
Security 101
April 19, 2018 | Overview

Stacy Janes
Security Team, GENIVI Alliance

Software Security 101

Stacy Janes
Chief Security Architect
Cloakware for Connected Transport at Irdeto

linkedin.com/in/stacy-911-janes stacy.janes@irdeto.com

Crypto 101

Integrity and Confidentiality

5Copyright © GENIVI Alliance 2018 | April 19 2018 |

Integrity
Proving the
validity of

data.
Digital

Signature

Confidentiality
Protecting

the contents
of data.

Encryption

Hashing

6Copyright © GENIVI Alliance 2018 | April 19 2018 |

Unlike encryption, hashing is a “one
way” function

A hash is used to check the validity
of data. It does not protect data.

Passwords should be hashed, not
encrypted when stored.

Encryption – Symmetric Key

7Copyright © GENIVI Alliance 2018 | April 19 2018 |

Key management becomes
cumbersome beyond a few actors.

Encryption and decryption done
with the same key

Symmetric cryptography is fast
(relative to Asymmetric)

Encryption – Asymmetric Key

8Copyright © GENIVI Alliance 2018 | April 19 2018 |

Ø Encryption with Public Key
Ø Decryption with Private Key

Asymmetric cryptography is
slow(relative to Symmetric)

Private Keys are not shared

Public Keys can be shared with
many actors. PKI enables this.

Digital Signature

9Copyright © GENIVI Alliance 2018 | April 19 2018 |

plaintext

digest

digital signature

plaintext

digest

digital signature

digest

A

A

B

BA =
hashhash

encrypt with K Alice
private decrypt with K Alice

public

?

Encrypted Hash

Ø Encrypt with Private Key (Sign)
Ø Decrypt with Public Key (Verify)

X.509 Certificate around Public Key
for identity verification

Does not hide data

Binary Hacking 101

Privilege escalation is the act of exploiting a bug, design flaw or configuration
oversight in the OS or an application to gain elevated access to resources that
are normally protected from the application or userid.

Kernel Exploitation: Exploiting vulnerabilities in the kernel in order to gain
arbitrary code execution as root. Eg: DirtyCOW

Service Exploitation: Exploiting Linux services and configuration mistakes. Eg:
wildcard injection.

Privilege Escalation

11Copyright © GENIVI Alliance 2018 | April 19 2018 |

Vulnerabilities

12Copyright © GENIVI Alliance 2018 | April 19 2018 |

“Defeating” Crypto – Easier to Bypass

13Copyright © GENIVI Alliance 2018 | April 19 2018 |

Brute force is typically not a realistic attack

• Key lifting. Easy for software key if not properly protected
• Binary modification to “jam” logic branch for signature check
• Lifting clear data from memory after decryption
• Inserting malicious data to be signed/encrypted
• Shimming interfaces

End point access opens up attack vectors

“Lifting” Clear Data

14Copyright © GENIVI Alliance 2018 | April 19 2018 |

Find the Decrypt
function

Lift the clear data
after decryption

Branch “Jamming”

15Copyright © GENIVI Alliance 2018 | April 19 2018 |

Let software verify signature

Find branch that checks return
code

Reverse comparison opcode to
allow invalid signature to pass

“Shimming”

16Copyright © GENIVI Alliance 2018 | April 19 2018 |

When an application uses a shared

object, an attacker can interfere

with the boundary.

Attacker uses export table of .so to

generate a ‘shim’ to go between

application and .so.

All data (parameters and return

codes) can be siphoned and

modified.

Software Application

Shared Object

“Shimming”

17Copyright © GENIVI Alliance 2018 | April 19 2018 |

When an application uses a shared

object, an attacker can interfere

with the boundary.

Attacker uses export table of .so to

generate a ‘shim’ to go between

application and .so.

All data (parameters and return

codes) can be siphoned and

modified.

Software Application

Shared Object

Malicious Shim

Coding Practices

Coding Practices

19Copyright © GENIVI Alliance 2018 | April 19 2018 |

https://www.us-cert.gov/bsi/articles/knowledge/coding-practices

Inherited process context that is
not validated like other inputs
can introduce vulnerability.

The strncpy_s() and strncat_s()
functions are defined in
ISO/IEC TR 24731 as drop-in
replacements for strncpy() and
strncat().

Validate Inherited
Process Context

Use strncpy_s() and
strncat_s()

Code Entanglement

20Copyright © GENIVI Alliance 2018 | April 19 2018 |

• Avoid assertion checks on sensitive decisions such as a digital signature or
password validation.

• “Entangle” the input value by using it to get to the asset. Eg: password is
decryption key to decrypt file.

pwHash = getPasswordHash();
if(pwHash == storedHash){

decryptFile(fn);
}

pwHash = getPasswordHash();
decryptFile(fn, pwHash);

Assertion Check Entangled

Data Parsing is Critical

21Copyright © GENIVI Alliance 2018 | April 19 2018 |

22Copyright © GENIVI Alliance 2018 | April 19 2018 |

Software Protections

Software Protections – Integrity Verification

24Copyright © GENIVI Alliance 2018 | April 19 2018 |

If software is running on a potentially hostile environment,
an attacker can have full control over software execution.

Attacker can use analysis tools to detect and circumvent
in-software checks.

• At install-time
• At start-time
• During run-time

Verification of software integrity should be done:

Software Protections – Transformations

25Copyright © GENIVI Alliance 2018 | April 19 2018 |

Ø Similar to integrity checks, code transformation is useful when

software is in a hostile environment.

Ø Code transformation can strongly mitigate static analysis of code.

Ø Data transformation can hide data after decryption to mitigate against

siphoning

Some form of code and data transformation is widely and expertly used

by authors of sophisticated malware.

Transformation of open source can be tricky. License issues. Leakage of

information through system calls.

Transforming Control Flow

26Copyright © GENIVI Alliance 2018 | April 19 2018 |

System Features

Address Space Layout Randomization
ASLR randomly arranges the address space positions of key data areas of
a process, including the base of the executable and the positions of
the stack, heap and libraries.

- Wikipedia

ASLR is a first line of defence against return-to-libc and ROP attacks by making
it harder for attackers to know memory offsets before hand in an attack. It’s
effectiveness is based on the entropy used.

ASLR

28Copyright © GENIVI Alliance 2018 | April 19 2018 |

https://en.wikipedia.org/wiki/Address_space
https://en.wikipedia.org/wiki/Process_(computer_science)
https://en.wikipedia.org/wiki/Executable
https://en.wikipedia.org/wiki/Stack-based_memory_allocation
https://en.wikipedia.org/wiki/Dynamic_memory_allocation
https://en.wikipedia.org/wiki/Library_(computer_science)

Access Control

29Copyright © GENIVI Alliance 2018 | April 19 2018 |

Identity Unique
Identifier

Authentication Passwords,
biometrics

Authorization Access
Control

• Owner of resource controls access.
• Access is based on identity or groups

• Primary attacker objective is to escalate privilege from
restricted to non-restricted (root)

Discretionary Access Control

30Copyright © GENIVI Alliance 2018 | April 19 2018 |

Mandatory Access Control

31Copyright © GENIVI Alliance 2018 | April 19 2018 |

Policy based authorization rules

Centrally controlled by an administrator

Users (even root) cannot override the policy

Implemented using the LSM API

Mandatory Access Control

32Copyright © GENIVI Alliance 2018 | April 19 2018 |

SELinux

Based on
labels

Historically
difficult to

use

SMACK

Designed
with

simplicity in
mind

TOMOYO

Uses
pathnames
instead of

labels

AppArmor

Uses
pathnames,

similar to
TOMOYO

SECURITY NEEDS TO BE
DESIGNED IN FROM THE

BEGINNING.

Thank you!

Visit GENIVI at http://www.genivi.org or http://projects.genivi.org
Contact us: help@genivi.org

http://www.genivi.org/
http://projects.genivi.org/
mailto:help@mail.genivi.org

