdeto/3.0%20Exploit%20Whitel... ¥r & ‘a 0 E ]
. Word Smart-Art
O r a r r e 2, 3.0 Exploit Whitelist Enforcement engardineratirdeto
s!t
File

PPPPPPP

Insert Edit View Help

* Visio o o o @ SO P D
* Omnigraffle

« Graphviz DOT

* Any indented text
 Mindmup (e.g. at right)

»

GENIVI



See’? You CAN do this!

Threat Assessments up-front will Your Future:
save time * Releases with no re-designs

» Threat Assessments up-front will « Threat Assessments in the design
target efforts phases

 You are the SMEs. You can do this

iii.
GENIVI



GENIVI'


http://www.genivi.org/
http://projects.genivi.org/
mailto:help@mail.genivi.org

