
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)5-Oct-15

1

Lifecycle Subsystem Readout
2015-10-22 09:00 | Open Projects Track

Lifecycle Subsystem Readout
2015-10-22 09:00 | Open Projects Track

Gianpaolo Macario
GENIVI EG-SI Architect – Mentor

(slides by David Yates – Continental)

Gianpaolo Macario
GENIVI EG-SI Architect – Mentor

(slides by David Yates – Continental)

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
2

Agenda

• Introduction, goals of session

• Lifecycle Manifest

• Startup/Shutdown

• Health Management

• Lifecycle Use cases

• Open Source Status & Roadmap

• Links

• Wrap Up & Questions

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
3

Lifecycle Overview

Node State

Management

Resource

Management
Boot

Management

Supply

Management

Plug in for:

ADC,

PMIC

Plug in for:

Sensors,

Devices Thermal

Management

Reaction on conditions

Reaction on conditions

Turn off display, drives, mute audio,…

Turn on fan, reduce audio volume,…

Plug in for:

Wakeup reason,

node / vehicle

network

Power

Management

State chart

State chart

Events:

• Good
• Poor

• Bad

HMI, Phone,…

SWL/Update

Diagnostics

•Events:
• Phone session
• Diag,SWL,Coding
session

• State change protocol
• (register for
shutdown, get

states,handshake for

state changes)

• Ctrls

Boot config

Node

Node observing for CPU load,

memory, appl. crash
Events:

• Full operational

• Error startup

Get states

Limitation

Ctrl

Resource

config

Plug in for power

handling

1*: Get internal states

State change notification

1*

Set LUC
Last-User-Context

State chart

PF-Events:

• Last User
• Clamp Sts
• User ID
Product-Event

• Button WU
• Bus WU
Raw-Events

• Vehicle Network

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
4

Lifecycle Manifest

Node State

Management

Resource

Management

Boot

Management
Supply

Management

Thermal

Management

Power

Management

cgroup service

Node State

Manager

Power Event

Collector

Node Resource

Mgr

Node Health

Monitor

Supply

Manager

Thermal

Manager

systemd

Node Startup

Controller

Package

Product Component

Platform Component Node State

Machine

Status and Roadmap

Cgroup

(Kernel)

Node

State Machine

Node

Health Monitor

systemd

Node Startup

Controller

Node

State Manager

Node

Resource Mgr

Leviathan Miranda
Adopted component,

provided by the OSS community

GENIVI funded OSS component

(implemented by Codethink)

OSS Component

(implemented and maintained by Continental)

Implemented by Continental

(OSS release upcoming)

specific

abstract

n/a

specific

specific

Product specific library

OSS Component

(implemented and maintained by Continental)

Kronos

specific

placeholder

n/a

specific

specific

specificspecific

specific

abstract

n/a

specific

specific

specific

N?

specific

specific

n/a

specific

specific

specific

27-Oct-15
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2014
5

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
6

Startup/Shutdown Management

Boot

Management

Node State

Management

Startup Management

Shutdown Management

takes care about

takes care about

Why do we have this split?
systemd stops and unloads all components during its shutdown concept. This requires a lot of time to make them

functional again in the event of a cancel shutdown.

An IVI system must be able to resume operation without losing any context and without the need for a reboot. Therefore

Node State Management will only call registered consumers in the shutdown phase. This event notification will drive the
components into a stable state and ensure that everything has been stored which will be needed for the next startup.

With this approach components would not be shutdown which is required for certain exceptions like the flash file system.

Therefore additionally the shutdown management concept will include/use the systemd shutdown concept , where
appropriate for legacy/critical components.

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
7

Shutdown preparation in Startup Phase

Mandatory targets
(Base System & Early Features)

focussed.target
(last user context)

unfocussed.target(s)

lazy.target

initrd

kernel Runlevel replacement

GENIVI extensions

Before systemd

FULLY_
OPERATIONAL

LUC_RUNNING

FULLY_RUNNING

BASE_RUNNING
(during NSC init)

N
o

d
e

 S
ta

te

M
a

n
a

g
e

r

Start NSM via systemd

A

B
C

J

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
8

Shutdown Execution

app1.service

N
o
d
e
 S

ta
te

M
a
n
a
g
e
r

Consumer J

Consumer I

Consumer H

Consumer G

Consumer F

Consumer E

Consumer D

Consumer C

Consumer B

Consumer A

Node Startup
Controller systemd

systemd

systemd

app2.service

Shutdown.target
(flash file systems)

Enables:
1. Shutdown activities are trigger able without unloading the components.

2. Legacy components can be shut down in their traditional way.
3. Full flexibility on where to integrate systemd based shutdown units.

Writing LUC

Writing LUC

Node Startup
Controller

Node Startup
Controller

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
9

Unit Files

Unit]

Description=Application launcher daemon

After=mnt-appdata.mount

[Service]

Type=notify

ExecStart=/usr/bin/al-daemon --start -v

PIDFile=/tmp/al-daemon.pid

TimeoutStartSec=2

WatchdogSec=10

Restart=on-failure

StartLimitInterval=15

StartLimitBurst=5

StartLimitAction= reboot

[Install]

WantedBy=unfocussed.target

What can be seen in this example is that the executable al-daemon will be
run with the command options “–start –v”. It will notify systemd when it has

completed its initialization.

With regards to dependencies, it can only be started after mnt-

appdata.mount is available and it is wanted by unfocussed.target.

This means that whenever unfocussed.target is required this unit will be
included.

The application will complete initialization within 2 seconds and wants to
be monitored during runtime. The application will be deemed to have failed
if it has not sent a heartbeat (sd_notify) within 10 seconds. If it fails more

than 5 times within a period of 15 seconds then systemd will assume a
critical failure and initiate a system restart

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
10

Interfaces

The Node State Manager (NSM) will provides 2 D-Bus interfaces

– org.genivi. NodeStateManager.Consumer

– org.genivi. NodeStateManager.LifecycleControl

The “Consumer” interface is publicly available in the system and should be used by any applications that are interested in

the information that the NSM maintains.

The “LifecycleControl” interface will contain functions that are secured via DBUS policies to restrict their usage.
There should be a minimal subset of applications with access.

These interfaces are documented in the GENIVI UML Model (Enterprise Architect trunk) under

GENIVI Model -> Logical View -> SW Platform Components -> Node State Manager -> Interfaces

and the use cases shown in parallel today from the model can be found under

GENIVI Model -> Logical View -> Use Case Realizations -> Lifecycle

For those without access to EA you can also find exported versions of the model that are regularly updated in the wiki

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
11

System Startup

The Node Application Mode (NAM) is a Node specific data item that is used to define the functionality level
(systemd runlevel) that should be achieved in the current Lifecycle.

Only one of the following example modes can be active at any one time :

– Parking

– Factory

– Transport

– SWL

The data item will be updated in the Persistence via the Node State Manager when requested through the secured
method SetApplicationMode available under org.genivi.NodeStateManager.LifecycleControl

The data item will be read early in the startup sequence by a Lifecycle Support Library

that will then define the target file to be started by systemd

To see how the update method should be used please see use case (“WB – NSM – Updating the Node Application Mode”)

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
12

System Shutdown

• The ShutdownReason is a node-specific D-Bus property available under the
org.genivi.NodeStateManager.Consumer interface

• Updated via the NSM when an event in the system triggers the shutting down of the system

(i.e Thermal Management reports a dangerously high temperature)

• Consumers that want to be notified when the node will be shutdown must use the interface

Consumers.RegisterShutdownClient and must provide their own method called LifecycleRequest

that will be called by the NSM in the event of a shutdown (or cancel shutdown)

• Additionally they must specify the type of shutdown they are registering for
(i.e fast or Normal as defined in NSM_ShutdownTypes_e)

• For example sequence diagrams in this area please see

“WB – NSM – Application Blocking system shutdown” and

“WB – NSM – Cancel shutdown ok”

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
13

Session Management

• The Node Session State (NSS) contains information about the current sessions
that are active in that Head Unit and are used by the NSM state machine

to determine correct actions to events

• The state of a current session can be read using the method Consumers.GetSessionState

with the name of the session and can be set using Consumers.SetSessionState
(“WB – NSM – Application Blocking system shutdown”)

• Alternatively consumers can register to be signalled (“SessionStateChanged”)
when a particular Session State has changed (“WB – NSM – Session State Handling”)

• To control new sessions the methods Consumers.RegisterSession and
UnRegisterSession

have been provided (“WB – NSM – Add new session state”)

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
14

Node State

• The Node State is a node-specific data item used to track the startup state of the Head Unit.

• It is updated via the Node State Manager based on internal state changes or when triggered

by an application through the LifecycleControl.SetNodeState method.

• Mandatory platform states are defined in the enumeration NSM_NodeState_e but there will

not be range checking on the interface so product states can be added

• The current node state can be accessed by using the method Consumers.GetNodeState or
consumers can register to be signalled when the Node State is updated. This signal is sent to
registered clients and will include the current Node State as a parameter

• For a use case showing the Node State please see use case
“WB – NSM – Application Blocking system shutdown”

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
15

Use Cases

Node State

Machine

Node State Manager
Phone

SWL

Audio

HMI
events/data

events/data

PhoneSession

SWLSession

…..

LucRunning

FullyOperational

….

set method

Signal

Shutdown

Phone

Audio

HMI

Navigation

lifecycle requests

Navigation

request

system
restart

Vehicle

Data

Thermal

….

Thermal

Mgmt
….

Supply

….

Supply

Mgmt
….

Vehicle

….

Vehicle

Bus
….

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
16

Resource Management - Goals

• Resource management contains the functionality to ensure that the node runs in a stable and defined manner.

• To do this, it will monitor and limit different aspects of SW component behavior including system resources
(i.e. CPU load and memory) and critical run-time observation.

• Resource allocation will be configurable on a component basis through the use of cgroups.

• Health Management provides a configurable escalation strategy defining actions to be taken in the case of system failures.

• For instance, in the case of run-time observation failure, the following escalation strategies could be considered
to repair the situation :

• Restart the application
• Restart the node

• Rollback of application to previous version
• Rollback of all user updates to baseline state
• Deletion of applications persistence data
• Deletion of all user persistence data

• What is not included is security handling for resources (i.e. restricted access to resources)!!!

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
17

Resource Management

Resource Management

Node Resource Manager

P1MPL2

<<Adopted>>

<<refine>>

• Monitor system resources

• Kill resource abusers

• Restart failing applications

• Starts services

• Configure cgroups

P1

systemd

<<Specific>>

LGPL2

P3

Application Component

<<placeholder>>

P1

<<refine>>

Node Startup Controller

<< Adopted>>

P1

<<refine>>

Boot Management

Node State Manager

<< Adopted>>

P1

<<refine>>

Node State Mgmt

• Process app restart requests

cgroups

<<Specific>>

P1GPL2

• Control system resources

• Report/Handle resource

allocation errors

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
18

Overview of cgroups

cgroups (control groups) is a Linux kernel feature which can limit, account and isolate resource usage (CPU, memory, disk
I/O, etc.) of process groups.

The following are examples of cgroup handling:

• Resource limiting: groups can be set to not exceed a set memory limit

• Prioritization: some groups may be configured to get a larger share of CPU or disk I/O throughput

• Accounting: to measure how many resources certain systems use for e.g. system debugging and performance
analysis/tuning

• Isolation: separate namespaces for groups, so they don't see each other's processes, network connections or files

• Control: freezing groups or check pointing and restarting

A control group is a collection of processes that are bound by the same criteria. These groups can be hierarchical, where

each group inherits limits from its parent group.

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
19

Tree Hierarchies

Root

Core SW
cpu.shares = 100

3rd Party Apps
cpu.shares = 100

Entertainment
cpu.shares = 200

Safety Critical
cpu.shares = 500

Navigation
cpu.shares = 200

Media Player
cpu.shares = 150

Browser
cpu.shares = 100

Games
cpu.shares = 50

Misc
cpu.shares = 80

The tree below shows an example of how a set of standard Automotive SW could be split. We have 1 hierarchy with the CPU subsystem attached

that contains 10 cgroups . Each cgroup has been configured with specific subsystem values.

Now when we allocate processes to certain groups we will be able to control the CPU used by those processes. We will also be able to guarantee

that our “Safety Critical” processes will always have access to ~33% of the CPU.

NOTE: These values do not specify a max. amount of CPU that a group can use rather they specify the amount of CPU they are guaranteed if they

need it. Also this is a simple example and may not match the exact definition provided within recent systemd versions

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
20

Integration with systemd

systemd supports the creation, configuration and population of cgroups during the start phase through the
use of the standard systemd unit files.

Using the unit files it is possible to specify the

• “ControlGroup=“ – define the control groups the new processes shall be members of

– Takes a space-separated list of cgroup identifiers. A cgroup identifier has a format like cpu:/foo/bar,
where "cpu" identifies the kernel control group controller used, and /foo/bar is the control group

path

• “ControlGroupModify=“ - Takes a boolean argument. If true, the control groups created for this unit will

be owned by the user specified with ”User=“ (and the appropriate group), and he/she can create
subgroups as well as add processes to the group

– It is suggested that this argument is left to false to ensure control of the system

• “ControlGroupPersistent=“ - Takes a boolean argument. If true, the control groups created for this unit

will be marked to be persistent, i.e. systemd will not remove them when stopping the unit. The default is

false, meaning that the control groups will be removed when the unit is stopped

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
21

Integration with systemd (cont.)

• “ControlGroupAttribute=“ - Sets a specific control group attribute for executed processes, and (if
needed) add the executed processes to a cgroup in the hierarchy of the controller the attribute belongs

to.

• Takes two space-separated arguments: the attribute name (syntax is cpu.shares where cpu refers

to a specific controller and shares to the attribute name), and the attribute value.

• Example: ControlGroupAttribute=cpu.shares 512. If the attribute belongs to a kernel controller

hierarchy the unit is not already configured to be added to (for example via the

“ControlGroup=“ option) then the unit will be added to the controller and the default unit cgroup
path is implied.

• Thus, using “ControlGroupAttribute=“ is in most case sufficient to make use of control group

enforcements, explicit ”ControlGroup=“ are only necessary in case the implied default control

group path for a service is not desirable.

For more details about control group attributes see cgroups.txt. This option may appear more than once, in

order to set multiple control group attributes.

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
22

Unit Files extended

[Unit]

Description=Application launcher daemon

After=mnt-appdata.mount

[Service]

Type=forking

RemainAfterExit=yes

ExecStart=/usr/bin/al-daemon --start -v

TimeoutStartSec=2

WatchdogSec=10

Restart=on-failure

StartLimitInterval=15

StartLimitBurst=5

StartLimitAction= reboot

ControlGroup=apps

CPUShares=512

MemoryLimit=2M

MemorySoftLimit=1M

[Install]

WantedBy=unfocussed.target

Now you can see that cgroup information has been added to
state that this application will be part of the “apps” cgroup and

that the group if not already defined at this point will have 512
shares of the CPU and will have access to 2M of memory.

Additionally the cgroup “apps” will have a soft limit of 1MB.
This means that if the group goes over the limit then the Node
Resource Manager will take actions.

At the minute it is planned that a high layer application will be
notified of this soft limit breach and he will be responsible for

the action (i.e informing user about possibility to close 1 or
more applications).

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
23

Node Configuration (CPU)

Radio NAV

BrowserMedia Phone

PDC

Safety
Cameras

Diagnostics

SW
Loading

Kernel

Infrastructure
Services

Positioning

Speech
3rd party
APPS

Vehicle
Network

ROOT
Unlimited

Comm
Stacks

AUTOMOTIVE

cpu.shares = 50,
runtime= 100,

period = 1000

APPS

cpu.shares = 20,
runtime= 500,

period = 2000

BGND

cpu.shares = 1,

Background
tasks

Weather

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
24

Node Configuration (Memory)

Radio NAV

Browser
Media Phone

PDC

Safety
Cameras

Diagnostics

SW
Loading

Kernel

Infrastructure
Services

Positioning

Speech
3rd party
APPS

Vehicle
Network

ROOT
Unlimited

Comm
Stacks

APPS
memory.limit_in_bytes = 200M

…..

BGND
memory.limit_in_bytes = 10M

……

Background
tasks

Weather

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
25

Health Management

start/
restart

systemd

NHM Plug-ins

register failure &

attempt recovery

Applications

notify
alive

/dev/watchdog

notify alive

NHM

request app restart

execute
recovery

forward NHM heartbeat externally or to internal HW Watchdog

NSM

Boot

Management

start/
restart

notify alive

request node restart

monitoring of userland

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
26

Node Health Management

The Node Health Monitor will be started by systemd and will interact with application plug-ins to inform it that
a component has failed in the system. He will be responsible for :

• providing an interface with which plug-ins can register failures

• name of the failing service will be used to identify and track failures

• tracking failure statistics over multiple lifecycles for the system and components

• the name of the failing service will be used to identify and track component failures

• lifecycles without failures will result in a positive error count being decremented

• statistics on number of failures in number of lifecycles will be maintained (i.e. 3 failures in last 32

lifecycles)

• reading the wakeup, startup and shutdown reason and updating error counts accordingly to catch

unexpected system restarts

• provide an interface for plug-ins to read system and component error counts

• name of the failing service will be used to identify and track failures

• provide an interface for plug-ins to request a node restart

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
27

Node Health Management (cont.)

Additionally the Node Health Monitor will test a number of product defined criteria with the aim to
ensure that userland is stable and functional. For instance it will be able to validate that :

• there is enough free system memory

• the CPU is not reporting an excessively high load for a sustained period

• defined file accessibílity is possible

• defined processes are still running

• communication is possible (DBUS)

• a user defined process can be executed with an expected result

If the NHM believes that there is an issue with user land then it will initiate a system restart by

killing systemd.

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
28

Health Management – HW watchdog

It is proposed to use, when supported, a low level HW watchdog which will validate that systemd is running
correctly.

The watchdog implementation will be able to initiate a complete shutdown process when it believes that a

failure has occurred :

– idle init, so nothing new can be started

– kill all processes

– write a reboot record to wtmp

– turn off accounting

– turn off quota

– turn off swap

– unmount all mounted partitions

NOTE: In this scenario a normal system shutdown will not be completed therefore cached persistent data

from that Lifecycle will be lost

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
29

Health Management - systemd

It is proposed to use the built in service monitoring functionality (watchdogs) that systemd
provides for monitoring services and restarting them automatically on failure.

Within a service unit file it is possible to configure systemd that it will expect a heartbeat from the
service within a particular time interval (WatchdogSec=). If this heartbeat is not received then
systemd will decide whether it should automatically restart the service (Restart=).

To ensure that we do not get into a cyclic restart scenario it is also possible to define how often
this restart action should occur (StartLimitInterval=, StartLimitBurst=). If we exceed our retry
attempts then it can be configured that a failure service is started (StartLimitAction=none,

OnFailure=).

This failure service is the defined Node Health Monitor plug-in for that particular service.

systemd will be monitored by the HW watchdog.

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
30

Health Management - Plugins

A Node Health Monitor plug-in will be executed by systemd when a service fails (either during startup or at runtime). It
should contain enough functionality to :

• register with the Node Health Manager (NHM)

• providing the name of the service file failing

• request the error status count from the NHM

• providing the name of the service file failing

• based on the error count attempt recovery, for instance:

• if a file system fails to mount then the recovery action could be to format the file system and request a node

restart

• if it is an application that has failed multiple times then we may want to delete that applications persistency data

and restart the application

• when possible, request that the SW is uninstalled or rolled back (this will require further work to identify the

interaction with the SW Management team for how we can identify the package name)

• request application restart with Node Startup Controller

• request node restart via NHM

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

5-Oct-15
31

Links

Lifecycle cluster overview:

• http://wiki.projects.genivi.org/index.php/Lifecycle_cluster

Link to project pages:

• http://projects.genivi.org/node-health-monitor/

• http://projects.genivi.org/node-startup-controller/

• http://projects.genivi.org/node-state-manager/

Links to git repositories:

• http://git.projects.genivi.org/?p=lifecycle/node-health-monitor.git;a=summary

• http://git.projects.genivi.org/?p=lifecycle/node-startup-controller.git;a=summary

• http://git.projects.genivi.org/?p=lifecycle/node-state-manager.git;a=summary

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

Thanks for your time and attention.

Any questions??

5-Oct-15
32

Questions

