

static void
_f_do_barnacle_install_properties(GObjectClass

*gobject_class)
{

 GParamSpec *pspec;

 /* Party code attribute */
 pspec = g_param_spec_uint64

(F_DO_BARNACLE_CODE,
 "Barnacle code.",
 "Barnacle code",

 0,
 G_MAXUINT64,

 G_MAXUINT64 /*
default value */,

 G_PARAM_READABLE
| G_PARAM_WRITABLE |
 G_PARAM_PRIVATE);

 g_object_class_install_property (gobject_class,

F_DO_BARNACLE_PROP_CODE,

Jacobo Aragunde Pérez
blogs.igalia.com/jaragunde

Update on the open source
browser space

http://blogs.igalia.com/jaragunde

● Open Source experts and consultants
● 15 years of experience
● Important contributions to:

● Client-side web tecnologies: WebKit, Blink/Chromium, Servo
● Graphics & Multimedia: Mesa, GStreamer
● Compilers: V8, JavaScriptCore, SpiderMonkey, Guile
● Software-defined networking: Snabb
● ...

Black Chapter

Outline

● Open source browser technologies
● Wayland support in Chromium
● WPE: support for Wayland and other backends in WebKit
● Other options

Open source browser technologies

Open source web platforms

● Mozilla: Gecko and Servo
● WebKit family: OS X/iOS, WebKitGTK+, WPE
● Chromium and related projects

Mozilla

● Gecko engine
– Powers the Firefox browser
– Embedding not officially supported

● Servo: next generation engine
– Designed for memory-safety, parallelism, embedding
– New set of tools and technologies: Rust
– Currently under heavy development

WebKit

● From a simplified point of view,
WebKit is structured this way:

● WebKit: thin layer to link against
from the applications

● WebCore: rendering, layout,
network access, multimedia,
accessibility support...

● JS Engine: the JavaScript engine.
JavaScriptCore by default.

● platform: platform-specific hooks
to implement generic algorithms

WebKit ports

● Each port is an engine implementation with a specific set of
technologies

● Platform bits: network, graphics, multimedia
● Specific API

● Many ports have existed: OS X and iOS, WebKitGTK+,
EWebKit (EFL), QtWebKit, Chrome/Chromium..

● Currently official ports: OS X/iOS, WebKitGTK+, WPE (in
process)

Chromium

● Vertical solution, from low-level graphics to UX
● Engineered to power Chrome and Chrome OS

● Embedding, portability use cases are secondary

● Designed to minimize external dependencies
● External deps are managed by the project build system
● Versions pinned, included in the build process
● In general, not designed to exchange subsystems

Chromium ecosystem

● External projects filling the gaps
● CEF: Chromium Embedded Framework

● Embed web content in applications
● Hybrid applications

● Electron
● Web application runtime

https://bitbucket.org/chromiumembedded/cef
https://electron.atom.io/

Wayland support in Chromium

Ozone-Wayland project

● Most complete Wayland implementation yet
● Developed mainly by Intel
● Downstream project at github
● Currently in maintenance mode

● No more active development
● Latest supported version is 53

https://github.com/01org/ozone-wayland

Upstream Wayland implementation

● Preliminary state
● Following Chromium master
● Not high priority at Google → Igalia taking the lead of the

implementation
● Framed in a bigger effort to re-architect Chromium

Upstream Wayland implementation

● Why not merge Intel’s code upstream?
● Blocker: architecture differences

– Intel’s code doesn’t align with Chromium mid-term
architecture plans

● Approach: implement basic bits following new architecture,
then migrate features and code as possible

Chromium architecture now

Source. Copyright © Google Inc. 2017

https://cdn.rawgit.com/chromium/mus-preso/578ff4ca/archi/index.html

Long-term plan: service-based

Source. Copyright © Google Inc. 2017

https://cdn.rawgit.com/chromium/mus-preso/578ff4ca/archi/index.html

WPE: support for Wayland and other backends
in WebKit

WPE

● Web Platform for Embedded
● Previously known as WebKit For Wayland

● Designed for simplicity and performance
● Supports Wayland and also other backends
● Great performance in low-end hardware
● Currently in review process to become an official WebKit port

WPE use cases

● Strong multimedia capabilities
● Very lightweight, low hardware requirements

● Raspberry Pi 1/zero

● Well received in set-top-box market
● Official part of RDK stack

http://rdkcentral.com/

WPE backends

● Backends use platform-specific libraries to implement drawing
and window management

● Can be independently developed

Other options

Other options with Wayland support

● WebKitGTK+
● Wayland through the GTK+ toolkit support

● QtWebEngine
● Chromium-based
● Wayland through the Qt toolkit support

Conclusions

● Chromium
● Full-featured browser and fast-paced development
● Increased cost of maintenance

● Intel’s Ozone-Wayland
● Available for short-term goals
● Transition to upstream Chromium implementation as soon as it’s ready

● QtWebEngine
● Ideal to integrate with Qt applications
● Slower upgrade pace, linked to Qt releases

Conclusions

● WPE
● Lightweight
● Customizable graphic backends
● Stable APIs, designed for third-parties to build products upon
● No browser features, it’s a web engine

● WebKitGTK+
● Stable and also lightweight
● Availability linked to the GTK+ toolkit

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
GENIVI logo © GENIVI Alliance 2017.
Contents © Igalia, S.L. 2017.

http://creativecommons.org/licenses/by-sa/4.0/legalcode

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

