GENIVI®

History of Hypervisor

April 19, 2018 | Xen ARM open source software focused

Dr. Sang-bum Suh CEO Perseus Co., Ltd, GENIVI Alliance

Email: sbsuh@cyberperseus.com

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0) GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries. Copyright © GENIVI Alliance 2018.

Contents

- Origin of virtualization
 - Virtualization at 2008
- Why hypervisor in the past?
- Hypervisor evolution
- History of Xen ARM hypervisor
 - Smartphone prototype based on Xen ARM:

Demo to show two Linux OS running and how to protect smartphone against hacker's attack

Origin of virtualization

• Virtual machine monitor? Type-1 virtualization? Hypervisor?

- IBM developed Hypervisor first, for migration of bank transaction service without interrupt of the service in 70s.
- Hypervisor for server massively adopted in data center from 2008.
- On the other hand, development of Hypervisor for mobile devices on ARM CPU started from around 2005.

Virtualization at 2008

Theory: simple

Α α (virtual (Real V(A) State) State) e(A) $\epsilon(\alpha)$ В β (Virtual (Real V(B)State) State)

Virtualization is the construction of an isomorphism between a virtual system and a real system [Virtual Machines] James E. Smith/Ravi Nair , 4p

PERSEUS

Why hypervisor in the past?

Hypervisor Evolution (1/2)

Guest OS CAN NOT run on hypervisor, without modifying source code of guest OS.

Guest OS runs on hypervisor,

guest OS.

•Thin Hypervisor

without modifying source code of

GENIV

Hypervisor Evolution: Xen case (2/2)

PV driver Overhead Reduces

GENIVI

I/O Virtualization Overhead Reduces

History of Xen ARM hypervisor

Xen ARM Feature

- Xen ARM Feature
- CPU overhead: 3% on average after optimization
- Memory footprint: 1~2 MB DRAM

Supported Hardware & Guest OS

Supported Hardware & Guest US

- ARM926EJ-S (i.MX21, OMAP5912)
 Variable 2nd Concention Architecture
- Xscale 3rd Generation Architecture (PXA310, Samsung SGH- i780)
- ARM1136/ARM1176(Core Only)
- Goldfish (EQMU Emulator)
- Versatile Platform Board
- ARM11MPCore (Realview PB11MP)
- Tegra250

- Linux v2.6.11, v2.6.18, v2.6.21, v2.6.24, v2.6.27 (multicore supported)
- uC/OS-II

Smartphone prototype based on Xen ARM:

Two Linux OS running on Xen ARM with mandatory access control, guaranteeing enhanced security.

Secure Smartphone on Xen ARM

Thank you!

Visit GENIVI at <u>http://www.genivi.org</u> or <u>http://projects.genivi.org</u> Contact us: <u>help@genivi.org</u>

GENIV

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0) GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries. Copyright © GENIVI Alliance 2018.