
  

static void
_f_do_barnacle_install_properties(GObjectClass 

*gobject_class)
{

  GParamSpec *pspec;
 

  /* Party code attribute */
  pspec = g_param_spec_uint64 

(F_DO_BARNACLE_CODE,
       "Barnacle code.",
       "Barnacle code",

       0,
       G_MAXUINT64,

       G_MAXUINT64 /* 
default value */,

       G_PARAM_READABLE 
| G_PARAM_WRITABLE | 
       G_PARAM_PRIVATE);

  g_object_class_install_property (gobject_class,
   

F_DO_BARNACLE_PROP_CODE,
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● Open Source experts and consultants
● 15 years of experience
● Important contributions to:

● Client-side web tecnologies: WebKit, Blink/Chromium, Servo
● Graphics & Multimedia: Mesa, GStreamer
● Compilers: V8, JavaScriptCore, SpiderMonkey, Guile
● Software-defined networking: Snabb
● ...



  

Black Chapter



  

Outline

● Open source browser technologies
● Wayland support in Chromium
● WPE: support for Wayland and other backends in WebKit
● Other options



  

Open source browser technologies



  

Open source web platforms

● Mozilla: Gecko and Servo
● WebKit family: OS X/iOS, WebKitGTK+, WPE
● Chromium and related projects



  

Mozilla

● Gecko engine
– Powers the Firefox browser
– Embedding not officially supported

● Servo: next generation engine
– Designed for memory-safety, parallelism, embedding
– New set of tools and technologies: Rust
– Currently under heavy development



  

WebKit

● From a simplified point of view, 
WebKit is structured this way:

● WebKit: thin layer to link against 
from the applications

● WebCore: rendering, layout, 
network access, multimedia, 
accessibility support...

● JS Engine: the JavaScript engine. 
JavaScriptCore by default.

● platform: platform-specific hooks 
to implement generic algorithms



  

WebKit ports

● Each port is an engine implementation with a specific set of 
technologies

● Platform bits: network, graphics, multimedia
● Specific API

● Many ports have existed: OS X and iOS, WebKitGTK+, 
EWebKit (EFL), QtWebKit, Chrome/Chromium..

● Currently official ports: OS X/iOS, WebKitGTK+, WPE (in 
process)



  

Chromium

● Vertical solution, from low-level graphics to UX
● Engineered to power Chrome and Chrome OS

● Embedding, portability use cases are secondary

● Designed to minimize external dependencies
● External deps are managed by the project build system
● Versions pinned, included in the build process
● In general, not designed to exchange subsystems



  

Chromium ecosystem

● External projects filling the gaps
● CEF: Chromium Embedded Framework

● Embed web content in applications
● Hybrid applications

● Electron
● Web application runtime

https://bitbucket.org/chromiumembedded/cef
https://electron.atom.io/


  

Wayland support in Chromium



  

Ozone-Wayland project

● Most complete Wayland implementation yet
● Developed mainly by Intel
● Downstream project at github
● Currently in maintenance mode

● No more active development
● Latest supported version is 53

https://github.com/01org/ozone-wayland


  

Upstream Wayland implementation

● Preliminary state
● Following Chromium master
● Not high priority at Google → Igalia taking the lead of the 

implementation
● Framed in a bigger effort to re-architect Chromium



  

Upstream Wayland implementation

● Why not merge Intel’s code upstream?
● Blocker: architecture differences

– Intel’s code doesn’t align with Chromium mid-term 
architecture plans

● Approach: implement basic bits following new architecture, 
then migrate features and code as possible



  

Chromium architecture now

Source. Copyright © Google Inc. 2017

https://cdn.rawgit.com/chromium/mus-preso/578ff4ca/archi/index.html


  

Long-term plan: service-based

Source. Copyright © Google Inc. 2017

https://cdn.rawgit.com/chromium/mus-preso/578ff4ca/archi/index.html


  

WPE: support for Wayland and other backends 
in WebKit



  

WPE

● Web Platform for Embedded
● Previously known as WebKit For Wayland

● Designed for simplicity and performance
● Supports Wayland and also other backends
● Great performance in low-end hardware
● Currently in review process to become an official WebKit port



  

WPE use cases

● Strong multimedia capabilities
● Very lightweight, low hardware requirements

● Raspberry Pi 1/zero

● Well received in set-top-box market
● Official part of RDK stack

http://rdkcentral.com/


  

WPE backends

● Backends use platform-specific libraries to implement drawing 
and window management

● Can be independently developed



  

Other options



  

Other options with Wayland support

● WebKitGTK+
● Wayland through the GTK+ toolkit support

● QtWebEngine
● Chromium-based
● Wayland through the Qt toolkit support



  

Conclusions

● Chromium
● Full-featured browser and fast-paced development
● Increased cost of maintenance

● Intel’s Ozone-Wayland
● Available for short-term goals
● Transition to upstream Chromium implementation as soon as it’s ready

● QtWebEngine
● Ideal to integrate with Qt applications
● Slower upgrade pace, linked to Qt releases



  

Conclusions

● WPE
● Lightweight
● Customizable graphic backends
● Stable APIs, designed for third-parties to build products upon 
● No browser features, it’s a web engine

● WebKitGTK+
● Stable and also lightweight
● Availability linked to the GTK+ toolkit
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