Presentation

Cyber-Security in the Connected Car Age

GENIVI Conference – Seoul, October 21, 2015

ihs.com

Egil Juliussen, Director Research & Principal Analyst +1 630 432 1304, egil.juliussen@ihs.com

- What is the problem?
- What are the risks & negative impact?
- What can be learned from other industries?
- What are the big-picture solutions?
- Are there automotive solutions?
- Summary & take-away

Auto Security Problem

	Key Information	Problem/Comments
Complacency	 Not needed previously "It will not happen to us" Too much effort vs. rewards No known actual breaches 	 Hard to justify cost and effort Common view in all industries True, but is now changing Only R&D proof of concept
Connected Car Growth	Opens door to remote accessMultiple connection points	Connected cars on the road: >2015-83M; 2022-430M
Security Knowledge	New skill set needed Rare skill in auto industry	► Not part of SW testing yet ► Shortage in most industries
Examples	 Chrysler Jeep: July 2015* OnStar RemoteLink app: 7/15 Tesla (physical access): 8/15 BMW ConnectedDrive: 1/15 Many models are hackable 	 Open H-U port allowed access App spoofing via own device Fixed via remote SW update Fixed via remote SW update Based on hacking R&D

^{*} Resulted in Chrysler recall of 1.4M vehicles → Cost of \$140M+ OnStar RemoteLink downloaded 3M+ times; BMW security flaw in 2.2M vehicles

What Makes Future Cars More Vulnerable to Security Threats?

	Key Information	Comments
Connected Car	Cloud connected car contentConnected ECU architectureSelf-driving & driverless cars	More wireless connectionsRemote software updatesAlways connected
Platform Design	Hardware platformsSoftware platformsApplication platforms	More standardizationMore system knowledgeMore program knowledge
Attack Access Points	 OBDII OBDII w/wireless module Telematics modem link(s) Smartphone links Wi-Fi network link(s) 	 Need physical access Bluetooth, Wi-Fi, cellular 2.5G, 3G, 3.5G, 4G, 4.5G Bluetooth, USB & others Router & Direct
Security Deployment Speed	 Connected car growth Many current security holes Security is new skill set Built-in security needed 	 Many access points Need to be found & updated Low auto security knowledge How quickly will this happen?

Auto System Access Points: 2015

Hacking research has shown that nearly all access points can be compromised!

- What is the problem?
- What are the risks & negative impact?
- What can be learned from other industries?
- What are the big-picture solutions?
- Are there automotive solutions?
- Summary & take-away

Auto Security Threat Overview

	Security Attack Goals	Comments
Property Theft	Steal vehicleSteal valuable auto components	► Via unauthorized access ► Via unauthorized access
Industrial Espionage	Steal OEM's intellectual propertySpy on OEM's expertise	► Software & hardware ► Intellectual property value
Deception	Circumvent HW-SW functionalityManipulate auto equipmentManipulate contracts & agreements	Speed, features, chip tuningToll device, digital tachographLease, warranty
Privacy & Data	Location trackingEvent data recordersCredit card & financial information	Stalking, VIP trackingAccident investigationsIf stored in car electronics
Damage & Destruction	Harm driver and passengersHarm auto OEM's reputationHarm transportation system	Accidentally or for-profitAccidentally or for-profitCyber warfare

Auto Security Attacks: Financial Risks

	Key Information	Comments
Legal Risks	Cost of lawsuitsCost of negligence	► In 10s of millions of dollars ► Possibly 100s of millions of dollars
Business & Customer Loss	Loss of customer contractsSoftware upgrade/recall costFuture business loss	 Possibly 100s of millions of dollars 10s to 100s of millions of dollars Until new product is re-established
Reputation Impact	Most severe for auto OEMsPublic likely to shun autos with cyber-security issues	From \$100M to \$1B+Whether real or notEven after fixes have been done
Summary	Successful software security attacks have the potential to be among the most costly auto recall & reputation events	 Legal risk will be substantial Product update cost may be low to extreme high Reputation impact will be severe

- What is the problem?
- What are the risks & negative impact?
- What can be learned from other industries?
- What are the big-picture solutions?
- Are there automotive solutions?
- Summary & take-away

Security Lessons from Other Industries

	Key Information	Comments
PC Industry: Early 1990s	Mostly standalone PCLittle connectivityNone or minimal security	LANs emergingEmail emergingInternet was a niche market
PC Industry: 2000s	Mostly Internet connected PCsSecurity is a major problemAdd-on security software	Broadband-era establishedPoor and add-on securityLimited anti-virus software
PC, Tablets & Smartphones 2010s	 Internet-connected devices Add-on security software Security is a major problem Smartphone/tablet: new target Infected websites: new problem 	 Internet drives PC/CE industries Service-based anti-virus Improved PC security, but Security is lagging In addition to email
Lessons	Security has to be built-inHardware security is lackingOS must use MPU HW security	In hardware and softwareNeed to be part of MPUApps must use OS/HW security

Security Attack Sources: PC vs. Auto

	Motivation	PC Industry	Auto Industry
Hackers: White Hat	ReputationShow vulnerable attack points	Since beginning of PCMostly positive goals, but unintended impact	First wave of hackingHave shown many auto security flaws
Entre- preneurs	Financial gainsMostly legal	Mostly email spam via unlimited broadband	Limited, no unlimited data plans in future
Organized Crime	Financial gainsCredit cards & bank accounts	Mostly Botnet-basedPhishing multiplierMoving to Smartphone	Mostly via SmartphoneHarm-for-hire likelyFinancial gains
Industrial Espionage	Valuable IP theftCo-sponsoredGov-sponsored	Common, but little data available Competent hackers	Long-term problemLikely severe problemPhysical access likely*
Terrorism	► Political goals ► Intention to harm	Productivity tool using standard PC apps	► Future use, but rare ► Auto as lethal weapon
Hacktivism	Hacking used for political reasonsUnauthorized data access	Unauthorized access tool to databasesSmall group, very competent hackers	Not likely or limited—at least in auto ECUsMust know auto & very competent hackers

Security Attack Categories: PC vs. Auto

	PC Industry	Purpose	Auto Impact
Hacking	► Vulnerability scanner	Find weaknesses	►Yes, emerging
Tools	► Port scanner	► Find open ports	►Yes, done (Chrysler)
	► Password cracking	► Recover password	►Yes, done
(Learn)	► Packet sniffer	Find access data	►Yes, w/physical access
	► Spoofing, Phishing	► Illegitimate Website	►Unlikely
	▶Backdoor	► Bypass authentication	►Yes, diagnostics port
Attack	Viruses	Self-replicating, user file	► Via Smartphone
Tools	►Worms	Self-replicating, by itself	► Via Smartphone
	► Trojans	► Looks benign, but is not	►Yes done
	► Root kits	► Conceal security breach	▶ Probably, later
	► Key loggers	► Record keystrokes	►Unlikely
	► Denial of service	►Shut down a resource	►Works on ECUs

- UCSD & U of WA published 2 papers on the results of hacking MY 2009 car ECUs
- Methods marked in red used with physical access (able to compromise all ECUs)
- Methods marked in green used for remote access (able to compromise all ECUs)

- What is the problem?
- What are the risks & negative impact?
- What can be learned from other industries?
- ▶ What are the big-picture solutions?
- Are there automotive solutions?
- Summary & take-away

Cyber-Security Solution Overview

	Key Information
Iterative Process	Cyber-security is an iterative process over the life-time of the system, sub-system, device, software and hardware
Best Practice	 Cyber-security is a life-cycle process that includes assessment, design, implementation and operations It also includes an effective testing and certification program
Assessment Phase	► Establish security policy & System security evaluation Iterative risk assessment (most important element)
Design Phase	System prioritization & Security architecture
Implementation Phase	► Security architecture implementation Security testing and evaluation
Operational Phase	► Awareness and security training ► Intrusion detection and response (most important)
Strategy	 Best defense is to make security attacks unprofitable Assume successful attacks and focus on detection & mitigation Build software security on top of hardware security modules

Note: Most information from NHTSA Cyber-security Report

Connected Car Overview

Big Picture Cyber-Security Solution

Auto Cyber-Security Solution

	Key Information
Perimeter Security	► To detect and prevent unauthorized access ► Via wireless, wired and other access points (i.e. media)
Perimeter Security Components	 Built-in microcomputer hardware security functionality OS software security that leverage hardware security Middleware security that leverage HW & OS security Apps security that leverage HW & OS SW security Every ECU will need these layers of security to check that any in-coming content is free of malware
Operational Security	 Perimeter security will not be 100% successful Operational security is required to detect and prevent damage from malware that got through perimeter security
OEM IT Center	► Will need the best Perimeter & Operational security ► OEM IT Center has the most valuable information!

- What is the problem?
- What are the risks & negative impact?
- What can be learned from other industries?
- What are the big-picture solutions?
- ▶ Are there automotive solutions?
- Summary & take-away

Auto Security Products & Solutions

	Security Function	Company/Product
Cyber-Security Services	Security risk assessmentPenetration testingVulnerability assessment	Cisco OpSecIOActiveMany others
Hardware Security	Cryptographic processingSecure microprocessor	► Freescale microcomputers ► TI and others
Hypervisor Software	► Protect at software boot-up ► OS & software isolation	► OpenSynergy, Mentor Graphics ► Green Hills & others
Over-the-air SW Update	► Remote software update with built-in security	►Arynga ►Redbend
Apps Security Framework	Security framework for connected car apps	► Secunet Application Control Unit ► Others expected

Auto Security Products & Solutions

	Security Function	Company/Product
CAN Bus Firewall	Integrated CAN bus firewallAdd-on CAN bus firewallCAN bus bridge firewall	Arilou TechnologiesVisual Threat OBDShieldOthers likely in future
ECU Security	ECU software monitoringCan be embedded in ECUs	TowerSec: ECUShield & TCUShieldOthers expected in future
Operation Security	► Deep Packet Inspection for ECU intrusion detection	Argus Cyber Security IPSOther expected
Analysis Tools	Framework for analysis and detection of CAN anomalies	►SWRI autoTREAD software ►Reverse engineering: CAN signals
Backend IT	Life cycle protection of flash software (cryptography-based)	Security (ABSec)

- What is the problem?
- What are the risks & negative impact?
- What can be learned from other industries?
- What are the big-picture solutions?
- Are there automotive solutions?
- Summary & take-away

What Should Auto Industry Do?

	Key Information	Comments
Check current systems	Check current connected car systems for security flaws	► To find, correct and update any security issues
Weakness Identification	Offer rewards for finding auto security weaknesses	► Done by Google and other high-tech companies
Security Incident Response Center	► Auto industry organization to share security incident info	Share security incidents info and attack methods
Continued R&D on auto security	► Continued NHTSA effort ► Continued SAE effort	► Leverage high-tech R&D ► Many security start-ups
Best Practice Guidelines	Develop security guidelinesDeployment needed now	►NHTSA October 2014* ►In progress from SAE
Security Standards	➤ Standards: NHTSA, SAE, etc. ➤ Rapid deployment needed	Leverage existing standards from aerospace and others
Testing & Certification	Develop testing and certification standards	►SAE and/or NHTSA ►Or others

*DOT HS 812 075 (Multiple industries)

Auto Security Requirements

Requirements	Key Information
Hardware Integrity	► Hardware-based security is required ► Tamper-proof: Prevention and detection
Software Integrity	Unauthorized access must be detectableUnauthorized alteration must not be feasible
Data Integrity	Unauthorized access must be detectableUnauthorized alteration must not be feasible
Communication Integrity	 Unauthorized modification from outside vehicle must be detected by receiver Unauthorized in-vehicle communication must not be feasible and detectable
Access Control Integrity	 Authorized access must be well defined Unauthorized access must be detectable Development diagnostic access must be removed
Operational Security	► Monitor ECU-to ECU messages for suspicious events ► Database of normal & hacked messages & events

Auto Cyber Security Evolution

2010

Operational Security Verify ECU-ECU Messages MCUs with Built-IT Server & Layered Hardware & Client HW-SW Security Software Solution in HW Security Emerging CAN Firewall & Backend & Layered **Software Solutions** Client SW Security ECU SW Monitor Auto Incident •Government: EVITA, NHTSA Auto Industry Consortium: ACES, others likely Response Center Research Senator Markey Security Other Security Hacking R&D Report & SPY Act Research USCD & U-WA USCD & U-WA **Testing New Security** and SW & HW Products Hacking In-Car Access Remote Access Defcon & Blackhat: Auto presentations-2010 Security Conference Embedded Security in Cars: EU-2003; US-2013; AP-2014

2015

SOURCE: IHS Automotive Software Apps & Service Portal

2020

Auto Cyber-Security Takeaway

Good News	Bad News
Successful auto hacking requires lots of time and expertise	Good hacking tools & expertise expected in 3-5 years
► Business models for making money on car hacking is limited today	► Better hacking business models are likely (financial, ransomeware)
Auto industry is investing in cyber- security solutions	Deployment is lagging and may take a decade to catch up
► Remote software update emerging for quicker fix of security flaws (OTA)	Cyber-security breaches could have many & high expenses
Cyber-security big picture is simple: Perimeter & Operational security	Cyber-security implementation details are extremely difficult
	Security will require constant advances and is never done
	Cyber-security is a new skill set and is a limited resource

Questions?

Egil Juliussen, Ph.D. Research Director, Principal Analyst, IHS Automotive Technology October 21, 2015 egil.juliussen@ihs.com

