
Concept document

GENIVI Application Framework

7th July 2016

Document Author: Simon McVittie

Document Reviewer: Sjoerd Simons
Document Reviewer: Philip Withnall

Document Reviewer: Guy Lunardi

Document Owner: Collabora - Guy Lunardi
E-mail: guy.lunardi@collabora.com

Tel: : +1-801-200-3848

Collabora Document Number: GEN0001

Collabora Document Version: v0.3 (draft)

Author Date Version Change Approved

SM 29-06-2016 0.1 Initial version SM

SM 04-07-2016 0.2 Revised internal version SS

GL 23-06-2016 0.3 First draft shared with GENIVI GL

Application framework concept document – Collabora - CC BY-SA 4.0

1

2

3

4

5
6

7

8

9
10

11

12

mailto:guy.lunardi@collabora.com

Application Framework scope and
requirements
This document outlines requirements relevant to the GENIVI Application Framework effort.

However some of these requirements may well be considered out of scope for requirements
to the GENIVI Application Framework due to overlap with other GENIVI initiatives. They are

included here as they are perceived to be within the context of an application framework.

This document does not aim to specify a particular implementation for any requirement.

The terms privilege, privilege boundary, confidentiality, integrity and availability have their usual
information-security meanings (for definitions, please refer to Apertis Security design).

This document is authored by Collabora. The content of this document is made available
under the Attribution-ShareAlike 4.0 International license (CC BY-SA 4.0).

Table of Contents
What's in an app...3
Data management...5
Sandboxing and security...6
App permissions..9
App launching..11
Document launching...13
URI launching..15
Content selection..16
Data sharing...17
Sharing menu...18
Life-cycle management...18
Last-used context..24
Download management..26
Installation management..28
Conditional access...30
Appendix: mapping to GENIVI Platform Compliance Specification 10.0..31
Appendix: mapping to Suma's proposed requirements..33

Application framework concept document – Collabora - CC BY-SA 4.0

13

14

15

16

17

18

19

20

21

22

23

https://docs.apertis.org/design/security.html

What's in an app
There are two commonly-used definitions of an "app": either a user-facing launchable

program (an entry point) such as would appear in launcher menus, or a user-installable
package or bundle such as would appear in an app store.

A user-installable bundle would most commonly have exactly one entry point. However, it
might not have any entry points at all, for example if it is a theme or some other extension

for the operating system. Conversely, it might have more than one entry point: for example,
a user-installable bundle for an audio player might contain separate menu items for music

and audiobooks, launching different executables or the same executable in different modes
to provide an appropriate UX for each use-case.

In this document, when we need to distinguish between the two meanings, we will say that
a user-installable bundle contains zero or more entry points. Entry points are similar in scope

to Android activities.

Some vendors might decide to restrict the apps available in their app stores to have at

most one entry point, but that is a policy decision by those vendors and should not be
reflected in the more general app framework.

Entry points might be written as native code (for example compiled from C or C++), or they
might run under an interpreter or JIT in a runtime environment that provides GUI

functionality analogous to native code (for example if the app is written in Java, Python, or
JavaScript for the node.js, gjs or seed runtime environments), or they might run in a HTML5

runtime environment. We treat all of these as fundamentally similar: they result in the
execution of app-author-chosen code.

(Note that whether an app is written in native code has no bearing on whether it is what
GENIVI calls a native application, which is an app that is built into the platform, or a managed

application, which is one of the user-installable apps discussed here: either may be written
in either native code or an interpreted/JITted environment.)

• The app framework must be capable of running native-code (C or C++) executables.

• The app framework must be capable of running programs that require an

interpreter/JIT-based runtime environment such as Java or Python. It may require

that the runtime environment provides suitable library functionality to work with the
framework (for example, if the framework uses D-Bus for IPC, then it does not need to

support runtime environments that do not have a D-Bus implementation or binding).

• The app framework must be capable of running programs that run in a HTML5

runtime environment: in other words, it must be possible to package a web
application into a form suitable to be an app bundle.

The entry points to an app might include GUIs and/or background services (agents,
daemons).

• It must be possible for an app to contain zero or more GUI entry points. Each of these

Application framework concept document – Collabora - CC BY-SA 4.0

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

https://developer.android.com/guide/components/activities.html

might appear in menus (see App launching) and/or be available for launching by

other means (see Document launching, URI launching, Data sharing).

• It must be possible for an app to contain zero or more background services with no

GUI, which can be launched for purposes such as Data sharing. For example, a search
provider for a global search feature similar to GNOME Shell search or Unity Lenses,

such as the one described in Apertis Global Search design, might be implemented in
this way.

• It must be possible for the GUIs and background services to be implemented by the

same executable(s) run with different options, or by separate executables.

Some vendors might decide to restrict the apps available in their app stores to have
at most one executable, or to have at most one GUI and one non-GUI executable, but

that is a policy decision by those vendors and should not be reflected in the more
general app framework.

Each bundle should have bundle metadata to represent the app in situations like an app
store, a system settings GUI or a prompt requesting app permissions.

• As a minimum, this metadata should include a globally unique identifier, an icon,

and an international (English) name and description.

• Additionally, app bundles should be able to contain translations (localization) which

replace the international name and description, and any other fields that are marked

as translatable (internationalization), when displayed on devices configured for a
specific language and/or country.

• The metadata fields in an entry point should be in line with what is typically present

in other interoperable package metadata specifications such as freedesktop.org

AppStream and the parts of Android manifests that do not relate to a specific
<activity>.

• The base set of metadata fields should be standardized, in the sense that they are

described in a vendor-neutral document shared by all GENIVI vendors and potentially

also by non-GENIVI projects, with meanings that do not vary between vendors. For
example, AppStream XML would be a suitable implementation.

• We anticipate that vendors will wish to introduce non-standardized metadata, either

as a prototype for future standardization or to support vendor-specific additional

requirements. It must be possible to include new metadata fields in an entry point,
without coordination with a central authority.

• For example, this could be achieved by namespacing new metadata fields using a

DNS name (as is done in D-Bus), namespacing them with a URI (as is done in XML), or

using the X-Vendor-NewMetadataField convention (as is done in email headers, HTTP
headers and freedesktop.org .desktop files).

Apps are expected to be numerous.

Application framework concept document – Collabora - CC BY-SA 4.0

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

https://specifications.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://www.freedesktop.org/software/appstream/docs/
https://www.freedesktop.org/software/appstream/docs/
https://docs.apertis.org/design/global-search.html
http://www.informit.com/articles/article.aspx?p=2209016&seqNum=5
https://developer.gnome.org/SearchProvider/

• The app framework must be designed such that it does not need to place an arbitrary

limit on the number of apps installed on the system, as long as their total size on
storage (flash) fits within the available space.

• The app framework must be designed such that it does not need to place an arbitrary

limit on the number of apps running at the same time, as long as their total size in

RAM fits within the available space.

Data management
The app framework must provide a location where app programs can write their private

data.

Open question: is this in-scope for the app framework, or is there some other platform

component that does it?

The framework should provide a location that is treated as private data in which to store

cached data, defined as data that can be recovered in a straightforward way by downloading
it from the Internet or computing it from non-cached data.

• The framework may delete files from the cached data area at any time to free up

storage space, and apps should be written to expect this.

• For app author convenience, the framework may also provide conventional locations

for other sub-categories of private data such as configuration (data that has a useful

default, but can be reconfigured by the user, and whose deletion would be considered
to be data loss) and state (data with no useful default, whose deletion would likewise

be considered to be data loss).

The app framework must provide a mechanism by which an app program's private data can

all be deleted by another system component, for example as part of removal or a factory
reset.

The app framework should provide a mechanism by which all app programs' private data
can be deleted in a single operation during a factory reset, so that the factory reset

procedure does not need to enumerate app programs and iterate through them.

Deleting per-user data and per-device data during a factory reset is also anticipated to be

necessary, but is outside the scope of this framework.

Application framework concept document – Collabora - CC BY-SA 4.0

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

Sandboxing and security
App processes should run in a sandbox which partially isolates them from the rest of the

system.

We anticipate that each app bundle will act as a security domain, similar to the concept of

an origin on the Web: in other words, there is a security boundary between each pair of app-
bundles, but for simplicity there is no privilege boundary within an app bundle (for example

between two programs in the same app bundle).

Each app is assumed to store private data which is specific to that app. On a multi-user

system, this private data is also specific to a user: in other words, there is one private data
location per (app, user) pair.

• Any data with this access model is considered to be private data, whether it is in files

directly written by the app, files written by platform libraries used by the app, or other

data stored on behalf of the app by platform services (for example accessed via inter-
process communication).

• Private data availability: when a specific user runs a program that is part of a specific

app, that program can read and write the data owned by that (app, user) pair.

• Private data confidentiality and integrity: an app must not be able to read, add, change or

delete data owned by a different app and the same user without the other app

specifically sharing it. The program must also not be able to read, add, change or
delete data owned by the same app but a different user.

Note that the App confidentiality requirement below imposes a stronger requirement
than this: the first app must not even be able to know that the second app's private

data exists.

Some categories of data might be specific to a single app but common to all users. We call

these per-app data.

• The app framework may have support for per-app data. If it does, the availability,

confidentiality and integrity requirements are analogous to those for private data.
The per-app data is considered to be jointly owned by all users, therefore there is no

expectation of confidentiality or integrity for the per-app data of programs from the
same app bundle running as different users.

Some categories of data are not necessarily specific to a single app; instead, they might be
shared between all apps. We call these per-user data. For example, the user's address book

(contacts) and the user's calendar (appointments) might be among these categories.

• Any data with this access model is considered to be per-user data, whether it is in

files directly written by multiple apps, files written by platform libraries used by
multiple apps, or other data stored on behalf of multiple apps by platform services

(for example accessed via inter-process communication).

Application framework concept document – Collabora - CC BY-SA 4.0

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

• We anticipate that in practice, per-user data would most commonly be kept outside

apps' sandboxes and accessed via inter-process communication to a shared service.
For example, Android contacts provider services, GNOME evolution-data-server and

KDE Akonadi all use this model for address books.

• User data availability (read): the apps that require access to this per-user data must be

able to read it. For example, a messaging application might require access to the
address book so that it can read the thumbnail photos representing contacts and

display them in its user interface.

• User data availability (write): the apps that require write access to this per-user data

must be able to add, change and delete it. For example, a messaging application
might require write access to the address book so that it can add contacts' instant

messaging addresses to it.

• User data confidentiality with least-privilege: an app must not be able to read per-user

data without user consent, other than what that app needs to carry out its normal
function. For example, a compromised messaging app would still be able to read the

address book until the compromise was somehow detected, but would not be able to
read (for example) the user's appointments calendar.

• User data integrity with least-privilege: an app must not be able to modify per-user

data without user consent, other than what that app needs to carry out its normal

function. For example, a compromised messaging app would still be able to modify
the address book until the compromise was somehow detected, but would not be

able to modify the user's appointments calendar.

Some categories of data are not necessarily specific to a single app or to a single user;

instead, they might be shared between all apps and between all users, like Android's
/sdcard. We call these per-device data.

• The app framework may have support for per-device data. If it does, the availability,

confidentiality and integrity requirements are analogous to those for per-user data,

except that there is no expectation of confidentiality or integrity for per-device data.

The user might install a malicious app that has been written or modified by an attacker, or

the user might install an app with a security flaw that leads to an attacker being able to
gain control over that app (referred to below as a compromised app). Either way, the attacker

is assumed to be able to execute arbitrary code in the context of that specific app.

• The requirements stated above for private and user data confidentiality and integrity

mitigate this attack by restricting what the malicious or compromised app can do.

• App integrity: a malicious or compromised app app must not be able to modify the

executables and static data of other apps.

• App confidentiality: in general, a malicious or compromised app must not be able to

list the other apps that are running on the system or the other apps that are
installed, either by their bundle names, by their entry points, or by inferring their

Application framework concept document – Collabora - CC BY-SA 4.0

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

https://community.kde.org/KDE_PIM/Akonadi
https://developer.gnome.org/eds/stable/
https://developer.android.com/guide/topics/providers/contacts-provider.html

presence from private or per-app data that they have written. Both are potentially

sensitive information that could be used to "fingerprint" a particular user or class of
users (for example customers or employees of a particular organization).

• Note that if an app has written per-user data or per-device data, then it has

potentially given up its own app confidentiality, in the sense that a malicious or

compromised app could potentially identify it from the per-user or per-device data
that it has written out. We recommend minimizing the number of apps able to write

per-user and per-device data for this reason, and preferring to use content selection,
document launching and data sharing to satisfy the use-cases for which other

platforms would use a per-device filesystem.

• Similarly, in general an app must not be able to communicate with other apps

without user consent. Controlled exceptions to this general rule might exist for use
cases such as data sharing.

• System integrity: a malicious or compromised app app must not be able to violate the

integrity of the system as a whole (for example by modifying the executables or static

data of the system, or by altering the system's idea of what is a trusted app source).

Resource limits: A malicious, compromised or buggy app might use more than its fair share

of system resources, including CPU cycles, RAM, storage (flash) or network bandwidth.

• Each app must have its own limit for these various metrics, for example by using

cgroup resource controllers.

• If this limit is exceeded, the vendor may choose how to respond to this. Options

include killing or freezing the app, rate-limiting requests, denying requests, and/or
reporting the app to the app-store as potentially malicious.

Application framework concept document – Collabora - CC BY-SA 4.0

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

App permissions
A very simple app, for example a calculator or a simple to-do list, might not need to do

anything other than the operations allowed to all apps: display a GUI when launched, run
code in a sandbox, store its own private data up to some reasonable limit, and so on.

To carry out its designed purpose, a more complex app might need permission to carry out
actions that can compromise confidentiality (user privacy), integrity, or availability (the

absence of denial-of-service). For example, a more elaborate to-do list app might be able to
synchronize the to-do list to a cloud service, requiring it to have Internet access which

would make it technically able to copy whatever data it can read to a location not under the
user's control; it might ask to read the user's geographical location, to provide location-

based reminders; and it might support attaching photos to its to-do items, requiring it to
read files that are not its private data.

Some permissions have technical constraints that makes it impractical to request user
permission before they are used. For example, one possible permission flag is "has

unrestricted Internet access", which might be used for a voice-over-IP client app. To support
this control, the life-cycle manager would need to launch the app program with unrestricted

Internet access either allowed or forbidden: it cannot be adjusted later.

• App bundles must be able to specify permissions without which they will not work,

given in bundle metadata.

• The user might be asked whether to grant those permissions on installing that app

bundle or on launching any entry point from that bundle, or the framework might
automatically grant certain permissions based on approval from an app-store

curator without user interaction.

Some permissions can usefully be granted or denied at runtime. For example, address book

access on Android works like this: the permissions framework can be configured to prompt
the user on each attempted access.

• Operations that cross a privilege boundary between processes should include a step

where a platform security framework is queried, to check whether the user's

permission for the privileged action has been given. This should have at least three
possible policy outcomes: allow, deny, or ask the user.

Some operations that cross privilege boundaries naturally include an opportunity for the
user to reject the operation. To minimize driver distraction, the system should provide that

opportunity instead of having a separate permission prompt.

• If an operation will naturally result in the user being prompted for a decision of some

sort, there should not be an additional prompt for whether to allow the action.
Instead, the user can indicate lack of consent by declining to make the requested

decision. For example, content selection could use this approach: the user implicitly
indicates consent to open or attach a file by selecting it, or indicates lack of consent

by cancelling the file-selection dialog.

Application framework concept document – Collabora - CC BY-SA 4.0

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

• The framework might require that particular privilege-boundary-crossing operations

are declared in advance even though they imply an opportunity for the user to reject
the operation, for example if those operations are considered to be particularly

sensitive or vulnerable to social engineering attacks. If it does, then it may make
attempts to invoke those operations fail unconditionally, as if the user had canceled

them but without prompting the user at all.

• Operations that cost money might be considered to be particularly sensitive — for

example, a parent installing apps on behalf of a child is likely to want to prevent
them — so the framework implementor might wish to ensure that operations like

"send SMS" and "make in-app purchases" must be declared in advance.

• Access to online accounts (such as social media) might be considered particularly

susceptible to social engineering (since a user might not recognize when a request to
fill in their social media account/password is or isn't legitimate), so the framework

implementor might wish to ensure that operations involving these accounts must be
declared in advance.

Application framework concept document – Collabora - CC BY-SA 4.0

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

App launching
A bundle may contain zero or more entry points. These are typically started from a launcher,

which might take the form of a home screen, main menu or application list.

• A launcher must be able to list all of the visible, available entry points in any installed

bundle, together with enough metadata to display them in its menus. As a minimum,
this would typically include a multilingual/localized name and an icon. Other

metadata fields, such as categories, could be useful or unnecessary depending on
the launcher's UX.

• The metadata fields in an entry point should be in line with what is typically present

in other interoperable menu-entry specifications, such as freedesktop.org .desktop

files or the <activity> element in Android manifests.

• The base set of metadata fields should be standardized, in the sense that they are

described in a vendor-neutral document shared by all GENIVI vendors and potentially
also by non-GENIVI projects, with meanings that do not vary between vendors. For

example, .desktop files would be a suitable implementation.

• We anticipate that vendors will wish to introduce non-standardized metadata, either

as a prototype for future standardization or to support vendor-specific additional
requirements. It must be possible to include new metadata fields in an entry point,

without coordination with a central authority.

For example, this could be achieved by namespacing new metadata fields using a

DNS name (as is done in D-Bus), namespacing them with a URI (as is done in XML), or
using the X-Vendor-NewMetadataField convention (as is done in email headers, HTTP

headers and freedesktop.org .desktop files).

• Because of the requirement that ordinary app bundles are not allowed to enumerate

other app bundles or entry points, if a launcher is implemented as a user-installable
app bundle (as is sometimes done on Android), it must have a special permissions

flag allowing it to carry out that restricted action.

Some entry points might be flagged to not be visible in menus. For example, an app that is a

viewer for some file type such as PDF might register itself as a handler for files of that type,
but might not have anything useful to do if it appears in menus otherwise.

• Entry point metadata must indicate whether the entry point is to be visible in menus.

• The mechanism used by the launcher to list entry points may either include or

exclude invisible entry points. If it does include those entry points, it must also

provide the launcher with an indication that they are to be made invisible.

When the user selects an entry point, the expectation is that the program that implements

that entry point should be launched.

• If the program that implements the entry point is not already running, the system

Application framework concept document – Collabora - CC BY-SA 4.0

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

https://specifications.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://specifications.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html
https://specifications.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html

must run it. (See also life-cycle management.)

• The program might implement more than one entry point. It must be told which entry

point was launched, for example via command-line arguments or an inter-process

communication call.

We do not anticipate that ordinary (non-launcher) app bundles would have a reason to

launch specific entry points in this way: we expect that if app bundles need to
communicate, they will do so via document launching, URI launching or data sharing. This

does not preclude one executable in a bundle from running another executable in the same
bundle directly.

• Open question: Do ordinary app bundles need to be allowed to launch other bundles'

entry points by name? If so, why?

• Android does allow this, but Android does not appear to provide app confidentiality.

• One possible use-case for a program launching a program outside its bundle would

be to bring up the system settings. For example, Android apps that make use of

location services often have a shortcut button to bring up the Location panel in the
built-in Settings app, because the user-installable app would not be able to enable

location itself, but its author wishes to make it easy for the user to do so.

However, a vendor-specific Settings app is part of the platform rather than being a

user-installable app bundle, so the constraints applying to it and the APIs that can be
used with it do not have to be the same as for app bundles.

This would also be easy to implement without launching the Settings app by name:
the built-in Settings app could register for URI launching as the launcher of a URI

scheme, similar to the way the iOS Settings app used to register the prefs URI
scheme, and the user-installable app could launch a URI of that scheme.

Application framework concept document – Collabora - CC BY-SA 4.0

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

https://stackoverflow.com/questions/8246070/ios-launching-settings-restrictions-url-scheme/8246814#8246814
https://stackoverflow.com/questions/8246070/ios-launching-settings-restrictions-url-scheme/8246814#8246814
https://stackoverflow.com/questions/3872063/launch-an-application-from-another-application-on-android

Document launching
Some app entry points will provide handlers for particular file types.

• An entry point must be able to identify the file types that it can receive. For example, a

document viewer might register itself to receive Microsoft Word documents, Open

Document Text files, and PDFs.

• We recommend that these are identified via IETF media types (also known as content

types or MIME types), because the IETF media types are an extensible standard, are
ubiquitous in existing operating system environments such as Windows, OS X,

Android and freedesktop-based environments such as GNOME, and are part of key
Internet technologies such as HTTP and email.

• The app framework must be able to identify the format of a file on secondary storage

(flash), for example via its extension or "magic number". Unidentified files must be

considered to have a documented generic format, for example application/octet-
stream in the IETF media type system.

• Open question: it has been suggested that app-bundles should be able to define

their own new file types. Is this a requirement?

• This requirement seems unwise from the point of view of system integrity: if an app-

bundle can define its own file types with their own extensions and/or "magic

numbers", then it can introduce a conflict with other app-bundles or even alter the
interpretation of existing files.

If this is implemented at all, we recommend that it should be tightly controlled by
app-store curators.

• Choice of document handler: When a file is activated (for example by tapping its icon)

from a non-app context such as the home screen, the app framework must locate the

entry points that are able to handle that file. It must either choose one of those entry
points for use, or prompt the user to choose one.

• When a file is activated from the context of an app (the initiating app), for example if

the user activates an attachment in an email app, the app framework must behave

similarly. It may opt to follow a different policy for choosing the correct entry point in
this case; for example, it might prompt the user for confirmation even if there is only

one possible handler.

• System vendors must be able to force a particular app to handle particular file types.

For example, a vendor might wish to make their video player handle all videos.

• If no handler is available for the selected file type, the app framework should arrange

for a suitable fallback to be displayed. For example, it might show an error message,
or it might launch its app store user interface with a search query for the handlers for

that file type.

Application framework concept document – Collabora - CC BY-SA 4.0

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

https://www.iana.org/assignments/media-types/media-types.xhtml

• No feedback to initiator: It should do this itself or by interacting with other system

components instead of feeding back an error code to the initiating app (if any),
because otherwise the initiating app would be able to use this as an "oracle" to gather

information about the set of installed app bundles.

• User confirmation: If exactly one handler is available for the selected file type, the app

framework may launch it directly, or ask the user for confirmation. If the user cancels
a request for confirmation, the app framework should neither launch the handler nor

feed back an error code to the initiating app.

• If more than one one handler is available for the selected file type, the app framework

may launch a preferred handler directly, or ask the user to make the choice. If the
user cancels a request for app choice, the app framework should neither launch a

handler nor feed back an error code to the initiating app.

• The app framework must arrange for the file's content to be made available in a

location where the chosen app can read it (see sandboxing and security).

• If the program that implements the entry point is not already running, the system

must run it. (See also life-cycle management.)

• The program must be told that it was launched to open a file, and given the filename

of the file to open, for example via command-line arguments or an inter-process
communication call. The filename that it is given might differ from the original file

that was activated, for example if the file had to be copied or linked across a privilege
boundary to be made available in the program's sandbox. The program must be able

to distinguish between this action and ordinary app launching.

• Programs should be careful not to treat documents received in this way as

executable code, or assume that the source of the document is trustworthy. For
example, macro languages in "office" document formats should be disabled, and if

arbitrary code execution in a program can be triggered by a malformed document,
this should be considered to be a security vulnerability.

• We do not anticipate a need for the initiating app to be able to influence the choice of

launched app.

• If the initiating app could influence the choice of launched app, a malicious app

could potentially use this to break or undermine app confidentiality. For example,

suppose org.example.Secret opens .secret files. If the app com.example.Spy wanted to
determine whether org.example.Secret was installed, it could register an entry point

com.example.Spy.SecretHandler which also opens .secret files, create a .secret
document, and launch that document specifying org.example.Secret and

com.example.Spy.SecretHandler (in that order) as the preferred handlers. If
com.example.Spy.SecretHandler was launched, then com.example.Spy could be sure

that org.example.Secret was not installed. Conversely, if
com.example.Spy.SecretHandler was not launched, then com.example.Spy could infer

that org.example.Secret was likely to be installed.

Application framework concept document – Collabora - CC BY-SA 4.0

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

Apertis Content Hand-over Use Cases contains some similar requirements-capture that

was carried out for the Apertis platform.

URI launching
Some app entry points will provide handlers for particular URI schemes such as https,

mailto or skype.

• file URIs must not be included in this mechanism. Instead, they should be decoded

into filenames and processed via document launching.

• An entry point must be able to identify the URI schemes that it can receive. For

example, a multi-protocol voice-over-IP client might support receiving sip and xmpp
URIs.

• When a URI is activated, the app framework must locate the entry points that are able

to handle that URI and choose one for launching, much like file type handling. The

same points about choice of handler, user confirmation, and lack of feedback to the
initiating app apply equally here.

• As with URI schemes, system vendors must be able to force a particular app to

handle particular URIs. For example, a vendor might wish to make their built-in web

browser handle all http and https URIs.

• If the program that implements the entry point is not already running, the system

must run it. (See also life-cycle management.)

• The program must be told that it was launched to open a URI, and given the URI to

open, for example via command-line arguments or an inter-process communication
call. The program must be able to distinguish between this action, document

launching and ordinary app launching.

• As with document launching, we do not anticipate a need for the initiating app to be

able to influence the choice of launched app, but system components might need to
do so.

• Programs should be careful not to interpret URIs in a way that a malicious or

compromised initiating app could use to violate integrity, confidentiality or

availability. For example, telephone calls and text messages (SMS) could cost money,
distract the driver, or divulge sensitive information to a third party. As a result, an

app that acts as a tel: URI handler may respond to URI launching by offering the user
a choice of actions to carry out (for example "call" and "send SMS" buttons, perhaps

with a text input widget pre-filled with SMS text taken from the URI), but must not
actually initiate the call or send the SMS until the user requests it.

Similarly, if a URI scheme is designed in such a way that dereferencing a URI can
cause content to be modified or deleted (an unsafe request in HTTP terminology),

then the program interpreting the URI should ask the user before proceeding.

Application framework concept document – Collabora - CC BY-SA 4.0

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

https://tools.ietf.org/html/rfc7231#section-4.2.1
https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
https://wiki.apertis.org/Content_hand-over/Use-cases

Apertis Content Hand-over Use Cases contains some related requirements-capture that was

carried out for the Apertis platform.

Content selection
App programs might wish to interact with data stored in locations that are not naturally

accessible to the app. For example, an attachment to an email would be private data for the
email app as run by the user whose email account is accessing it.

However, we would like to avoid such data passing through a per-device data storage area
that is shared between all apps (similar to Android's /sdcard), because in practice data

passed between programs will typically include sensitive data such as photos and
documents.

The solution that is used in Apple's iOS and planned for the Flatpak system is to have an API
call that creates a file-opening or file-saving dialog. While visually presented as if it was

part of the requesting app, this dialog actually exists outside the app's security context (it
is privileged), and it is able to browse all of the user's files. iOS calls this the Document

Picker, while Flatpak calls it the Document Portal.

• The app framework should provide a way to ask the user to browse for a file to open

for reading, similar in principle to the conventional "Open" dialog on desktop
operating systems.

• If the user does so, the framework must make this file available to the app program

for reading.

• If the user cancels this prompt, the framework must indicate this to the requesting

app, and must not grant it any additional access to any files.

• The app framework should provide a way to ask the user to browse to a location in

which to write a file, and simultaneously choose a name for that file.

• As above, depending on the user's choice, the framework must either provide a way

for the app to write to that location and name, or indicate cancellation and not

provide any additional access.

• If the user selects an existing file outside the app's sandbox, it must be overwritten

atomically if the underlying filesystem supports that.

• The app framework may provide specialized versions of this functionality for specific

file types, in particular images/photos.

Application framework concept document – Collabora - CC BY-SA 4.0

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

https://github.com/flatpak/flatpak/wiki/Portals
https://developer.apple.com/library/ios/documentation/FileManagement/Conceptual/DocumentPickerProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/FileManagement/Conceptual/DocumentPickerProgrammingGuide/Introduction/Introduction.html
https://wiki.apertis.org/Content_hand-over/Use-cases

Data sharing
The system might require the ability to enumerate the implementations of a particular

service or set of functionality. In this document we will refer to that set of functionality as
an interface. One use-case for this is that a global search facility within the platform needs

to discover a list of background services (entry points) within app bundles that can provide
search results in response to user queries entered into some global search UI; for example,

a Spotify client could use the search term to match artists or songs.

• Suitably privileged components of the system must be able to enumerate the

implementations of an interface.

• Suitably privileged components of the system must be able to communicate with the

implementations of an interface.

• If the system initiates communication with an implementation of an interface that is

not already running, the app framework must arrange for the implementation (an
entry point) to be started.

An app might also require the ability to enumerate the implementations of a particular
interface. One example use-case here is that if an app will display a Sharing menu similar

to the UX seen in Android, it needs to be able to list the apps with which files or data can be
shared, in order to populate that menu. Due to the app confidentiality requirement, this

should only be allowed if the interface in question is one whose implementors are aware
that it will result in other apps being able to enumerate their apps. In this document we will

refer to this as a public interface.

• An app with appropriate app permissions must be able to enumerate the

implementors of a public interface.

• Depending on the system and the interface in question, a special permission flag per

public interface might be required to list the implementors, or that information
might be available to every application.

• An app with appropriate app permissions must be able to communicate with all of

the implementors of a public interface, for example via an inter-process

communication channel such as D-Bus.

• If an app initiates communication with an implementation of an interface that is not

already running, the app framework must arrange for the implementation (an entry
point) to be started.

The Apertis Interface Discovery design and Apertis Data Sharing design describe use-cases,
requirements and proposed implementations for this topic in the Apertis system.

Application framework concept document – Collabora - CC BY-SA 4.0

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

https://wiki.apertis.org/Data_sharing
https://wiki.apertis.org/Interface_discovery

Sharing menu
One specific use-case for data sharing is a menu for sharing content with other users, for

example via social media, email or real-time communications, similar to the Android
Sharing menu.

Two possible UXs for this facility are presented in the Apertis Sharing design. Each UX
motivates rather different requirements for how this facility interacts with apps, and in

particular its impact on app confidentiality.

Open question: Is this in the scope of the application framework? If it is, which UX do we

intend to support?

Life-cycle management
Under various circumstances (including those described in app launching, document

launching, URI launching and data sharing), the system must be able to start a program
provided by an app bundle.

This topic overlaps with the functionality of the GENIVI Node Startup Controller, and more
generally the GENIVI Lifecycle cluster. It should potentially be considered to be an

orthogonal topic outside the scope of the App Framework design. Some requirements in
this area are outlined here in the hope that they can be used to clarify the division of

responsibilities.

The possible states of a program in an app are as follows:

• Not installed

• Inactive (installed but not running)

• Running

• Paused

The valid state transitions move linearly through that list in single steps, as follows:

• Not installed inactive: → install app bundle

• Inactive running: start (launch), see this section →

• Running paused: pause, see this section →

• Paused running: unpause, see this section →

• Running inactive: stop (kill, terminate), see this section →

• Inactive not installed: → remove app bundle

Transitions do not skip a step: for example, a paused app process cannot be stopped

without first unpausing it, and an app bundle cannot be removed until all of its processes
have been stopped.

Open question: some GENIVI documents have the concept of "activating" a program, which
appears to be distinct from launching it. Does this correspond to selection, similar to

single-clicking an icon in a desktop environment where double-clicking would cause

Application framework concept document – Collabora - CC BY-SA 4.0

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

https://at.projects.genivi.org/wiki/display/PROJ/Lifecycle
https://projects.genivi.org/node-startup-controller/home
https://wiki.apertis.org/Sharing
https://developer.android.com/training/sharing/shareaction.html
https://developer.android.com/training/sharing/shareaction.html

launching; or does it represent a transition away from an intermediate state where a newly

installed app is unavailable until an activation, enabling or licensing step has been
performed, similar to the concept of activating a Windows installation; or is it something

else?

As a prerequisite for sandboxing and security, app processes must be identifiable.

• The app framework must be able to start processes, either directly or by asking a

separate service manager such as the Node Startup Controller to start them.

• Process tagging: each process executing code from an app bundle must be marked

with the unique identifier of that bundle (for example by placing it in a suitably

named cgroup or by running it under a suitable LSM context).

Those processes and their child processes, whether running the same or a different

executable from the app bundle or running an executable provided by the system,
must not be able to enter a state where they are no longer identifiable as belonging to

their bundle.

• Depending on the vendor's UX design and the app author's UX design, the entry point

might start in a default state, or it might start by restoring the last-used context. The
app framework should be able to send a hint that indicates which of these modes is

preferred (see the section on Last-used context).

The application launch has various interactions with the graphical user interface. See

Apertis Compositor Security design for more detailed requirements-capture for the
interaction between the GUI shell and apps. The Apertis design assumes that the

compositor and the GUI shell are combined, as was done in Apertis' Mildenhall reference UI
and in GNOME's GNOME Shell. In a system where the GUI shell and compositor are separate,

those requirements should be read as being requirements for the combined system
consisting of the GUI shell and the compositor.

• Processes may request that windows (surfaces, layers) are displayed. The GUI shell

must be able to identify the app bundle to which a window belongs, so that it can

instruct the compositor (layer manager) to display it (or not display it) according to
its UX policy.

• The GUI shell must be able to identify which windows belong to the same user-facing

app, so that they can be associated visually, and so that it can prevent apps from

setting up misleading situations like a dialog from one app drawn over another app's
window.

• The GUI shell might have an application-switcher similar to the one in Android. It

must be possible to mark each app's collection of windows with a name and icon as

is done in Android. This is important for the integrity of the UX — otherwise, it would
be impossible for the user to tell which app is producing a given window, for example

to see which app is responsible for an advertising popup (output integrity), or which
app is requesting entry of a password (input integrity).

Application framework concept document – Collabora - CC BY-SA 4.0

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

https://wiki.apertis.org/Compositor_security

• If application launching is in progress but no window has been displayed yet, the

framework must avoid focus stealing: in other words, it must ensure that input
intended to go to the previous foreground window in a particular screen area is not

inadvertently directed to a window presented by the newly launched application.

• One possible implementation is to disable input, send the previous app to the

background, or display a placeholder while waiting for a launched app to become
available, so that the app cannot appear while the user is halfway through another

interaction with the previous app.

• Another possible implementation is to track whether user continues to interact with

the previous app, and if they do, keep the previous app in the foreground and place
the newly launched app's window in the background when it appears.

To improve perceived responsiveness, the GUI shell might display an indication that a
particular entry point or app is starting.

• Startup notification (successful case): the GUI shell must be notified by the life-cycle

manager when a particular entry point is starting. It must also be notified when the

entry point becomes available, either explicitly (another notification from the life-
cycle manager) or implicitly (a window is displayed by the appropriate app-bundle

with the entry point's identifier as metadata) so that it can withdraw the indication.

• To meet the app confidentiality requirement, these notifications must not be visible

to other apps.

• Startup notification (unsuccessful case): the GUI shell should be notified by the life-

cycle manager when an attempt to start a particular entry point fails, so that it can
withdraw the indication and display a warning instead.

• To meet the app confidentiality requirement, these notifications must not be visible

to other apps.

If an app program crashes or otherwise exits unexpectedly, the system might restart it.

• This must be rate-limited, to avoid infinite restart loops that could consume

disproportionately many CPU cycles. For example, apps might be configured such
that more than n restarts within t seconds will cause further attempts to restart the

app to be abandoned. For responsiveness, we recommend that the restart counter
and time are reset when the user specifically launches an entry point.

An app program might have costly graphical processing which its author wants it to stop
doing while not visible.

Open question: Are these requirements regarding visibility applicable to the application
framework, or to life-cycle management, or are they in the scope of the compositor or the

combined system consisting of the compositor and GUI shell?

• The app framework should send a notification to the app program at each transition

from one or more windows visible to no windows visible, telling it that it has been

Application framework concept document – Collabora - CC BY-SA 4.0

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

https://en.wikipedia.org/wiki/Focus_stealing

moved to the background (become invisible).

• The app may still paint its window(s) while in the background. Their new contents

must be used in any context where the app's windows would briefly become visible,

for example as thumbnails in an app-chooser.

• The app framework should send a notification to the app program before each

transition from no windows visible to one or more windows fully visible, telling it that
it has been moved to the foreground (become visible).

• Until the app can redraw itself, its last known window contents must be painted.

The app framework will sometimes stop apps from running, most obviously due to user
request or during device shutdown. It may also stop apps if they are running in the

background and there is insufficient RAM for a user-requested operation such as starting a
new app, similar to the behavior of background apps in Android.

• The app framework should have a mechanism to send a request to the app process,

asking it to terminate itself gracefully. (For example, systemd uses SIGTERM for the

equivalent request to its managed processes.)

• A well-behaved app process should respond to this request by saving its state and

terminating. The app framework must detect its termination and consider this to be
a successful stop.

• The app process should update its last-used context as part of its response to this

request, so that it can resume from the last-used context when started again.

• If the app process does not terminate within a reasonable time (anticipated to be

limited to a few seconds), the app framework must forcibly terminate it (kill it). It

must not be possible for the app process to block this forcible termination. (For
example, systemd uses SIGKILL for the equivalent request to its managed processes.)

• If a stopped app is brought to the foreground, the app framework must arrange for it

to be started with the last-used context.

• If the app framework needs to remove (uninstall) an app bundle that has one or more

running or paused programs, it must stop those programs before commencing

removal. If those programs are paused, it must unpause each one before stopping it.

If the system has a relatively large amount of RAM but a relatively slow CPU, it might be

desirable to pause app processes that been sent to the background, preventing them from
executing code. For example, the implementation might use SIGSTOP.

• The app framework should have a mechanism to send a request to the app process,

asking it to prepare for being paused.

• The app process may respond to this request by finishing or canceling a pending

operation. It should not start new operations unless they are expected to be fast.

• The app process should update its last-used context as part of its response to this

Application framework concept document – Collabora - CC BY-SA 4.0

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

request, so that if power is lost, it can resume from the last-used context when

started again.

• If the app process responds to this request, it may be paused at any time after it has

sent the response.

• If the app process does not respond to this request promptly (implementation-

defined, but expected to be of the order of magnitude of a few seconds), it will be
paused anyway.

• If the app framework notifies an app that it will be paused, but then decides that it

will not actually pause the app (for example because it is brought to the foreground),

it must notify the app as though it had been unpaused.

• The app must be careful to process these notifications in-order, so that if an unpause

request arrives while it is still processing a pause request, the pause request is
canceled.

Paused apps can be unpaused, at which point they will continue to execute.

• If the app is brought to the foreground, the app framework must unpause it first.

• If a request is to be processed by the app process, for example for data sharing,

document launching or URI launching, it must be unpaused first.

• If the app framework needs to stop an app program that is paused, it must unpause

that app, then stop it.

• Whenever the app is unpaused, it must resume execution from the point at which it

was paused, analogous to a laptop that has been placed in a "suspend to RAM" state.
Shortly after it resumes execution, the app framework must either notify it that it has

been unpaused, so that it can resume normal operation, or notify it that it is to be
stopped, so that it can terminate itself gracefully.

• The app must be careful to process these notifications in-order, so that if an unpause

request arrives while it is still processing a pause request (perhaps one for which the

app framework timed out and paused it before it had responded), the pause request
is canceled.

• Some design documents refer to the unpause operation as "restarting". We

recommend avoiding that term, since it can mislead developers into believing that it

refers to terminating the app, waiting for it to terminate, and starting it again, similar
to systemctl restart.

Under some circumstances, other system components might forbid an app from being
launched. For example, if an app is found to have a serious security vulnerability or contain

malicious code, the system might mark it as forbidden.

• Other system components must be able to mark an installed app as forbidden. Newly

forbidden apps must be stopped immediately (if running or paused), and all
attempts to run them must be rejected.

Application framework concept document – Collabora - CC BY-SA 4.0

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

• A bundle might be marked as forbidden because it contains a serious security

vulnerability.

• A bundle might be marked as forbidden because it has been found to contain

malicious code.

• A bundle might be marked as forbidden due to conditional access.

• Open question: is there a requirement that we can mark bundles or entry

points as forbidden under specific operating conditions, for example at speeds
over 20mph or at night?

• Whether a bundle is forbidden might be tracked per-user.

• A parent might use a parental control interface to mark a bundle as forbidden

for their child's user account, or to limit use time so that the bundle

automatically becomes forbidden after 10 minutes of use per day.
• In contexts where bundles or entry points are listed (for example by a launcher), the

forbidden apps must be included in the list, with metadata indicating that they are
currently unavailable. This enables vendors to make a UX decision whether to display

forbidden apps (for example with a desaturated icon or a "forbidden" emblem
indicating that they cannot be launched), or whether to hide them from the GUI

altogether.

• The system must be able to remove the forbidden state. After this has been done, the

app may be run normally.

• For example, if the app was forbidden due to a security vulnerability, the

forbidden flag can be removed after upgrading it to a non-vulnerable version.
• There could be multiple reasons why an installed app is forbidden. It must be

considered to be forbidden if at least one of those reasons is still valid.

• For example, if the app was forbidden due to a security vulnerability and also

forbidden because its conditional-access license has expired, and an update
has resolved the security vulnerability, the app must still be considered to be

forbidden until a new license is obtained.
• To avoid denial of service, unprivileged apps must not be able to mark apps as

forbidden.

Application framework concept document – Collabora - CC BY-SA 4.0

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

Last-used context
The system must allow each app to store a last-used context that encodes its user-visible

state during its most recent use.

The last-used context must be treated as private data.

• If an app does not have any particular state, a reasonable fallback implementation is

that its last-used context is the same as normal app launching. The extent to which

state is saved is a quality-of-implementation issue for the individual apps: if a
particular app does not save its state correctly, this is not considered a flaw in the

app framework, as long as the app was given an opportunity to save its state.

• Open question: do we want to require that the app is given the opportunity to save a

snapshot of its window contents, so that they can be used by the GUI shell to
represent the stopped app?

If we do, then they must be stored in a prescribed location/format to be understood
by the GUI shell, whereas the rest of the last-used context does not have any

particular requirement about the structure or even location of the last-used context.

Alternatively, this use-case could potentially be satisfied by having the GUI shell or

compositor take a snapshot without the app's involvement.

• As noted in Life-cycle management, the app program should be given the opportunity

to save its last-used context before it is paused or stopped.

• The app program may save its last-used context whenever its author wishes to do so.

For example, a music player might save its last-used context after it starts playing
each new track.

• Long-running app programs should not save last-used context at arbitrary times (for

example every 10 minutes), only when a significant event has occurred.

• The app framework must be able to notify app programs that now is a good time to

save last-used context.

• The app program may save its last-used context in response, but is not required to do

so.

• The app program should respond to this notification. If it does not, the app

framework should wait for a reasonable time (anticipated to be a few seconds) and

then proceed as though it had.

• This is preferable to having long-running app programs save their state at an

arbitrary time, because it gives the app framework the opportunity to influence the
choice of arbitrary time. For example, the framework could notify the first app

program, wait for a response, notify the second app program and so on.

• When the app is launched without any particular parameters, it must have the

Application framework concept document – Collabora - CC BY-SA 4.0

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

opportunity to load its last-used context.

• The app framework should give the app an indication of whether it is expected to load

its last-used context or not.

Open question: do we expect this to be a boolean option (app should load LUC / app
should not load LUC), or a tri-state (app should load LUC / app should not load LUC /

app may decide)?

• Whether/when the app actually loads its last-used context is a UX decision for the

platform vendor and the app vendor.

• When the app is launched for a specific purpose such as document launching or URI

launching, that specific purpose takes precedence over the last-used context.

• If the app is capable of having more than one simultaneous context (for example a

web browser with multiple tabs or multiple windows), the purpose for which it was
launched should take precedence (for example, a tabbed web browser should load

the URI from URI launching as a new foreground tab). It may additionally load its last-
used context (for example, a tabbed web browser might load all the tabs from its last-

used context as low-priority background tabs).

• The app framework should give the app an indication of whether, if possible, it is

expected to load its last-used context in the background or not.

• Whether/when the app actually loads LUC in this case is a UX decision for the

platform vendor and the app vendor. The decision made here is not necessarily the
same as the decision made during launching with no particular parameters.

The app framework must also be able to store its own last-used context, consisting of the
visible (foreground) app programs, and optionally some or all of the app programs that

were running and/or paused in the background.

• On events such as a system reboot, the app framework may load its last-used context

if desired. Whether to do this is a UX decision by the platform vendor. If it does:

• The foreground app programs should be run, each with its own last-used context.

• The background app programs may either be run with its last-used context, run with

its last-used context and paused soon after, or left in the stopped state to be run with
its last-used context later.

• The app framework may use the background app programs' last known window

contents as a placeholder for their app window.

Open question: is this something we want? If we do, we need either a requirement
that the per-app LUC includes a snapshot of the window contents in a known

location/format, or a requirement that the GUI shell or compositor can take the
required snapshot.

Application framework concept document – Collabora - CC BY-SA 4.0

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

Download management
Management of app-initiated downloads has been suggested as a topic that is potentially

in the scope of the app framework. We feel that this should probably be considered to be an
orthogonal topic, to be designed separately.

The platform should provide a HTTP download manager for use by apps. The download
manager may also be used by platform components, but that is outside the scope of a

standard interface.

• It must be possible to have multiple downloads in parallel.

• The system may have a limit on the maximum number of downloads that will

proceed in parallel. If it does, additional downloads must be held in a queue, with one
additional download resuming every time an active download finishes successfully

or unsuccessfully. This limit may be user-configurable.

• The system may start an arbitrary number of downloads in parallel, up to a specified

bandwidth-usage limit. If it does, additional downloads must be held in a queue as
above, with an additional download resuming when a heuristic indicates that there is

enough bandwidth quota available. This limit may be user-configurable.

• Pending downloads must be saved periodically, and should be saved before system

shutdown, so that they can be resumed automatically on next startup if the server
supports it.

• Implementors should be aware that many servers do not support resuming HTTP

downloads, either because they do not support the Range HTTP header properly or

because an up-to-date session cookie is required.

• The list of pending downloads and their progress and pause/resume states must be

treated as private data:

• Programs associated with an app bundle must be able to list, pause, resume and

cancel the pending downloads that were started by that app bundle running as the
same user.

• The progress of each pending download must be updated regularly. If a program from

the initiating app is running, it must be able to receive progress reports on that

download without polling.

• Programs associated with an app bundle must not be able to list, pause, resume or

cancel the pending downloads that were started by a different app bundle.

• Programs running as a user must not be able to list, pause, resume or cancel the

pending downloads that were started by a different user.

• The downloaded files themselves must be treated as private data:

• When an app requests that a file is downloaded, it must either be downloaded into

the private data area for that (user, app) pair, or into a temporary location that is not

Application framework concept document – Collabora - CC BY-SA 4.0

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

accessible by any app. When the download is completed, if it is in a temporary

location, it must be moved into the private data area for that (user, app) pair.

• It must not be possible for the app to trick the download manager into overwriting

data outside its private data area, for example by creating a symbolic link and having
the download manager traverse that symbolic link.

• Programs associated with an app bundle must not be able to list, pause, resume or

cancel the pending downloads that were started by a (non-app) platform component.

• When a download that was initiated by an app finishes (successfully or

unsuccessfully), the system must arrange for one of that app's entry points to be

started (if not already running), unpaused (if paused), and notified about the status
of the download.

It has been suggested that the download manager should record a history of completed
downloads per user, per app and/or per session.

• Open question: What are the use cases for this feature?

• If this is done, the user must be able to clear the history somehow. Without knowing

the use cases for this history, we cannot say whether this should be functionality

that is exposed to apps, or whether it should be considered to be a privileged action.

Application framework concept document – Collabora - CC BY-SA 4.0

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

Installation management
Management of app bundle installation has been suggested as a topic that is potentially in

the scope of the app framework. We feel that this should be considered to be an orthogonal
topic, in the scope of the GENIVI Software Management design. Some requirements in this

area are outlined here in the hope that they can be used to clarify the division of
responsibilities.

App bundles are expected to be user-installable, and may be updated on a schedule not
matching the underlying platform.

• Installation: New app bundles can be installed, for example from an app store.

• It must be possible to install apps from removable storage media such as a USB

thumb drive.

• Upgrade: Installed app bundles can be replaced by a newer version.

• The system should check for upgrades periodically.

• All programs from the app bundle must be stopped (see Life-cycle management)

before proceeding with the upgrade. They must be blocked from running until the

upgrade is complete.

• If an app was installed from removable storage media, it must remain possible to

upgrade it by other means (for example using an Internet connection).

• Rollback: When an app bundle is upgraded, the version that was available prior to the

upgrade must be saved, together with the state of its private data and per-app data
at the time of the upgrade. The user must be able to roll back to the saved version at

any time.

• Rollbacks are anticipated to be an unusual event, so the saved version may be

compressed as a space/time trade-off, and its cached data may be deleted to
minimize the storage cost.

• All programs from the app bundle must be stopped (see Life-cycle management)

before proceeding with the rollback.

• Private and per-app data corresponding to the new version are not necessarily

compatible with the saved version, so these must be rolled back too. Any changes

made since the upgrade are lost.

• Removal: The user must be able to remove an installed app bundle.

• All programs from the app bundle must be stopped (see Life-cycle management)

before proceeding with the removal.

• The app bundle's private data and per-app data must be removed. This matches what

is done on Android, and is necessary to prevent a "masque attack" in which a user is
induced to install a malicious bundle of the same machine-readable name from a

Application framework concept document – Collabora - CC BY-SA 4.0

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

https://github.com/GENIVI/genivi_swm

different origin (for example via social engineering), after which the malicious bundle

would be able to gain access to the private and per-app data of the original bundle.

• Per-user data and per-device data must be unaffected.

• Open question: it has been suggested that there should be a requirement that apps

must not download in parallel, with at most one app at a time actively downloading,
and the rest queued.

Is this a requirement? This seems like something that should be a quality-of-
implementation decision for implementations: an implementation that expects to

run on comparatively fast hardware might wish to maximize user convenience by
carrying out downloads and installations in parallel, while an implementation that

optimizes for implementor convenience or comparatively slow hardware might prefer
to impose a limit of one download or installation at a time.

On a multi-user system, each user might wish to have a different set of apps installed.
However, physically downloading and copying each app bundle for each user might be

considered to be unacceptably inefficient.

• When a user installs an app bundle that is not yet physically installed, the system

must carry out the actual installation.

• When a different user is active, the system should behave as if that app bundle was

not physically installed: it must not be run, its entry points must not be available for
launching or data sharing, and so on.

• As an exception to that general rule, privileged app management GUIs should be able

to enumerate the app bundles that are physically installed, for example so that they

can illustrate how storage space has been used.

• This could usefully be implemented by treating it as forbidden for the other users.

• When a user installs an app bundle that has already been physically installed by

another user, the system must stop hiding the app bundle from that user. For
example, it must now be made available for launching by that user, assuming there

is no other reason why it would be forbidden.

• If a user has installed an app from a particular origin, then another user is not

required to be able to install an app of the same name from a different origin.

• If a user has installed an app at a particular version, then another user is not

required to be able to install a different version of that app.

• If a user upgrades or rolls back an app, the app may be upgraded or rolled back for all

other users.

• Open question: do we want to mandate that the physical installation of apps must

be per-device, or leave that open?

A vendor might wish to include app bundles in the original factory state of the system, while

Application framework concept document – Collabora - CC BY-SA 4.0

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

subsequently allowing them to be upgraded and uninstalled by the user, in the same way

that Google apps are typically handled on Android devices.

• Preinstalled apps: it must be possible to preinstall app bundles on the system, while

leaving them available for installation management (upgrade, rollback, removal) in
the usual way.

Conditional access
App-store curators and app vendors might wish to provide publish apps on a time-limited
basis.

This is a complex topic and we recommend that it is considered separately. The Apertis
Conditional Access design has some proposed requirements for this topic.

Application framework concept document – Collabora - CC BY-SA 4.0

939

940

941

942

943

944

945

946

947

948

https://wiki.apertis.org/Conditional_Access
https://wiki.apertis.org/Conditional_Access

Appendix: mapping to GENIVI Platform Compliance
Specification 10.0

• SW-APPFW-AM-001 Manifest file for Application: this is the bundle metadata,
the app permissions, and the entry point metadata (including the details
demanded by document launching and URI launching). Open question: Do
we need an explicit statement of what else would go in here, like required
API levels?

This appears to be taking an implementation detail (the manifest file) of
the motivating requirements (framework must be able to [...]) and declaring
it to be a requirement in its own right. We have attempted to re-state it in
terms of requirements.

• SW-APPFW-AM-002 Support for LUC: Last-used context

• SW-APPFW-AM-003 Failure handling in case of application doesn't respond on
state change: Life-cycle management

• SW-APPFW-AM-004 Launch application from another application: this is
document launching, URI launching and perhaps app launching.

• SW-APPFW-AM-005 Factory reset: Data management

• SW-APPFW-AM-006 Prohibit to start an application: see Life-cycle
management and specifically Forbidden apps.

• SW-APPFW-AM-007 Activation of application, SW-APPFW-AM-008 Deactivation
of application: What is activation?

• SW-APPFW-AM-009 Support for activation of application (sic): from its
descriptive text, this seems to actually be app launching.

• SW-APPFW-AM-010 Support for switching the application (sic): from its
descriptive text, this seems to actually mean stopping the application.
Life-cycle management

• SW-APPFW-AM-011 Support for pausing an application: Life-cycle management

• SW-APPFW-AM-012 Support for resuming application: Life-cycle management

• SW-APPFW-AM-013 Support for stopping application: from its descriptive text,
this is specifically stopping a paused application. Life-cycle management

• SW-APPFW-AM-014 Application framework shall provide a mechanism to tell an
application to change its state: the states specified are START (not running),
BACKGROUND (running and in background), SHOW (running and in
foreground), RESTART (from its descriptive state not actually a state, and
not the systemd-style restart action either, but in fact the "resume"
transition from PAUSE to either SHOW or BACKGROUND), OFF (what is the

Application framework concept document – Collabora - CC BY-SA 4.0

949

950

951

952

953
954

955

956
957

958
959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980
981

982
983

984

difference between this and START in terms of states?), and PAUSE
(understood to be essentially SIGSTOP'ed). See Life-cycle management.

These state names demonstrate some confusion between states and state
transitions. We have specifically documented states, not transitions, and
provided details of the allowed transitions.

• SW-APPFW-AM-015 Application states: the states specified are either
(INSTALLED, ACTIVATED, LAUNCHED, PAUSED) or (START, BACKGROUND,
SHOW, RESTART, OFF, PAUSE) depending which column we believe. See Life-
cycle management.

It is unclear what these states mean, particularly ACTIVATED. We have
described a different set of states in these requirements.

• SW-APPFW-AM-016 Installed application info: this is the part of app launching
that deals with listing what we can launch.

• SW-APPFW-AM-017 Access restriction for apps: this is our sandboxing and
security. It's a big topic in its own right.

• SW-APPFW-AM-018 Support for different applications running in different
runtimes: the application framework should support JVM- or HTML5-based
runtimes. Stated in What's in an app.

• SW-APPFW-AM-019 Support for any number of applications: stated in What's in
an app, under the assumption that this is referring to lack of arbitrary
limits. If the intention is to cope with exceeding RAM by telling excess apps
to shut down gracefully, that's harder but could be done. If the intention is
to cope with exceeding flash space by "swapping out" apps to cloud
storage or something, that's impractical for a device that might not have
constant connectivity and should not be required.

Application framework concept document – Collabora - CC BY-SA 4.0

985

986

987
988

989

990

991

992
993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005
1006

1007
1008

1009

Appendix: mapping to Suma's proposed requirements
• App-FW-001 Protect the system against altering of any data by a malicious app:

App integrity, System integrity, Per-user data, etc.

• App-FW-002 Protect the system against collecting and sharing of any data by a
malicious app: App confidentiality, Private data, Per-user data etc.

• App-FW-003 Protect the system against usage of system resources etc.:
Resource limits

• App-FW-004 An application shall not [] interfere with [] the other application… … :
App integrity, App confidentiality, Private data

• App-FW-005 read, alter or delete non-application data: System integrity, Per-
user data.

As written, this requirement states that this must be forbidden entirely. We
have assumed that the intention was to forbid it with exceptions where
necessary for the app to do its job.

• App-FW-006 Users data are protected against access by another user: Private
data, Per-user data

• App-FW-007 deny access to APIs to which an App has not requested permission:
Sandboxing and security

This requirement wrongly conflates APIs with privilege boundaries. There is
never any reason to deny access to APIs that do not cross a privilege
boundary, because such APIs cannot do anything that the app could not do
itself.

• App-FW-008 per-app rollback: Rollback

• App-FW-009 Shall support applications with UI or UI less: What's in an app

• App-FW-010 Restore LUC: Last-used context

• App-FW-011 information about mime type: Document launching

Consideration has been given to possible ways to select file types, other
than media types. We have included the recommendation that using
anything other than IETF media types would be unwise.

• App-FW-012 Resource handling: Life-cycle management

• App-FW-013 Inform apps about states: Life-cycle management

• App-FW-014 shutdown: Life-cycle management

Application framework concept document – Collabora - CC BY-SA 4.0

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021
1022

1023

1024

1025

1026

1027

1028
1029

1030
1031

1032

1033

1034

1035

1036

1037
1038

1039

1040

1041

• App-FW-015 Frozen state: Life-cycle management (we're calling it "pause" in
this document)

• App-FW-016 blacklist apps:

We think this may be conflating two distinct behaviors. The first is to cope
with apps that go into a crash loop, which must be rate-limited. The second
is to have a way to stop apps executing altogether, which this document
refers to as Forbidden apps.

• App-FW-017 apps with a validity period: Conditional access

• App-FW-018 app requesting permissions every launch: App permissions.

Note that we only really recommend this for permissions where there's
nothing better we can do, like "unrestricted Internet access".

• App-FW-019 apps can communicate with other apps: Data sharing

• App-FW-020 Content hand-over: Document launching, URI launching.

• App-FW-021 content type can be opened only by...: Document launching

• App-FW-022 It shall be possible for an app to register a new content type: Adding
media types

• App-FW-023 Sharing a content to be transferred out of the system: (Android-
style Sharing API): Sharing menu

• App-FW-024 POI provider but no access to location data: implicit in sandboxing
and security and app permissions.

This requirement appears to be conjecturing that registering an app as a
points-of-interest provider would cause it to have additional permissions
somehow, but whether an app is registered as a points-of-interest provider
should be entirely orthogonal to whether it has the permissions that would
allow it to access location data.

• App-FW-025 to App-FW-032 Download manager: Download management

• App-FW-032 to App-FW-036 Internationalization: not mentioned here.

As Gunnar says, this is a SDK API issue, not a platform services issue. It is
entirely feasible to implement internationalization through a shared
library provided by the platform (part of glibc in practice) and some data
files in the app (gettext .mo files) without ever crossing a security
boundary, and we recommend doing exactly that.

• App-FW-037 installation of application bundles: Installation

• App-FW-038 Native application: we are unsure how this is relevant to a

Application framework concept document – Collabora - CC BY-SA 4.0

1042

1043

1044

1045
1046

1047
1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063
1064

1065
1066

1067

1068

1069

1070
1071

1072
1073

1074

1075

GENIVI design, since the interaction between vendor-supplied native apps
and the vendor-supplied platform is presumably up to the vendor.

Terminology note: GENIVI's native applications are the same thing as Apertis'
built-in applications. It is nothing to do with whether the app is written in
native code compiled from C/C++. GENIVI applications that are not native
applications are said to be managed applications, which are the same as
Apertis' store applications.

• App-FW-039 Pre installed app vs. store downloadable apps: Preinstalled apps

• App-FW-040a Install app from a storage device: Installation

• App-FW-040b sync up with app store: We have interpreted this to mean that
after installation from removable media, it must still be possible to
upgrade via the Internet.

• App-FW-041 facilitate handling of permissions: app permissions

• App-FW-042 provide data storage structure to an app: private data and
optionally per-app data, per-device data, per-user data.

• App-FW-043 an app can't contain more than one program [] or more than one …
agent/service: What's in an app

There has been some resistance to this requirement, and we have written
the requirements in this document to say that vendors may impose this
limit, but the framework should not.

• App-FW-044 system extensions: What's in an app

• App-FW-045 downloaded and installed only once (i.e. apps appear to be per-
user but are really system-wide): Installation management

• App-FW-046 queueing mechanism for app download (i.e. apps do not install in
parallel): Software download limiting

• App-FW-047 App upgrades shall be checked periodically: Upgrade.

Application framework concept document – Collabora - CC BY-SA 4.0

1076

1077

1078
1079

1080
1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093
1094

1095

1096

1097

1098

1099

1100

1101

	What's in an app
	Data management
	Sandboxing and security
	App permissions
	App launching
	Document launching
	URI launching
	Content selection
	Data sharing
	Sharing menu
	Life-cycle management
	Last-used context
	Download management
	Installation management
	Conditional access
	Appendix: mapping to GENIVI Platform Compliance Specification 10.0
	Appendix: mapping to Suma's proposed requirements

