McKinsey&Company

MCKINSEY CENTER FOR FUTURE MOBILITY

Abyte future
Software-based solutions

Software-based solutions are reshaping automotive electronics and architecture

Integrated third-party services

Over-the-air updates

Partially cloud-based operation

Connectivity

Electrification

New electronics

Advanced algorithms to reduce energy consumption

Need for unlimited reliability

Higher demand for computing power and communication

Built-in sensors and actuators

Autonomous driving

Diverse mobility

Shared mobility services and robotaxis

Customized driver experience

OEMs enter partnership to standardize vehicle architecture

New regulations require OEMs to provide third-party interface

5G Mobile networks are widely available around the world

Requirements call for redundant implementation of safety-critical functions in vehicles

Alibaba announces own open-source vehicle stack

Regulatory changes facilitate use of OTA updates

2030

Architecture

Expanded middleware layer to abstract applications from hardware

Limited number of architecture stacks with integrated hardware and software

ECU consolidation

Data connectivity for entertainment and HAD channeled via the OEM; more open interfaces in infotainment

Increasing use of cloud to combine in-vehicle data with environmental data

Updatable components that communicate bidirectionally

More intelligent sensors

Significant spike in the number of in-vehicle sensors in the medium term

Sensors

Rise of the automotive Ethernet

Fully redundant power and data networks

Power and data networks

Evolving E/E architecture

4th 1st 2nd 3rd 5th generation generation generation generation generation Body/ Power-Infotaincomfort Chassis train **Central GW** ment Domain Gateway controller Actuator Infotainment Distributed E/E architecture Domain centralized Vehicle centralized E/E architecture E/E architecture

Today

Outlook

L3 automation

L4 automation

Infrared camera

sensors

Control

Drive policy

Sensor fusion

Object recognition and feature extraction

Preprocessing

Sensing

Control Central ECU/ domain control Drive policy Sensor fusion Object recognition and feature extraction Sensors Preprocessing Sensing

Centralized

processing

Control Central ECU/ domain control Drive policy Sensor fusion Sensors Object recognition and feature extraction Preprocessing

Sensing

Distributed processing

Extent of shift to sensor-based processing depends on:

Price of data transmission

Price of computing power

Advances in sensor technology

Degree of vehicle automation

Challenges

Stringent safety requirements for HAD (e.g., redundancy)

Diagnostics and self-protection mechanisms

Need for more electrical power

Existing power and data networks

Ring topology

Modular power distribution units

Switched Ethernet

Ethernet AVB and TSN

OEMs

Tier-1/car electronics system suppliers

Semiconductor suppliers

Computing and connectivity players

Software giants and tech players

Road Ahead

Capture market opportunities resulting from the increasing need for smart sensors, complexity increase of ECU consolidation and the demand for Software solutions

- co-developing solutions closely with automotive OEMs, tier-1 and tier-2 suppliers
 - building up
- dedicated software capabilities to complement hardware products

But remember

Speed is crucial

But remember Speed is crucial

But remember

Speed is crucial

Partnerships along the value chain are useful to get access and to gain a deeper understanding of the automotive industry 2

Solutions should be standardized across platforms onboard and offboard.

3

The transition to Centralized Control Units CCUs offers potential for differentiation at higher stack levels

1. An executive's guide to

2. Five Fifty: Decoding

Interactive - McKinsey Quarterly

leadership

Interactive

to a software-driven electronics device, the auto industry's

he engine was the technology and engineering core of the 20th-century automobile. Today, software, large computing power, and advanced

sensors increasingly step into that role; they enable most modern innovations,

from efficiency to connectivity to autonomous driving to electrification and

competitive rules are being rewritten.

https://bit.ly/2HgJ0QK

Rethinking car software and electronics architecture

