
Virto and friends GENIVI AMM Munich
Mat Möll, OpenSynergy GmbH

2

• Platfrm Standardizatfn

• Lffking at Virtualized platfrms

• Cfmparing techniques

• Virtf

 What it dfes

 Hfw it wfrks

• Summary

Outline

3

Platform Standardization (so far)

 Defactf standard ffr persfnal cfmputers „IBM PC“ and „PC Cfmpatile“

 Hardware and sofware interface

 BIOS

 Peripheral standards (ISA, ATA)

 Platorm design became the x86t Architecture

 PXE

 Preboot Executon Environment

 Early executon environment for Extension ROMs and Netboot

 UEFI

 PXE + BIOS + Bootloader

 Extensible preboot and runtme environement

 Provides services and HALs

4

Virtualized Platforms

 Desktfp Virtualizatfn (early days)

 Almost all x86t

 Replicate desktop system

 Emulated IDE controller, Intel Network card, VGA graphics, etc.

 Drivers exist, interfaces already standardized

 Vendor specifc device models

 Server Virtualizatfn

 x86t (and a couple of mainframes)

 Vendor Specifc device models

 Mostly network and storage

 Clfud Virtualizatfn

 Vendor specifc

 Virto based models

 Almost only network and storage

5

• Virtualized IO devices are availaile ffr desktfp and clfud applicatfns iecause everyfne
uses standardized interfaces (virtf, xen, vmware)

• Disk

• Network

• Emiedded devices lack the ecfsystem that clfud prfviders iuild upfn

• Challenges ffr virtualized IO devices in autfmftve

• High efort of SoC specifc device virtualizaton

• Multmedia device virtualizaton

• Low amount of reusable virtual devices

Challenges of virtualized environments

6

Standardizing Hypervisor APIs

 Mechanisms

 Where df we cut?

 COTS fr dfmain specifc?

 Strict requirements fr rfugh cfnsensus?

Focus on I/O, virtual/shared devices and drivers

7

vdriver

Mechanisms for device virtualization

Hypervisor

SoC device

driver

driver

in Hypervisor

driver

Hypervisor

SoC

driver

device with
virtualizaton support

driver

Hypervisor

SoC device

low-level
client-server

virtdev1 virtdevN

distributed frameworks
over Guest IPC

vdriver
driver

Hypervisor

SoC device

driver

frame-
worksharing

frame-
work

IPC

• Only used for UART
(optonally)

• not recommended for
other devices as the
Hypervisor is minimalistc.

Example: UART

• COQOS supports this when
the SoC hardware supports
virtualized devices

• Recommended wherever
the hardware supports it,
as it tends to give the best
performance and
separaton

Example: GPU on RCAR-H3

• Single driver in VM that
acts as "server"

• Driver-specifc sharing logic
is needed.

• Other VMs use "virtual
driver".

• Compromise between
performance and fexibility

Example: shared block device

• Allows reuse of existng
frameworks for distributed
applicatons in a virtualized
environment over VNET.

• Supports complex sharing
semantcs at the cost of
more overhead

Example: NFS

IPC

8

Device Virtualization Technologies

Technology Description Reusability Platform independence
Standard library
(or layer)
virtualization
(OpenGL, DRM,
Android HAL …)

Implement hypervisor
specific standard libraries

As long as the same
hypervisor is used

As good as vendor interface

Virtio Implement virtio based
devices that follow either
existing standards or
specify new ones

Virtio support is
available in Linux,
Android and many
other operating
systems

Builds upon the kernel-
userspace interface of Linux and
allows large flexibility because
the devices themselves make no
assumption about the hardware

HV vendor
custom

Develop virtual devices
optimized to be used with a
particular hypervisor

As long as the same
hypervisor is used

Implementation specific

Trade-off between development effort, reusability, platform independence,
availability and maturity

9

Let’s assume virtio

10

• Virtf “De-Factf Standard Ffr Virtual I/O Devices” [Russel 2008]

• Ffrmally standardized since March 2016 (OASIS VIRTIO-v1.0)

• Virtf prfvides interfaces ffr many devices

• Block Storage

• Network

• Console

• GPU

• Input (hid)

• Crypto device

• vSock

• File Server (9pfs)

• Many more in development (vIOMMU, etc.)

• Ffr the cfmplete Andrfid experience there are stll missing pieces

• Audio

• Sensors

• Media Acceleraton Ofoad (VPU)

Introduction to virtio

11

Talking about virtio

 Device refers to the implementon of the virtual/para-virtual device, also known as
Backend or Server

 Driver refers to the guest driver, also known as Frontend or Client

 Device Hfst is the guest that provides the Device to other guests

 Device Guest is the consumer of a Device

 Guest is a partton or virtual machine

12

Hypervisor SystemHypervisor System

Shared device Architectue with Virtio

Linux/Android user space

Linux kernel space

Linux/Android user space

Linux kernel space

Client VM MemoryClient VM Memory

HardwareHardware

Guest VM

SubsystemSubsystem

virtiovirtio

Virtio-<device>Virtio-<device>

BufferBufferVQVQ

PlumbingPlumbing

SG listSG list

Open SourceOpen Source

Hypervisor
Vendor

Hypervisor
Vendor

Virtio Support

Device Emulation
Framework

Device Emulation
Framework

VQ=Virt Queue
SG=Scatter
Gather

13

Virtio driver Stack (Flipped)

hardwarehardware

HypervisorHypervisor

virtio_mmiovirtio_mmio

virtio-<device>virtio-<device>

Kernel SubsystemKernel Subsystem

AppAppAppApp

Plumbing LayerPlumbing Layer

FrameworksFrameworks

EL2

EL1

EL0

Transport layer

Driver layer

14

A Note on Memory allocation

 The driver decides where memfry is allfcated

 Drivers defne allocaton policy

 Pooling possible but not needed

 No Bounce bufers, no wasted memories if system requirements allow
this

15

Why Virtio?

 Standardized

 Prfven in Use

 Well tested device models

 Estailished cfmmunity

 IBM, Red Hat, Siemens, Huawei, Oracle, ARM, Intel

 Efcient and perffrmant

 Diverse fperatng system suppfrt

 Linux, BSD, Windows, UEFI

 Driver maintenance done upstream

 Suppfrted iy many VMMs and Clfuds

 Qemu, kvm-tool, Foundaton model

 ARM Foundaton model/ Fast model

 Google Compute Cloud, DigitalOcean, OHV

16

Summary

 Creatng platfrms with multple independent prfviders has fueled innfvatfn in
the past

 PC, Servers, Clfud

 Prfpfsal: Standardize fn virtf ffr I/O devices

 What already exists and hfw dfes virtf wfrk

 Virtf is standardized and designed tf allfw interfperaile and independent
implementatfns

17

Discussion

18

Discussion

 Can virtf prfvide the I/O interfaces we need?

 What’s missing?

 Level ff standardizatfn?

 What’s next?

20

OpenSynergy GmiH

Rotherstraße 20
D-10245 Berlin
Germany

Phone +49 30 t0 986 540-0
E-Mail info@opensynergy.com
Web www.opensynergy.com

OpenSynergy GmiH

Starnberger Str. 22
D-862131 Gautngg/gMunich
Germany

Phone +49g869g869 34 13-33
E-Mail bluetooth@opensynergy.com

OpenSynergy, Inc. (USA)

7t5 East 340 South
Suite 10t
American Fork, Utah 864003

Phone +1 t19 9t2 1725
E-Mail bluetooth@opensynergy.com

OpenSynergy, COQOS SDK, Blue SDK, IrDA SDK, Voice SDK, Update SDK, Qonformat, and other OpenSynergy products and
services mentoned herein as well as their respectve logos are trademarks or registered trademarks of OpenSynergy GmbH in
Germany and in other countries around the world. All other product and service names in this document are the trademarks
of their respectve companies. These materials are subject to change without notce. These materials are provided by
OpenSynergy GmbH for informatonal purposes only, without representaton or warranty of any kind and OpenSynergy GmbH
shall not be liable for errors or omissions with respect to the materials. © OpenSynergy GmbH 201t

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20

