
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries.

Copyright © GENIVI Alliance 2016.

Vehicle Data Interfaces
May 11, 2017 | Enabling the Connected Car

Rudolf J Streif
Networking Expert Group Lead, GENIVI Alliance

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 2

The Problem

Smart City

Intermodal

Transportation

Smart Home

Connected

Devices

V2I V2V

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 3

The Challenge

• Providing access to vehicle status information and data to cloud

services, web applications, mobile devices and more.

• There is no standard convention for a vehicle data API.

• OEMs wish to be able to easily extend a standard API with signals

and controls for their purposes.

• Security mechanisms are required that provide authentication and

authorization to access vehicle signals and control.

• Design that decouples signal interface from the electrical

architecture of the vehicle.

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 4

Conventional Approach – “Fat API”

• An API for every signal or control:

• Issues with this approach:
– Addition of new signals and controls requires change of the specification.

– Challenges maintaining backwards compatibility.

– Complexity in providing per-API authorization and access control.

– Single end-point addressing.

var vehicle = navigator.vehicle;

vehicle.vehicleSpeed.get().then(function (vehicleSpeed) {

console.log("Vehicle speed: " + vehicleSpeed.speed);

}, function (error) {

console.log("There was an error"); });

var vehicleSpeedSub = vehicle.vehicleSpeed.subscribe(function (vehicleSpeed) {

console.log("Vehicle speed changed to: " + vehicleSpeed.speed);

vehicle.vehicleSpeed.unsubscribe(vehicleSpeedSub);

});

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 5

New Approach – Services with Signal Tree

• The core services get, set, subscribe, unsubscribe, getVSS and
authorize are provided by a network server.
– The services get, set, subscribe and unsubscribe provide access to vehicle

signals and controls.

– The service getVSS allows clients to query the server for available signals.

– Using the authorize service, the client presents a security token to the server
for authentication and authorization.

• Vehicle Signals and Controls are identified as nodes of a vehicle
signal tree.
– A fully qualified signal name addresses a single signal node.

– Wildcards for branches and node names provide for addressing of signal
groups.

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 6

Vehicle Signal Tree
Vehicle Signal Specification

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 7

Vehicle Signal Tree

• Tree structure provides
for hierarchical access
to signals and
attributes.

• Branches group signals
and attributes into
entities that logically
belong together.

• Wildcards allow access
to entire sets of
signals.

Body

Type

Body

Attribute Signal Private

Cabin

Refuel

Position

Door

Count

Body Chassis

Trunk

Open Locked

Body

Suspension

Mode

Signal

Attribute
Branch

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 8

Addressing

• Dot-notation for name path.

• Last path component, called node, represents the signal or
attribute.

• Leading path components represent the branches.

• Wildcards can be used to address multiple signals and/or
branches.

Signal.Chassis.Brake.FluidLevel

Signal.Drivetrain.FuelSystem.Level

Attribute.Cabin.Door.Count

Attribute.Engine.Displacement

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 9

Specification Format

• Formatted as YAML lists

• Simple conversion into other formats such as JSON, France IDL, CSV, and more

• # denotes a comment or a directive

• Extensible – standard fields are defined, additional fields can be added as needed

- Signal.Drivetrain.Transmission:

type: branch

description: Transmission-specific data

- Signal.Drivetrain.Transmission.Speed:

type: Int32

min: -250

max: 250

unit: m/s

description: Current vehicle speed, sensed by gearbox

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 10

Specification Format – Branch Description

• Fields

– type – always set to branch for a branch

– description – informative text describing the branch

- Signal.Drivetrain.Transmission:

type: branch

description: Transmission-specific data

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 11

Specification Format – Signal Description

• Fields
– type – data type expressed as France IDL data type

– unit – SI unit unless the type is Boolean

– min, max – unless the type is Boolean or enumeration

– enum – enumeration values for enumeration

– description – informative text describing the signal

- Signal.Drivetrain.Transmission.Speed:

type: Int32

min: -250

max: 250

unit: m/s

description: Current vehicle speed, sensed by gearbox

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 12

Specification Format – Attribute Description

• Fields

– Same as signal

– value – attribute setting

• Attributes are used to describe configuration data.

- Attribute.Cabin.Door.Count:

type: Uint8

value: 4

description: Current vehicle speed, sensed by gearbox

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 13

Aggregate File Inclusion

• Vehicle signal specification files (vspec) can include other
vspec file using the #include directive.

• Content of the included file is inserted into the including file
at the position of the #include directive.

• Facilitates collaboration and minimizes editorial conflicts.

vss.vspec

attribute.vspec

signal.vspec

oem.vspec

top level vspec

#include attribute.vspec

#include signal.vspec

#include oem.vspec

vss.vspec

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 14

Reuse File Inclusion

• Specification fragments are included at a specific position of the
signal tree.

• Specification fragments can be reused and an update is automatically
reflected everywhere where the fragment is used.

Signal

Cabin

Door

Open

Row1

Left Right

Row2

Left Right

Locked

Open

Locked

Open

Locked

Open

Locked

door signals

- Open:

type: Boolean

description: Door is open

- Locked:

type: Boolean

description: Door is locked

door.vspec

doors

#include door.vspec Signal.Cabin.Door.Row1.Left

#include door.vspec Signal.Cabin.Door.Row1.Right

#include door.vspec Signal.Cabin.Door.Row2.Left

#include door.vspec Signal.Cabin.Door.Row2.Right

cabin.vspec

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 15

Private OEM Extensions

Body

Type

Body

Attribute Signal

Cabin

Refuel

Position

Door

Count

Body Chassis

Trunk

Open Locked

Private

OEM_X

Teleporter

Mode

WarpDrive

Power… …

vss.vspec oem_x.vspec

Include standard vspec

#include vss.spec

Add proprietary signals

- Private.OEM_X.Teleporter.Mode:

…

- Private.OEM_X.WarpDrive:

…

oem_x.vspec

• OEMs can use GENIVI vspec as a starting point and add proprietary signals.

• Use cases for
– Reserved use by OEM and chosen vendors;

– Public use by 3rd party application developers.

• Mature private extensions intended for public use can be submitted for VSS inclusion.

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 16

Attribute Declaration and Definition

Body Type

Body

Attribute

Cabin

RefuelPos Door

Count

vss.vspec

Include standard vspec

#include vss.spec

Override/define attributes

- Attribute.Body.BodyType:

value: Sedan

- Attribute.Cabin.Door.Count:

value: 4

oem_x.vspec

• Standard VSS either
– Only declares an attribute or

– Declares and attribute and assigns a default value.

• Declaration is overridden by definition in an OEM- or model-specific VSS file
with the correct value.

Body Type

value: Sedan

Body

Attribute

Cabin

Refuelos

value: rearleft
Door

Count

value: 4

oem_x.vspec

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 17

Overriding Signal Definitions

GearChangeMode

enum: [“auto”, “manual”]

Drivetrain

Signal

vss.vspec

Include standard vspec

#include vss.spec

Override/define signal definitions

- Signal.Drivetrain.GearChangeMode:

enum: [“auto”, “manual”,

“semi-auto”]

oem_x.vspec

• Standard vspec lacks setting or has incorrect setting for a OEM/model

etc.

• OEM/model-specific vspec can override the setting.

oem_x.vspec

GearChangeMode

enum: [“auto”, “manual”,

“semi-auto”]

Drivetrain

Signal
Default signal definitions

- Signal.Drivetrain.GearChangeMode:

enum: [“auto”, “manual”]

vss.vspec

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 18

• Tools written in Python transform VSS YAML (vspec) format into other formats.

• Standard Python library parses VSS YAML into a data structure.

• Output generators use the data structure to write their specific format.

• Output generators for Franca IDL, JSON, CSV and VSI are currently available. Other generators can
easily be added.

• The VSI generator creates an alphabetically sorted list of the fully qualified signal and attribute names
and assigns an index value to them.

Format Transformation

vss.vspec

attribute.vspec

signal.vspec

oem.vspec

VSS

Parser

Franca IDL

Generator

JSON

Generator

CSV

Generator

VSI

Generator

Franca IDL

Specification

JSON

Specification

CSV

Specification

VSI

Generator

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 19

• Contributor forks GENIVI VSS repo.

• Contributor makes changes and submits pull-request against develop branch.

• Contributor e-mail genivi-projects mailing list pull-request info (hypertext link).

• Maintainer and contributors discuss and approve. Maintainer merges pull request.

• Releases are created by merging the develop branch into the master branch and tagging the master branch.

Contribution and Releases
• Repository on Github under the GENIVI organization:

https://github.com/GENIVI/vehicle_signal_specification

master

develop

V1
GENIVI Github Repo

V2 V3 V4

develop

Contributor Fork

PR #1 PR #2 PR #3 PR #4 PR #5

ML ML ML ML ML

https://github.com/GENIVI/vehicle_signal_specification

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 20

Architecture

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 21

TCU

IVI / Headunit

Web

Browser

Web

Runtime

Vehicle Data Interfaces Architecture

Vehicle Signal

Interface

(VSI)

RVI

Core

IoTivity BridgeWebSocket

Server (WSS)

JS Library JS Library

Managed

Runtime

RVI

Core

NiFi

Processor

Ingestion

Vehicle Bus

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 22

TCU

IVI / Headunit

Web

Browser

Web

Runtime

Vehicle Data Interfaces Architecture

Vehicle Signal

Interface

(VSI)

RVI

Core

IoTivity BridgeWebSocket

Server (WSS)

JS Library JS Library

Managed

Runtime

RVI

Core

NiFi

Processor

Ingestion

Vehicle Bus

GENIVI

W3C

OCF

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 23

Vehicle Bus (CAN) Binding

Speed

Vehicle

Signal

Cabin

Odometer HVAC

IsACActive

vss.vspec

Include standard vspec

#include vss.spec

Add CAN DB field

- Vehicle.Speed:

can: 47|16@0+ (0.01,0) [0|300] "0..300 kph, E = N * 0.01 + 0"

oem_x_can.vspec

Speed:

can: <candb>

Vehicle

Signal

Cabin

Odometer:

can: <candb>
HVAC

IsACActive:

can: <candb>

oem_x_can.vspec

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 24

GDP VSS CAN Demo

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 25

Vehicle Signal Interface (VSI)

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 26

• High-speed switchboard:
– Up to 10 million transactions per second

– Implemented in C

• Core library with API to implement VSI sources and sinks:
– Interfaces to vehicle buses such as CAN.

– Interfaces to RVI and/or other applications.

• Signals are identified by either name or ID. Two sets of APIs e.g.:
– int vsi_set_signal (vsi_result* result);

– int vsi_set_signal_by_name (vsi_result* result);

• Lookup functions to convert signal names to ID and vice versa:
– Signal map can be imported from VSI file created by the vss2vsi transformation tool.

• Signals can be grouped and an application can listen to individual signals in the
group or all signals.

• Signal switchboard is implemented as B-tree database in shared memory.

Vehicle Signal Interface (VSI) - Overview

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 27

• Producers post signals into VSI shared memory where they are stored in a b-tree
ordered by signal ID.

• Consumers read individual signals or signal groups from shared memory. Read
functions return immediately if a signal has been posted or block until a signal arrives.

• Callback functions are not supported.

Vehicle Signal Interface (VSI) - Design

Shared Memory

Consumer

Consumer

Consumer

Producer

Producer

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 28

Questions?

Copyright © GENIVI Alliance 2016 | October 20, 2016 | 29

Thank you!

Weekly Networking Expert Group Call
Mondays 0815 PT / 1715 CET / 1615 UTC

https://genivi.webex.com/genivi/j.php?MTID=mdb9482b92015e5cb7386c1a65e32a887

Meeting number: 579 975 193

Mailing List
https://mail.genivi.org/sympa/info/eg-nw

https://genivi.webex.com/genivi/j.php?MTID=mdb9482b92015e5cb7386c1a65e32a887
https://mail.genivi.org/sympa/info/eg-nw

