Presentation # Cyber-Security in the Connected Car Age GENIVI Conference – Seoul, October 21, 2015 ihs.com **Egil Juliussen**, Director Research & Principal Analyst +1 630 432 1304, egil.juliussen@ihs.com - What is the problem? - What are the risks & negative impact? - What can be learned from other industries? - What are the big-picture solutions? - Are there automotive solutions? - Summary & take-away ### **Auto Security Problem** | | Key Information | Problem/Comments | |-----------------------|---|---| | Complacency | Not needed previously "It will not happen to us" Too much effort vs. rewards No known actual breaches | Hard to justify cost and effort Common view in all industries True, but is now changing Only R&D proof of concept | | Connected Car Growth | Opens door to remote accessMultiple connection points | Connected cars on the road: >2015-83M; 2022-430M | | Security
Knowledge | New skill set needed Rare skill in auto industry | ► Not part of SW testing yet ► Shortage in most industries | | Examples | Chrysler Jeep: July 2015* OnStar RemoteLink app: 7/15 Tesla (physical access): 8/15 BMW ConnectedDrive: 1/15 Many models are hackable | Open H-U port allowed access App spoofing via own device Fixed via remote SW update Fixed via remote SW update Based on hacking R&D | ^{*} Resulted in Chrysler recall of 1.4M vehicles → Cost of \$140M+ OnStar RemoteLink downloaded 3M+ times; BMW security flaw in 2.2M vehicles # What Makes Future Cars More Vulnerable to Security Threats? | | Key Information | Comments | |----------------------------|---|--| | Connected
Car | Cloud connected car contentConnected ECU architectureSelf-driving & driverless cars | More wireless connectionsRemote software updatesAlways connected | | Platform
Design | Hardware platformsSoftware platformsApplication platforms | More standardizationMore system knowledgeMore program knowledge | | Attack
Access
Points | OBDII OBDII w/wireless module Telematics modem link(s) Smartphone links Wi-Fi network link(s) | Need physical access Bluetooth, Wi-Fi, cellular 2.5G, 3G, 3.5G, 4G, 4.5G Bluetooth, USB & others Router & Direct | | Security Deployment Speed | Connected car growth Many current security holes Security is new skill set Built-in security needed | Many access points Need to be found & updated Low auto security knowledge How quickly will this happen? | ### **Auto System Access Points: 2015** Hacking research has shown that nearly all access points can be compromised! - What is the problem? - What are the risks & negative impact? - What can be learned from other industries? - What are the big-picture solutions? - Are there automotive solutions? - Summary & take-away ### **Auto Security Threat Overview** | | Security Attack Goals | Comments | |-------------------------|--|--| | Property
Theft | Steal vehicleSteal valuable auto components | ► Via unauthorized access ► Via unauthorized access | | Industrial
Espionage | Steal OEM's intellectual propertySpy on OEM's expertise | ► Software & hardware ► Intellectual property value | | Deception | Circumvent HW-SW functionalityManipulate auto equipmentManipulate contracts & agreements | Speed, features, chip tuningToll device, digital tachographLease, warranty | | Privacy &
Data | Location trackingEvent data recordersCredit card & financial information | Stalking, VIP trackingAccident investigationsIf stored in car electronics | | Damage & Destruction | Harm driver and passengersHarm auto OEM's reputationHarm transportation system | Accidentally or for-profitAccidentally or for-profitCyber warfare | ### **Auto Security Attacks: Financial Risks** | | Key Information | Comments | |--------------------------|---|--| | Legal Risks | Cost of lawsuitsCost of negligence | ► In 10s of millions of dollars ► Possibly 100s of millions of dollars | | Business & Customer Loss | Loss of customer contractsSoftware upgrade/recall costFuture business loss | Possibly 100s of millions of dollars 10s to 100s of millions of dollars Until new product is re-established | | Reputation
Impact | Most severe for auto OEMsPublic likely to shun autos
with cyber-security issues | From \$100M to \$1B+Whether real or notEven after fixes have been done | | Summary | Successful software security attacks have the potential to be among the most costly auto recall & reputation events | Legal risk will be substantial Product update cost may be low to extreme high Reputation impact will be severe | - What is the problem? - What are the risks & negative impact? - What can be learned from other industries? - What are the big-picture solutions? - Are there automotive solutions? - Summary & take-away ### **Security Lessons from Other Industries** | | Key Information | Comments | |---------------------------------|--|--| | PC Industry:
Early 1990s | Mostly standalone PCLittle connectivityNone or minimal security | LANs emergingEmail emergingInternet was a niche market | | PC Industry: 2000s | Mostly Internet connected PCsSecurity is a major problemAdd-on security software | Broadband-era establishedPoor and add-on securityLimited anti-virus software | | PC, Tablets & Smartphones 2010s | Internet-connected devices Add-on security software Security is a major problem Smartphone/tablet: new target Infected websites: new problem | Internet drives PC/CE industries Service-based anti-virus Improved PC security, but Security is lagging In addition to email | | Lessons | Security has to be built-inHardware security is lackingOS must use MPU HW security | In hardware and softwareNeed to be part of MPUApps must use OS/HW security | ### Security Attack Sources: PC vs. Auto | | Motivation | PC Industry | Auto Industry | |-------------------------|---|---|---| | Hackers:
White Hat | ReputationShow vulnerable attack points | Since beginning of PCMostly positive goals,
but unintended impact | First wave of hackingHave shown many
auto security flaws | | Entre-
preneurs | Financial gainsMostly legal | Mostly email spam via unlimited broadband | Limited, no unlimited data plans in future | | Organized
Crime | Financial gainsCredit cards & bank accounts | Mostly Botnet-basedPhishing multiplierMoving to Smartphone | Mostly via SmartphoneHarm-for-hire likelyFinancial gains | | Industrial
Espionage | Valuable IP theftCo-sponsoredGov-sponsored | Common, but little data available Competent hackers | Long-term problemLikely severe problemPhysical access likely* | | Terrorism | ► Political goals ► Intention to harm | Productivity tool using standard PC apps | ► Future use, but rare
► Auto as lethal weapon | | Hacktivism | Hacking used for political reasonsUnauthorized data access | Unauthorized access
tool to databasesSmall group, very
competent hackers | Not likely or limited—at least in auto ECUsMust know auto & very competent hackers | ### **Security Attack Categories: PC vs. Auto** | | PC Industry | Purpose | Auto Impact | |---------|-------------------------|-----------------------------|-------------------------| | Hacking | ► Vulnerability scanner | Find weaknesses | ►Yes, emerging | | Tools | ► Port scanner | ► Find open ports | ►Yes, done (Chrysler) | | | ► Password cracking | ► Recover password | ►Yes, done | | (Learn) | ► Packet sniffer | Find access data | ►Yes, w/physical access | | | ► Spoofing, Phishing | ► Illegitimate Website | ►Unlikely | | | ▶Backdoor | ► Bypass authentication | ►Yes, diagnostics port | | Attack | Viruses | Self-replicating, user file | ► Via Smartphone | | Tools | ►Worms | Self-replicating, by itself | ► Via Smartphone | | | ► Trojans | ► Looks benign, but is not | ►Yes done | | | ► Root kits | ► Conceal security breach | ▶ Probably, later | | | ► Key loggers | ► Record keystrokes | ►Unlikely | | | ► Denial of service | ►Shut down a resource | ►Works on ECUs | - UCSD & U of WA published 2 papers on the results of hacking MY 2009 car ECUs - Methods marked in red used with physical access (able to compromise all ECUs) - Methods marked in green used for remote access (able to compromise all ECUs) - What is the problem? - What are the risks & negative impact? - What can be learned from other industries? - ▶ What are the big-picture solutions? - Are there automotive solutions? - Summary & take-away # **Cyber-Security Solution Overview** | | Key Information | |----------------------|---| | Iterative
Process | Cyber-security is an iterative process over the life-time of the system, sub-system, device, software and hardware | | Best Practice | Cyber-security is a life-cycle process that includes assessment, design, implementation and operations It also includes an effective testing and certification program | | Assessment Phase | ► Establish security policy & System security evaluation Iterative risk assessment (most important element) | | Design Phase | System prioritization & Security architecture | | Implementation Phase | ► Security architecture implementation Security testing and evaluation | | Operational Phase | ► Awareness and security training ► Intrusion detection and response (most important) | | Strategy | Best defense is to make security attacks unprofitable Assume successful attacks and focus on detection & mitigation Build software security on top of hardware security modules | **Note: Most information from NHTSA Cyber-security Report** #### **Connected Car Overview** ### **Big Picture Cyber-Security Solution** ### **Auto Cyber-Security Solution** | | Key Information | |-------------------------------------|--| | Perimeter
Security | ► To detect and prevent unauthorized access ► Via wireless, wired and other access points (i.e. media) | | Perimeter
Security
Components | Built-in microcomputer hardware security functionality OS software security that leverage hardware security Middleware security that leverage HW & OS security Apps security that leverage HW & OS SW security Every ECU will need these layers of security to check that any in-coming content is free of malware | | Operational
Security | Perimeter security will not be 100% successful Operational security is required to detect and prevent damage from malware that got through perimeter security | | OEM IT
Center | ► Will need the best Perimeter & Operational security ► OEM IT Center has the most valuable information! | - What is the problem? - What are the risks & negative impact? - What can be learned from other industries? - What are the big-picture solutions? - ▶ Are there automotive solutions? - Summary & take-away ## **Auto Security Products & Solutions** | | Security Function | Company/Product | |----------------------------|---|--| | Cyber-Security
Services | Security risk assessmentPenetration testingVulnerability assessment | Cisco OpSecIOActiveMany others | | Hardware
Security | Cryptographic processingSecure microprocessor | ► Freescale microcomputers ► TI and others | | Hypervisor
Software | ► Protect at software boot-up ► OS & software isolation | ► OpenSynergy, Mentor Graphics ► Green Hills & others | | Over-the-air
SW Update | ► Remote software update with built-in security | ►Arynga
►Redbend | | Apps Security Framework | Security framework for connected car apps | ► Secunet Application Control Unit
► Others expected | ## **Auto Security Products & Solutions** | | Security Function | Company/Product | |---------------------|---|---| | CAN Bus
Firewall | Integrated CAN bus firewallAdd-on CAN bus firewallCAN bus bridge firewall | Arilou TechnologiesVisual Threat OBDShieldOthers likely in future | | ECU
Security | ECU software monitoringCan be embedded in ECUs | TowerSec: ECUShield & TCUShieldOthers expected in future | | Operation Security | ► Deep Packet Inspection for ECU intrusion detection | Argus Cyber Security IPSOther expected | | Analysis
Tools | Framework for analysis and detection of CAN anomalies | ►SWRI autoTREAD software ►Reverse engineering: CAN signals | | Backend
IT | Life cycle protection of flash software (cryptography-based) | Security (ABSec) | - What is the problem? - What are the risks & negative impact? - What can be learned from other industries? - What are the big-picture solutions? - Are there automotive solutions? - Summary & take-away ### What Should Auto Industry Do? | | Key Information | Comments | |--------------------------------------|---|---| | Check current systems | Check current connected car systems for security flaws | ► To find, correct and update any security issues | | Weakness
Identification | Offer rewards for finding auto security weaknesses | ► Done by Google and other high-tech companies | | Security Incident
Response Center | ► Auto industry organization to share security incident info | Share security incidents info and attack methods | | Continued R&D on auto security | ► Continued NHTSA effort ► Continued SAE effort | ► Leverage high-tech R&D
► Many security start-ups | | Best Practice
Guidelines | Develop security guidelinesDeployment needed now | ►NHTSA October 2014* ►In progress from SAE | | Security
Standards | ➤ Standards: NHTSA, SAE, etc. ➤ Rapid deployment needed | Leverage existing standards from aerospace and others | | Testing & Certification | Develop testing and certification standards | ►SAE and/or NHTSA ►Or others | *DOT HS 812 075 (Multiple industries) ## **Auto Security Requirements** | Requirements | Key Information | |--------------------------|--| | Hardware
Integrity | ► Hardware-based security is required ► Tamper-proof: Prevention and detection | | Software
Integrity | Unauthorized access must be detectableUnauthorized alteration must not be feasible | | Data Integrity | Unauthorized access must be detectableUnauthorized alteration must not be feasible | | Communication Integrity | Unauthorized modification from outside vehicle must
be detected by receiver Unauthorized in-vehicle communication must not be
feasible and detectable | | Access Control Integrity | Authorized access must be well defined Unauthorized access must be detectable Development diagnostic access must be removed | | Operational Security | ► Monitor ECU-to ECU messages for suspicious events ► Database of normal & hacked messages & events | ### **Auto Cyber Security Evolution** 2010 #### **Operational Security** Verify ECU-ECU Messages MCUs with Built-IT Server & Layered Hardware & Client HW-SW Security Software Solution in HW Security Emerging CAN Firewall & Backend & Layered **Software Solutions** Client SW Security ECU SW Monitor Auto Incident •Government: EVITA, NHTSA Auto Industry Consortium: ACES, others likely Response Center Research Senator Markey Security Other Security Hacking R&D Report & SPY Act Research USCD & U-WA USCD & U-WA **Testing New Security** and SW & HW Products Hacking In-Car Access Remote Access Defcon & Blackhat: Auto presentations-2010 Security Conference Embedded Security in Cars: EU-2003; US-2013; AP-2014 2015 SOURCE: IHS Automotive Software Apps & Service Portal 2020 ### **Auto Cyber-Security Takeaway** | Good News | Bad News | |---|--| | Successful auto hacking requires lots of time and expertise | Good hacking tools & expertise expected in 3-5 years | | ► Business models for making money on car hacking is limited today | ► Better hacking business models are likely (financial, ransomeware) | | Auto industry is investing in cyber-
security solutions | Deployment is lagging and may take a decade to catch up | | ► Remote software update emerging for quicker fix of security flaws (OTA) | Cyber-security breaches could have many & high expenses | | Cyber-security big picture is simple: Perimeter & Operational security | Cyber-security implementation details are extremely difficult | | | Security will require constant advances and is never done | | | Cyber-security is a new skill set and is a limited resource | # **Questions?** Egil Juliussen, Ph.D. Research Director, Principal Analyst, IHS Automotive Technology October 21, 2015 egil.juliussen@ihs.com