

static void
_f_do_barnacle_install_properties(GObjectClass

*gobject_class)
{

 GParamSpec *pspec;

 /* Party code attribute */
 pspec = g_param_spec_uint64

(F_DO_BARNACLE_CODE,
 "Barnacle code.",
 "Barnacle code",

 0,
 G_MAXUINT64,

 G_MAXUINT64 /*
default value */,

 G_PARAM_READABLE
| G_PARAM_WRITABLE |

 G_PARAM_PRIVATE);

 g_object_class_install_property (gobject_class,

F_DO_BARNACLE_PROP_CODE,

Xavier Castaño García
xcastanho at igalia dot com

Wayland Support in Open
Source Browsers

● Co-founder of Igalia in 2001. 65 engineers. Global
● Open Source consultancy: web browsers, multimedia, graphics,

compilers, networking
● Igalia among the top contributors to upstream web browsers

WebKit/JSC, Chromium/V8, Firefox/Servo/SpiderMonkey
● Working with the industry: automotive, tablets, phones, smart tv,

set-top-boxes and several other embedded devices
manufacturers

Myself, Igalia and Web Browsers

Outline

● Part I: Brief review on Wayland support on Open Source Web
Browsers

● Part II: Wayland support in Chromium
● Part III: WebKit and WPE
● Part IV: Conclusions

Part I: Brief review on Wayland support on
Open Source Web Browsers

Motivation

● Wayland is a mature solution
● Demand from different industries

– Automotive
– Mobile
– Desktop

● Current alternatives on the Open Source web browsers arena:
– Mozilla: Firefox(Gecko/Servo) / SpiderMonkey
– Chromium / Blink / V8
– WebKit / JSC

Mozilla Gecko

● Powers the Firefox browser
● Embedding not officially supported. Monolithic architecture
● Several open source browsers moved away from Gecko to

WebKit about 10 years ago
● Red Hat is working in Wayland support for Gecko. Basic

functionality

Mozilla Servo

● Next generation engine
● Designed for memory-safety, parallelism, embedding
● New set of tools and technologies: Rust
● Currently under heavy development. Too soon
● Preliminary Wayland support by Samsung Open Source Group

Chromium

● Vertical solution, from low-level graphics to UX
● Very powerful and feature complete
● Engineered to power Chrome and Chrome OS

● Embedding, portability use cases are secondary. Fork is needed

● Designed to minimize external dependencies
● External deps are managed by the project build system
● Versions pinned, included in the build process
● In general, not designed to exchange subsystems

Chromium & Wayland

● Two different efforts on having a native Wayland support:
● Legacy Ozone-Wayland project (01.org)
● New Wayland backend by Igalia

Chromium ecosystem

● External projects filling the gaps
● CEF: Chromium Embedded Framework

– Embed web content (WebView) in native applications
– Hybrid web/native applications
– Downstream Wayland support based on new Igalia's Wayland backend

● QtWebEngine
– Embed web content in Qt applications
– Wayland support since Qt 5.10
– Slower upgrade pace, linked to Qt releases
– Commercial and GPLv3 license

https://bitbucket.org/chromiumembedded/cef
https://doc.qt.io/qt-5.10/qtwebengine-index.html

Chromium ecosystem

● External projects filling the gaps (cont.)
● Electron or NW.js (node-webkit)

– Write apps with JS and HTML integrated with Node to access low level
system from web pages

– Pack Chromium and Node.js to build desktop apps with web technology
– Lack of Wayland support

https://electron.atom.io/
file:///home/xavi/Empresa/ViaxesEmpresa/GENIVIAMM2018/https::%2F%2Fnwjs.io

WebKit

● Powerful and complete
● Very flexible architecture (ports)
● Each port is an engine implementation with a stable API and a

specific set of technologies (network, graphics, multimedia)
● Many ports:

– Upstream: iOS/OSX, GTK+, WPE
– Downstream: EFL, Qt, Sony,...

WebKit ports

● WebKitGTK+
● Stable and also lightweight
● Active development
● WebKitGTK+ support Wayland

● QtWebKit
● Officially abandoned in favor of Chromium-based QtWebEngine
● Unofficial, volunteer-driven maintenance. Upgraded to latest Qt

versions
● Wayland support provided by Qt toolkit

WebKit ports

● WPE
● Very lightweight, low hardware requirements
● Strong multimedia capabilities
● Backends enable Wayland support.

Part II: Wayland support in Chromium

Legacy Ozone-Wayland project

● Legacy, in-production Wayland implementation
● Developed mainly by Intel (01.org)

● https://github.com/01org/ozone-wayland

● Currently in maintenance mode
● Good community support
● No more active development

– No new features, no implementation of existing gaps
● Latest supported version by Intel was 53

https://github.com/01org/ozone-wayland

Legacy Ozone-Wayland project

● Later maintained by LGe
● https://github.com/lgsvl/chromium-src
● LGe has been updating it until 64 so far

● Current Chromium stable is 65 (66 in beta)

https://github.com/lgsvl/chromium-src

Legacy Ozone-Wayland project

● This is the project currently used at GENIVI Development
Platform

● Not recommended for new products, plan to phase it out
● Current release provides Chromium 64

● Why not merge Intel’s backend upstream?
● Blocker: architecture differences

– Intel’s code doesn’t align with Chromium mid-term architecture plans

Chromium architecture now

Browser process

Renderer process

UI Service

desktop integration

ozone / wayland
(connection)

(IPC Mojo API)

Mus Linux desktop integration

GPU service
(thread)

Browser process

desktop integration

Renderer process

 GPU process

ozone platform
wayland connection

IPC (old API)

Linux desktop integration (01.org)

x11 win

ozone/wayland

ozone / x11

Window
Server

x11 win

aura/mus

Browser process

GPU service
(GPU process)

New Wayland backend by Igalia

● New project hosted at:
● https://github.com/Igalia/chromium

● More than one year of development so far
● Developed by Igalia
● Supported by Renesas

● Wide array of features currently implemented
● XDG v6, keyboard, mouse & touch input, common window

management, menus & tooltips, clipboard...
● Main gaps: drag & drop, multi-screen, performance improvements.

https://github.com/Igalia/chromium

New Wayland backend by Igalia

● Development process
● Start from scratch, follow modern Chromium conventions and

architecture
● Buildbot running existing tests
● Peer review
● Track Chromium master

– weekly rebases
– continuous history clean up

New Wayland backend by Igalia

● Ongoing upstreaming process
● Periodic sync-up with Google
● Shared design document. Live and dynamic document.

● First step: undo ChromeOS assumptions from new architecture
● New architecture only officially used on ChromeOS → Google

developers assumed ChromeOS use cases
● Specifically: ChromeOS has one big container window

● Discussion and next steps in BlinkOn (currently happening!)

https://docs.google.com/document/d/1yzUWttsyqTh31vAyn4Xj4xblr3GOYlF44lBlFP_ixT0/edit

Part III: WebKit and WPE

WebKit. What is a port?

● From a simplified point of view,
WebKit is structured this way:

● WebKit: thin layer to link against
from the applications

● WebCore: rendering, layout,
network access, multimedia,
accessibility support...

● JS Engine: the JavaScript engine.
JavaScriptCore by default.

● platform: platform-specific hooks
to implement generic algorithms

WPE

● Main use case: full-screen web content.
● Derives from WebKitGTK+
● Designed for simplicity and performance
● Toolkit and platform agnostic
● Gstreamer for media and JSC as JavaScript engine
● Reduces dependencies to a few common libraries:

● Glib, FreeType, HarfBuzz, GnuTLS, pixman, cairo, libsoup

● GLES 2.0 for hardware accelerated rendering

WPE use cases

● Great performance in low-end hardware
– Raspberry Pi 1/zero

● Very low memory footprint
– A functional Raspberry Pi image can be about 40Mb
– Possible to limit memory consumption (100Mb for a standard setup)

● Supports Wayland and also other backends
● Strong multimedia capabilities
● Well received in set-top-box market. Official part of RDK stack

http://rdkcentral.com/

WPE backends

● Main goal: efficient cross-process GPU buffer sharing
● Backends use platform-specific libraries to implement drawing and window

management
● Can be independently developed
● Vulkan support down the line

Available WPE backends

● Libgbm: Intel, AMD, open source NVidia drivers for embedded
devices (i.e. Jetson) – specific to Mesa driver

● Wayland-egl: uses Wayland as the protocol internally, can be
used by Mesa as well as ARM Mali drivers

● LibWPEBackend-rdk covers 4-5 different stacks (Rpi, IntelCE,
bcm-nexus via the native API, bcm-nexus via Wayland,
westeros – RDK oriented compositor -)

● Working on an experimental libWPEBackend-android

WPE present and future

● Heavily developed during 2015-2017
● Sponsored by Metrological

● Upstream since May 2017
● Stable Igalia team working on it
● Since 2017:

● RDK consortium adopted the technology (>10M STB)
● Different kinds of embedded devices companies adopting WPE
● Automotive companies already considering it

WPE present and future

● Releases
● QA infastructure
● Documentation
● New graphics architecture
● Networking & Security
● JSC improvements on 32 bits
● More web standards (WebDriver, WebGL2, WebVR...)

WPE repositories

● Upstream
● https://webkit.org/getting-the-code

● Downstream
● https://github.com/WebPlatformForEmbedded

https://webkit.org/getting-the-code
https://github.com/WebPlatformForEmbedded

IV. Conclusions

Conclusions

● Wayland is a mature solution
● Support in major Linux distros
● Automotive industry

● Browsers are highly-demanding software
● XWayland hurts performance
● Native support is required

Conclusions

● Native Wayland support in major Linux browsers
● Chromium: work by Igalia

– Quite complete, upstream process ongoing
– Projects in Chromium ecosystem are waiting for upstream support

● WebKit: work by Igalia
– Support is complete and published upstream
– WPE for embedded, WebKitGTK+ for desktop and embedded

● Firefox/Gecko: work by Red Hat
– Work in progress, available in developer Nightly previews

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
GENIVI logo © GENIVI Alliance 2017.
Contents © Igalia, S.L. 2017.

http://creativecommons.org/licenses/by-sa/4.0/legalcode

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

