
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0) 21-Oct-15
1

Common API C: Introduction
2015-10-21

Pavel Konopelko

Software Architect

Visteon

Purpose of Common API

• Client and Server communicate via the Interface

that the Server provides and the Client requires

• Interface is defined in Franca IDL and include

methods, attributes and broadcasts

• Interface can have multiple instances that are

identified by their names

• Interface representation in programming language

is pre-defined and is generated automatically

together with the communication backend code

• Client and Server logic is backend-independent

and compatible with any supported backend

2
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
21-Oct-2015

Common API C is related to other

projects supported by GENIVI:

• Franca provides common IDL and

infrastructure for code generation

– http://franca.github.io/franca/

• Common API C++ implements C++

bindings

– http://projects.genivi.org/commonapi

• Yamaica supports transformations

between Franca IDL and UML

– http://projects.genivi.org/yamaica/

Related Projects

3
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
21-Oct-2015

http://franca.github.io/franca/
http://franca.github.io/franca/
http://projects.genivi.org/commonapi
http://projects.genivi.org/commonapi
http://projects.genivi.org/yamaica/
http://projects.genivi.org/yamaica/

Example of Common API Usage

4
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
21-Oct-2015

 at home at city In car HMI

 Driving HMI at dealer ADAS Autonomous

Welcoming

• Visteon uses Common API and

related technologies in the

research work on adaptable

software frameworks

• The goal is for the software to

adapt to different drivers, to

different passengers and to varying

hardware devices

• More details at CES 2016

Exterior Component View

• Both client and server component

implementations can be substituted by

another one that implements a compatible

Franca interface

– This also includes components that do not

use Common API, but implement the interface

using a specific communication mechanism

(e.g., D-Bus or SOME/IP) that has a defined

transformation to Franca IDL

– Compatible interface for servers is either the

same or specialized; for clients it is either the

same or generalized

5
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
21-Oct-2015

Interior Component View

• Encapsulation

– Backend Bindings encapsulate the knowledge

of a particular communication mechanism

(e.g., D-Bus, SOME/IP)

• Substitutability

– Different backend implementations can be

substituted for the bindings that are

implemented with Common API

• Taken together, this insulates the

Application Logic from the dependencies

on a particular communication mechanism

6
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
21-Oct-2015

Common API
Scope

Intended Usage: Flexible Deployment

• Deployment of the interacting software

components must be flexible to support

interaction within the same process,

across different processes, and across

different nodes

• In general, communication is

asynchronous, data is passed by copy

• Interface design must take this into

account (e.g., avoid passing large data

chunks or very frequent interactions)

7
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
21-Oct-2015

Intended Usage: Peer-to-Peer Interaction

• Peer-to-peer (as contrasted to application-

to-infrastructure) communication is the

primary focus of Common API

• It does not attempt to provide a universal

interface abstraction

• Functionality provided by the software

platform infrastructure (e.g., device control,

memory management, character data

manipulation, etc.) has requirements that

are not explicitly addressed by Common

API

8
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
21-Oct-2015

Common API enables interoperability

at three different levels:

• Application software modules

– interaction via high-level abstraction

of communication interfaces

• Interfaces defined in Franca IDL

– interaction across programming

languages and modeling tools

• Communication protocols

– Interaction with non-Common API

components

Interoperability Levels

9
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
21-Oct-2015

Application

Franca IDL

Protocol







High-Level Architecture

10
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
21-Oct-2015

/* ---- Calculator.fidl ---- */

package org.test

interface Calculator {

 version { major 0 minor 1 }

 method add {

 in { Double left

 Double right }

 out { Double sum } }

}

/* ---- client.c ---- */

cc_backend_startup();

cc_client_Calculator_new(

 "org.test.Server:/calculator:org.test.Calculator",

 NULL, &calculator);

cc_Calculator_add(calculator, 3.1415, 2.7182, &sum);

calculator = cc_client_Calculator_free(calculator);

cc_backend_shutdown();

Example of Application Code

/* ---- server.c ---- */

static int Calculator_impl_add(

 struct cc_server_Calculator *instance,

 double left, double right, double *sum) {

 *sum = left + right;

 return 0;

}

static struct cc_server_Calculator_impl impl =

{ .add = &Calculator_impl_add };

/* ... */

cc_backend_startup();

cc_server_Calculator_new(

 "org.test.Server:/calculator:org.test.Calculator",

 &impl, NULL, &calculator);

/* run backend event loop */

calculator = cc_server_Calculator_free(calculator);

cc_backend_shutdown();

11
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
21-Oct-2015

• Align as much as possible with the Franca IDL mapping (e.g., for the data

types) and implementation features (e.g., the approach to concurrency)

implemented by Common API C++.

• Rely on the existing Franca framework for model transformations and code

generation under Eclipse.

• Leave with applications the design choices related to concurrency (i.e., the

main event loop vs. threading), to memory management (i.e., dynamic vs.

static allocation) and to other major areas.

Project Principles and Constraints (1/2)

12
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
21-Oct-2015

http://projects.genivi.org/commonapi/
http://projects.genivi.org/commonapi/
http://projects.genivi.org/commonapi/

• Prioritize D-Bus/kdbus and in-process communication over other

mechanisms for Linux environments.

• Support non-Linux environments and especially embedded, resource-

constrained systems (e.g., do not require using dynamically allocated

memory).

• Long-term, minimize the redundancy with the Common API C++ in the areas

of Eclipse tooling and run-time support (e.g., backend libraries).

Project Principles and Constraints (2/2)

13
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
21-Oct-2015

• Project is run under the governance of GENIVI System Infrastructure EG

– The project relies on the public GENIVI infrastructure (git, e-mail, wiki and bug tracker)

– Compliance roadmap targets SC-P2 initially and SC-P1 once sufficiently mature

• Proof of Concept (PoC) is currently under development

– The goal is to better understand the requirements and solution architecture

– The PoC code is licensed under MPLv2; v0.1 released in August 2015

– The PoC scope includes both the run-time libraries and the code generator

• Requirements and design ideas are documented in parallel to the PoC

– See https://genivi-oss.atlassian.net/wiki/display/PROJ/Common+API+C+-+PoC

(this will soon move to genivi.org)

– The results are reviewed and discussed in the EG to agree on the project target

Current Project Status

14
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
21-Oct-2015

https://genivi-oss.atlassian.net/wiki/display/PROJ/Common+API+C+-+PoC
https://genivi-oss.atlassian.net/wiki/display/PROJ/Common+API+C+-+PoC
https://genivi-oss.atlassian.net/wiki/display/PROJ/Common+API+C+-+PoC
https://genivi-oss.atlassian.net/wiki/display/PROJ/Common+API+C+-+PoC
https://genivi-oss.atlassian.net/wiki/display/PROJ/Common+API+C+-+PoC

Features And Roadmap

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
21-Oct-2015

- method invocation

15

- broadcast sending and reception

- attribute access and update notifications

- composite data types

- inheritance

D-Bus / kdbus backend -

- deployment specifications

multiple backends chosen at run-time -

in-process backend -

SOME/IP backend -

- Linux with main event loop

- application-owned memory management

- RTOS with tasks

- safety-critical requirements

• Development approach is based on iterations
– Manually develop application that uses certain Common API features (see below)

– Incrementally implement corresponding aspects of the Common API C design

– Extract shared implementation into a library and use the rest as generator test cases

• Functionality increments
– Multiple interface instances and multiple interface implementations (DONE)

– Asynchronous method invocations and backend event loop embedding (DONE, v0.1)

– Code generation for currently supported features (DONE, v0.2 is due soon)

– Support for Franca signals and attributes

– Backend for in-process communication

– Memory allocation managed by the application

– Full support for Franca type system

PoC Development Progress

16
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
21-Oct-2015

PoC Status: Module Structure

17
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
21-Oct-2015

• ‘Simple’ example

– Server hosts two instances of the same interface with two different implementations

– Client connects to both instances hosted by the Server

– Client invokes a method synchronously (i.e. blocks until server responds)

– Server responds to the method invocation synchronously (i.e. in the message handler)

• ‘Game’ example

– Server hosts one interface instance that implements a state machine

– Client implements another state machine that connects to the Server instance

– Client uses GLib mail loop to invoke methods asynchronously (i.e., to receive a

callback on server response)

– Server uses sd-event to respond to method invocations asynchronously (i.e., the

message handler defers the processing and response to a different handler)

PoC Status: Reference Code

18
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
21-Oct-2015

/* ---- Interface.fidl ---- */

package org.test

interface Interface {

 version { major 0 minor 1 }

 method methodName {

 in { InArg inArg }

 out { OutArg outArg } }

}

PoC Status: Client-Side Methods

/* ---- src-gen/client-Interface.h ---- */

struct cc_client_Interface;

typedef void (*cc_Interface_methodName_reply_t)(

 struct cc_client_Interface *, OutArg);

int cc_Interface_methodName(

 struct cc_client_Interface *instance, InArg inArg,

 OutArg *outArg);

int cc_Interface_methodName_async(

 struct cc_client_Interface *instance, InArg inArg,

 cc_Interface_methodName_reply_t callback);

int cc_client_Interface_new(

 const char *address, void *data,

 struct cc_client_Interface **instance);

struct cc_client_Interface *cc_client_Interface_free(

 struct cc_client_Interface *instance);

19
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
21-Oct-2015

/* ---- Interface.fidl ---- */

package org.test

interface Interface {

 version { major 0 minor 1 }

 method methodName {

 in { InArg inArg }

 out { OutArg outArg } }

}

PoC Status: Server-Side Methods

/* ---- src-gen/server-Interface.h ---- */

struct cc_server_Interface;

typedef int (*cc_Interface_methodName_t)(

 struct cc_server_Interface *, InArg, OutArg *);

struct cc_server_Interface_impl {

 cc_Interface_methodName_t methodName;

};

static int Interface_impl_methodName(

 struct cc_server_Interface *instance, ArgIn argIn,

 ArgOut *argOut);

int cc_server_Interface_new(

 const char *address,

 struct cc_server_Interface_impl *impl, void *data,

 struct cc_server_Interface **instance);

struct cc_server_Interface *cc_server_Interface_free(

 struct cc_server_Interface *instance);

20
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
21-Oct-2015

PoC Status: Backend Event Loop

#include <capic/backend.h>

struct cc_event_context;

int cc_backend_get_event_context(

 struct cc_event_context **context);

void *cc_event_get_native(

 struct cc_event_context *context);

int cc_event_get_fd(

 struct cc_event_context *context);

int cc_event_prepare(

 struct cc_event_context *context);

int cc_event_check(

 struct cc_event_context *context);

int cc_event_dispatch(

 struct cc_event_context *context);

21
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
21-Oct-2015

Code generation for Common API C is

supported via Eclipse UI plugin:

• Built with Java 1.7, Eclipse Mars

SR1, Franca 0.10

• Command for .fidl files in context

menu and keyboard shortcut

• Generates client and server code

in the folder ‘src-gen/’ of the

current project

PoC Status: Eclipse Code Generator

22
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
21-Oct-2015

Code generation for Common API C is

supported via a standalone binary:

• Built with Java 1.7, Eclipse Mars

SR1, Franca 0.10 (but only JRE is

required for execution)

• Command line interface; .fidl file is

specified by its absolute path

• Generates client and server code

in ‘src-gen/’ under the current

working directory

PoC Status: Standalone Code Generator

23
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
21-Oct-2015

• Source code repository

– http://git.projects.genivi.org/?p=common-api/c-poc.git;a=summary

• Mailing list

– genivi-ipc@lists.genivi.org

• Wiki home page

– https://genivi-oss.atlassian.net/wiki/display/PROJ/Common+API+C

• Bug tracker

– https://genivi-oss.atlassian.net/projects/CC/issues/?filter=allopenissues

• Beware: Wiki and bug tracker will soon move to genivi.org

Project References

24
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
21-Oct-2015

http://git.projects.genivi.org/?p=common-api/c-poc.git;a=summary
http://git.projects.genivi.org/?p=common-api/c-poc.git;a=summary
http://git.projects.genivi.org/?p=common-api/c-poc.git;a=summary
http://git.projects.genivi.org/?p=common-api/c-poc.git;a=summary
http://git.projects.genivi.org/?p=common-api/c-poc.git;a=summary
http://git.projects.genivi.org/?p=common-api/c-poc.git;a=summary
mailto:genivi-ipc@lists.genivi.org
mailto:genivi-ipc@lists.genivi.org
mailto:genivi-ipc@lists.genivi.org
https://genivi-oss.atlassian.net/wiki/display/PROJ/Common+API+C
https://genivi-oss.atlassian.net/wiki/display/PROJ/Common+API+C
https://genivi-oss.atlassian.net/wiki/display/PROJ/Common+API+C
https://genivi-oss.atlassian.net/wiki/display/PROJ/Common+API+C
https://genivi-oss.atlassian.net/projects/CC/issues/?filter=allopenissues
https://genivi-oss.atlassian.net/projects/CC/issues/?filter=allopenissues
https://genivi-oss.atlassian.net/projects/CC/issues/?filter=allopenissues
https://genivi-oss.atlassian.net/projects/CC/issues/?filter=allopenissues

Thank You!

Questions?

