
Embedded Linux

Systems with the

Yocto Project
COURSE MATERIAL

© 2016 IBEETO, STREIF ENTERPRISES INC.

Audience

 You will have the best experience and will benefit the most from this
course if

 You have a fairly good understanding of Linux from using it. However,
you do not need to have any prior background in Linux system
architecture, Linux kernel development, or embedded Linux.

 You have experience using the C programming language, how
programs are compiled and built.

 You have a good understanding of system programming in a UNIX or
Linux environment on the application or user-space level.

 You know how to use text editors, either command line (vi, emacs, etc.)
or with a graphical UI.

 You have basic knowledge in UNIX shell scripting and Python
programming.

2

References

 Embedded Linux Systems with the Yocto Project, Rudolf J. Streif,

Prentice Hall, https://www.pearsonhighered.com/program/Streif-Embedded-

Linux-Systems-with-the-Yocto-Project/PGM275649.html

 Yocto Project Quick Start Manual,
http://www.yoctoproject.org/docs/2.1/yocto-project-qs/yocto-project-qs.html

 Yocto Project Reference Manual,
http://www.yoctoproject.org/docs/2.1/ref-manual/ref-manual.html

 Yocto Project Linux Kernel Development Manual,
http://www.yoctoproject.org/docs/2.1/kernel-dev/kernel-dev.html

 OpenEmbedded Wiki, http://openembedded.org/wiki/Main_Page

3

https://www.pearsonhighered.com/program/Streif-Embedded-Linux-Systems-with-the-Yocto-Project/PGM275649.html
http://www.yoctoproject.org/docs/2.1/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/2.1/ref-manual/ref-manual.html
http://www.yoctoproject.org/docs/2.1/kernel-dev/kernel-dev.html
http://openembedded.org/wiki/Main_Page

Conventions 4

Attention – something can

go wrong here.

Tip – this can make your

work easier.

Page

Further reading

and more details.

Content

 The Yocto Project Ecosystem

 Getting Started

 Inside the Build System

 Troubleshooting

 Building Custom Linux Systems

 Software Package Recipes

5

WHAT IT IS, WHO THE PARTICIPANTS ARE, AND WHY YOU

SHOULD CARE…

6

The Yocto Project Ecosystem

The Yocto Project is not an Embedded Linux Distribution.
It creates a custom one for You!

7

The Yocto Project is not a Single Open Source Project.
It is an Ecosystem.

The Yocto Project combines the convenience of a ready-to-run Linux

distribution with the flexibility of a custom Linux operating system stack.

Why Linux for Embedded Systems?

 The Case for Linux

 Royalty-free

 Hardware Support

 Networking Support and Protocols

 Modularity

 Scalability

 Source Code

 Developer Support

 Commercial Support

 Tooling

8

 The Case against Linux

 General Purpose OS

 File System

 Memory Management Unit

 Not a real-time OS

2

Embedded Linux Distributions

 Android - http://source.android.com

 Excellent for systems with ARM-based SoCs and touch screens

 Includes build system and development tools

 Angstrom Distribution - www.angstrom-distribution.org

 Community distribution with a growing list of supported development boards

 Yocto Project build system

 OpenWrt - www.openwrt.org

 Debuted as open source OS for embedded devices routing network traffic

 Originally created from the Linksys GPL sources for their WRT54G residential
gateway

 Buildroot-based build system

 Headless operation with web UI

9
3, 4

http://source.android.com/
http://www.angstrom-distribution.org/
http://www.openwrt.org/

Embedded Versions of Mainstream

Linux Distributions

 Debian - www.emdebian.org - inactive

 Fedora - https://fedoraproject.org/wiki/Embedded - inactive

 Gentoo - https://wiki.gentoo.org/wiki/Project:Embedded - inactive

 SuSE - https://tr.opensuse.org/MicroSUSE - inactive

 Ubuntu – www.ubuntu.com/Internet-of-things

 Ubuntu Core maintained by Canonical

 Snappy application development platform

10
3, 4

http://www.emdebian.org/
https://fedoraproject.org/wiki/Embedded
https://wiki.gentoo.org/wiki/Project:Embedded
https://tr.opensuse.org/MicroSUSE
http://www.ubuntu.com/Internet-of-things

Embedded Linux Development

Tools

 Baserock - http://wiki.baserock.org

 Git server at the core to manage build instructions, source code and

build artifacts

 Native compliation – no cross-build support

 YAML-based build instructions

 Buildroot - https://buildroot.org

 Make as the build engine – build instructions are makefiles

 uClibc target library

 OpenEmbedded - www.openembedded.org

 The Yocto Project - www.yoctoproject.org

11
5, 6

http://wiki.baserock.org/
https://buildroot.org/
http://www.openembedded.org/
http://www.yoctoproject.org/

Embedded Linux – Why is it

Challenging?

 Dependency Management – Software packages depend on each

other and on libraries requiring compatibility of APIs and

dynamically linked libraries.

 Conflicting Software Packages – Multiple software packages

provide the same functionality often with the same APIs but cannot

be installed on a system at the same time.

 Toolchain – Bootstrapping a toolchain with C/C++ compiler,

assembler, linker, and many other tools, eventually for cross building,

is difficult.

 Kernel and Device Drivers – Linux kernel configuration has about
7,000 parameters to enable functionality and drivers.

12
8, 9

Top-down or Bottom-up?

 Top-down

 Start with a maintained and tested Linux distribution

 Modify it by installing additional packages, removing unneeded

packages, configuring system settings

 Install proprietary software

 Create an image and install it on the target hardware

 Bottom-up

 Build the entire system from source code

 Select toolchain, bootloader, kernel, C library and other packages

 Install only the required software packages

13

Jump Start

Flexibility / Control

8,9

Top-down or Bottom-up?

 Top-down

 Start with a maintained and tested Linux distribution

 Modify it by installing additional packages, removing unneeded

packages, configuring system settings

 Install proprietary software

 Create an image and install it on the target hardware

 Bottom-up

 Build the entire system from source code

 Select toolchain, bootloader, kernel, C library and other packages

 Install only the required software packages

14

Jump Start

Flexibility / Control

8,9

What is the Yocto Project?

 An open source project providing

 A build system for building custom Linux distributions from source to

deployable image,

 Blueprints for distributions and root file systems to jump-start

development while maintaining flexibility for full customization,

 Software Development Toolkits (SDK) and emulators (QEMU) that can be

integrated with common Integrated Development Environments such as

Eclipse and Qt Creator for roundrip application development,

 Comprehensive documentation,

 Graphical UI tools for managing dependencies and customizing root file

systems,

 Frameworks for continuous integration, automated test and building.

15

Who is the Yocto Project

Member Organizations Supporting Organizations

16

Administrative Project Leadership Project Contributions

For Developers

 Build a complete Linux system from source in about 60 Minutes (90 Minutes with
X Window support)

 Start with a validated collection of software – toolchain, bootloader, kernel, user
space packages

 Root file system image blueprints

 Get you started quickly

 Can be customized any way you need it

 Support for System Developers and Application Developers

 Tools to create your own layers, application recipes, kernel recipes and BSP

 Kernel configuration and development tools

 SDKs for use on the command line or to integrate with Eclipse or Qt Creator, remote on
target debugging and more

 Support for all major architectures – x86, x86-64, ARM, MIPS, PPC

 Active and friendly support community

17

For Organizations and Companies

 Industry ecosystem

 Backed and managed by the Linux Foundation

 High-availability continuous integration and automated test

infrastructure

 Continuous maintenance with two major releases per year (April

and October)

 Support from consulting companies

 Board Support Packages (BSP) for CPUs and SoCs from all major

semiconductor vendors

18

Yocto Project Components 19

Meet the Yocto Project Family of

Projects
 OpenEmbedded Build System – Reference Build System

 BitBake – Build Engine

 OpenEmbedded Core – Base Meta-data Layer (meta)

 Poky – Yocto Project Reference Distribution (meta-poky)

 Yocto Project BSP – Reference BSP (meta-yocto-bsp)

 Application Development Toolkit (ADT) – Development environment (SDK) for user-space
application to run on OS stacks built by the build system.

 Eclipse IDE Plugin – Integrates ADT/SDK with Eclipse IDE

 Autobuilder – Build automation and continuous integration based on Buildbot

 Build Appliance – Virtual machine images for trials

 Pseudo – System administration simulation environment

 Swabber – Host contamination detection

 Toaster – Web-bases graphical user interface

20
26-28

Yocto Project & OpenEmbedded

 OpenEmbedded

 Created by merging the work of the OpenZaurus project with contributions from other
projects including Familiar Linux, OpenSIMpad, etc. into a common code base.

 Community project focused on cutting edge technology, latest hardware and broad
architecture support.

 Large library of recipes for thousands of open source software packages.

 Yocto Project

 Self-contained build system providing tools and blueprints for Linux OS stacks.

 Tested integration of OpenEmbedded build system with tools, reference distribution
and best practices.

 Regular release cadence (twice a year).

 Dedicated staff (from member companies) for development, maintenance,
continuous integration and quality assurance.

 Standardized components with compliance program.

21
18-30

Why not just use OpenEmbedded?

 OpenEmbedded is an open source project providing a build framework for Linux
systems:

 Designed as a foundation,

 Cutting-edge technologies and software packages,

 Rapid development cycle.

 The Yocto Project is focused on enabling commercial product development:

 Provides reference distribution policies and root file system blueprints,

 Co-maintains OpenEmbedded components with dedicated staff and improves their
quality,

 Adds tooling such as Autobuilder and QA tests,

 Provides tools for system and application development such as devtool, ADT/SDK,
Eclipse plugin, etc.

22

Yocto Project Developer

Community

23

ALL YOU NEED TO KNOW TO GET YOUR FEET WET AND A

LITTLE BEYOND…

24

Getting Started

Build Host Requirements

 Hardware

 CPU - x86-64, multiple cores/hyperthreading, build system automatically parallelizes, hence the more
cores the faster the build

 Memory - at least 4 GB (16 GB or more recommended)

 Storage - at least 100 GB available storage, SSD preferred for performance, RAID levels supporting
striping increase performance

 Software

 Mainstream Linux distribution – these are regularly tested by the Yocto Project development team
and officially supported: CentOS, Debian, Fedora, OpenSuSE, Ubuntu

 Git version 1.8.3.1 or greater, tar version 1.24 or greater, Python version 2.7.3 or greater (excluding
Python 3.x)

 Additional packages dependent on the chosen distribution (details follow)

 Infrastructure

 High-speed Internet Access

25
16-17

Build Host Software Setup

 CentOS

$ sudo yum install gawk make wget tar bzip2 gzip python unzip perl patch

diffutils diffstat git cpp gcc gcc-c++ glibc-devel texinfo chrpath socat perl-

Data-Dumper perl-Text-ParseWords perl-Thread-Queue SDL-devel xterm

 Debian / Ubuntu

$ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib

build-essential chrpath socat libsdl1.2-dev xterm

 Fedora

$ sudo dnf install gawk make wget tar bzip2 gzip python unzip perl patch diffutils

diffstat git cpp gcc gcc-c++ glibc-devel texinfo chrpath ccache perl-Data-Dumper

perl-Text-ParseWords perl-Thread-Queue perl-bignum socat findutils which SDL-

devel xterm

 OpenSuSE

$ sudo zypper install python gcc gcc-c++ git chrpath make wget python-xml diffstat

makeinfo python-curses patch socat libSDL-devel xterm

26
19

Obtaining the Yocto Project Tools

 Download the current release (or previous release) tarball from the Yocto

Project Website:

 https://www.yoctoproject.org/downloads

 Clone from the Yocto Project Git repository:

 Preferred as it gives you the bleeding edge master development branch as well as

the release branches.

 Master branch:
$ git clone git://git.yoctoproject.org/poky.git

 Release branch:
$ git clone –b <branch> git://git.yoctoproject.org/poky.git

27
19

https://www.yoctoproject.org/downloads

Initializing the Build Environment

 Create and initialize a build environment:

 source <pokypath>/oe-init-build-env <builddir>

 <pokypath> is the directory where you installed the build tools

 <builddir> is the name of directory where your build environment will be set up

in, default is build

 Every time you want to use a build environment you have to initialize it with

the above command.

28
20-21

Add <pokypath> to your .bashrc file:
Yocto Project Setup

YOCTODIR=“${HOME}/yocto”

POKYDIR=“${YOCTODIR}/poky”

export YOCTODIR POKYDIR

PATH=“${POKYDIR}:${PATH}”

The script oe-init-build-

env must be “sourced” to

export the variable settings

to the current shell.

Configuring the Build Environment

 The file con/local.conf configures your build environment by setting various
variables.

 The file is automatically created and populated with default settings.

 The most commonly adjusted settings are:

 MACHINE ?= “qemux86” # configure the target platform (machine)

 DL_DIR ?= “${TOPDIR}/downloads” # where to place the source downloads

 SSTATE_DIR ?= “${TOPDIR}/sstate-cache” # where to place the shared

cache files

29

The variable TOPDIR references the

top-level directory if the build
environment.

20-21

Launching the Build

 From top-level directory of your build environment run:

$ bitbake <build-target>

 To build a default image target:

$ bitbake core-image-sato

 To download all the source files without building:

$ bitbake –c fetchall core-image-sato

30

The build process stops at the first

error encountered. To continue

building tasks that are not impeded

by the error, use the –k option:
$ bitbake –k core-image-sato

20-21

Lab Exercise

 Prepare your build host by installing the required packages according to the
Linux distribution.

 Setup the .bashrc file with the variables YOCTODIR and POKYDIR. Source the file
for the changes to become effective.

 Create the yocto directory in your home directory. Change into that directory.

 Clone the krogoth branch of the build system from the Yocto Project repository.

 Create a build environment.

 Edit the conf/local.conf file:

 Build for the machine qemux86-64.

 Place the downloads into ${TOPDIR}/../downloads.

 Place the shared state cache files into ${TOPDIR}/../sstate-cache.

 Build the target image core-image-minimal.

31

Directory Structure 32

${HOME}

yocto

poky

sstate-cache

downloads

build

conf

local.conf

…

A CLOSE LOOK AT HOW THE BUILD SYSTEM WORKS

33

Inside the Build System

Build System Terms (1/6)

 Append File - An append file extends an existing recipe. BitBake verbatim
appends the contents of an append file to the corresponding recipe,
creating a single file before parsing it. Variables in an append file can
override the same variables defined in the corresponding recipe. Append
files use the bbappend extension.

 BitBake - The build engine in the OpenEmbedded build system, BitBake is a
task executor and scheduler. Its input are metadata files such as
configuration files and recipes through which BitBake processing is controlled.

 Board Support Package (BSP) - Documentation, binaries, code, and other
implementation-specific support data in the BSP enable a given operating
system to run on a particular target hardware platform. Sometimes a BSP also
contains complete root file systems and a cross-development environment to
create application programs running on the target hardware platform.

34
31-33

Build System Terms (2/6)

 Class - In BitBake terminology, a class is a metadata file providing logic
encapsulation and a basic inheritance mechanism allowing commonly used
patterns to be defined once and used with many recipes. BitBake class files use
the bbclass extension.

 Configuration File - Configuration files are BitBake metadata files providing global
definition and settings for variables that affect the build process.

 Cross-development Toolchain - A cross-development toolchain is a collection of
software development tools allowing software development for target systems
employing a different architecture than the development host. Architecture in
this context refers to different CPU instruction sets (for instance, ARM, MIPS,
PowerPC, x86) as well as different bit sizes (for instance 8, 16, 32, and 64 bit).
Typically, a cross-development toolchain includes one or more language
compilers, assembler, linker and often debuggers, emulators, and other tools that
are specific to the target architecture.

35
31-33

Build System Terms (3/6)

 Image – A binary file, often compressed, an image contains a boot loader,

an operating system kernel, and a root file system to be copied to a storage

media from which the target system can boot and run. The term image is also

used to mean just an operating system kernel (kernel image) or the root file

system (root file system image).

 Layer – In BitBake terminology, a layer is a collection of metadata

(configuration files, recipes, etc.) organized into a file and directory structure.

BitBake can include layers to extend its functionality. Yocto Project BSPs are

provided as layers.

 Metadata – In BitBake terminology, metadata includes all files that instruct
BitBake how to execute build processes. BitBake metadata includes classes,

recipes (with append files), and configuration files.

36
31-33

Build System Terms (4/6)

 OpenEmbedded Core (OE Core) – A core set of metadata in the
OpenEmbedded build system that is shared between OpenEmbedded and the
Yocto Project, OE Core is a BitBake layer co-maintained by the OpenEmbedded
Project and the Yocto Project.

 Package –A package is a software bundle containing executable binaries,
libraries, documentation, configuration information, and other files following a
specific format that an operating system’s package management system can
install or uninstall. Packages commonly also include information on dependencies
on and incompatibilities with other software packages that the package
management system can use to automatically resolve and/or inform the user
about.
The Yocto Project also uses the term package to mean the recipes and other
metadata used to build the respective software bundle. Dependent on the
context, the term then refers either to the actual software bundle or to the
metadata that builds the software bundle.

37
31-33

Build System Terms (5/6)

 Package Management System – A package management system is a collection
of software tools automating the process of installing, upgrading, configuring,
and removing software packages for a computer’s operating system. It typically
maintains a database of the installed software on the computer, including
version information, dependencies, incompatibilities, and more, to prevent
system faults through software mismatches and missing prerequisites.

 Poky – Poky is the Yocto Project’s reference distribution.

 Recipe – A recipe is a metadata file containing directives for BitBake on how to
build a particular software package. Through its directives, a recipe describes
from where to obtain the source code, what patches to apply and how to apply
them, how to build the binaries and associated files, how to install the build results
on a target system, how to create the packaged software bundle, and much
more. Recipes also describe dependencies during build and runtime on other
software packages, hence creating a logical hierarchy of the pieces required for
the build process. Recipes use the bb file extension.

38
31-33

Build System Terms (6/6)

 Task – BitBake recipes may contain executable metadata, or code, that

BitBake executes during the build process. Execution steps can be grouped

into metadata functions. A metadata function can be declared as a task by

inserting it into the BitBake task list.

 Upstream – In software development, particularly in open source, upstream

references the direction to the originators, that is, the original authors or

maintainers, of the software. Commonly, the term is used as a qualifier, such

as upstream repository and upstream patch.

 YP Core – The build system including BitBake, OpenEmbedded Core,

reference distribution and BSP layers as well as integration scripts.

39
31-33

Building Software Packages 40
35-39

FetchUpstream Extract
Archive

Repository
PatchSources Configure

Patched

Sources
Build

Configured

Sources
Install

Binary

Files
Package

System

Root

Toolchain

Packages

From Source to System Image 41
35-39

…

Package Builds

Create
Root
File

System

Package

Feeds

Create
System
Image

RootFS
System
Image

Image Assembly

Toolchain

Toolchain

 Tools used by the build system during the build process such as
compilers (C, C++, Java, assembler, linker, archiver,
compressor/decompressor, SCM tools, etc.

 The OpenEmbedded build system boostraps the entire toolchain
from source:

 Build host toolchain is only used for bootstrapping.

 Avoid dependency on host toolchain.

 Ensure that toolchain is compatible with software packages in particular
the Linux kernel and the C library.

 Cross Toolchain

 Tools that run on one architecture but create output for another, for
example gcc compiler running on x86-64 creating ARM assembly code.

42

System Root

 System root on UNIX/Linux systems is /.

 Paths in makefiles and other build scripts reference the system root of the build
host with absolute paths:
includedir = /usr/include

libdir = /usr/lib

bindir = /usr/bin

 Building a system for a different target than the build host requires setting the
system root to a different directory on the build host.

 Tools such as gcc and other support setting an alternative system root using the
--sysroot flag.

43

(Build) Host Contamination:

Makefiles and other scripts referencing paths must be written correctly to support

alternative system roots. Otherwise, files from the build host will be used. Best case this

will produce a build error, worst case it will cause hard to track runtime errors.

OpenEmbedded Build System

Workflow

44

Meta-data Files

 Configuration Files

 Global build system configuration through variable assignments

 Maintained by BitBake in a data dictionary that is accessible by other meta-data

files

 BitBake Master Configuration File (meta/conf/bitbake.conf)

 Layer Configuration File (${LAYERDIR}/conf/layer.conf)

 Build Environment Layer Configuration (${TOPDIR}/conf/bblayers.conf)

 Build Environment Configuration (${TOPDIR}/conf/local.conf)

 Distribution Configuration (<distribution-name>.conf)

 Machine Configuration (<machine-name>.conf)

 Build Instructions (Recipes and Classes)

45
41-43

User

Configuration

Recipes

Classes

Machine

Configuration

Distribution

Configuration

User Configuration

 Build Environment Configuration (${TOPDIR}/conf/local.conf) – define

what you are building:

 Target MACHINE ?= “qemux86-64”

 Target DISTRO ?= “poky”

 Download Directory DL_DIR ?= “${TOPDIR}/../downloads”

 Shared Cache Directory SSTATE_DIR ?= “${TOPDIR}/../sstate-cache”

 License Configuration INCOMPATIBLE_LICENSE ?= “GPLv3”

 Package Management Systems PACKAGE_CLASSES ?= “package_rpm”

 Image Features EXTRA_IMAGE_FEATURES ?= “debug-tweaks dev-pkgs”

 Build Environment Layer Configuration (${TOPDIR}/conf/bblayers.conf)

 Include additional layers into your build environment

46
41-43

User

Configuration

Recipes

Classes

Machine

Configuration

Distribution

Configuration

Recipes and Classes

 Build Instructions

 Variable assignments and tasks scripts

 Recipes build individual software packages: meta/recipes-core/busybox_1.24.1.bb

 Classes contain build instructions that are shared between recipes:

meta/classes/kernel.bbclass

 Recipes inherit the system configuration and adjust it to describe how to build

and package the software.

 Recipes can be extended and enhanced through append-files from other

layers.

 When necessary, recipes can apply local patches and configuration files for

the software package such as kernel .config.

47
41-43

Recipes

Classes

User

Configuration

Machine

Configuration

Distribution

Configuration

Machine Configuration

 Machine Descriptions

 Define target-specific kernel and bootloader configuration

 Describe formfactor (display, mouse, touch, keyboard) configuration

 Parameters for architecture-specific CPU/SoC tuning

 Machine configuration files are part of BSP layers. BSP layers provide any

hardware-specific recipes and/or extensions to existing recipes.

 Machine configuration determines hardware-specific parameters for the

kernel, bootloaders, graphics environment.

 BSP layers can be included with the build environment allowing to build the

same OS stack for different machines.

 Selected from the build environment configuration by setting the MACHINE

variable.

48
41-43

Machine

Configuration

User

Configuration

Recipes

Classes

Distribution

Configuration

Distribution Configuration

 Defines build system wide policies that affect the way how the OS stack is

built:

 Set preferred providers for functionality (i.e. OpenSSH vs DropBear SSH server)

 Set alternative preferred versions of software packages

 Enable/disable LibC functionality (i.e. i18n)

 Enable/disable features (i.e. pam, selinux)

 Configure specific packaging rules

 Configure source mirrors

 Set distribution information such as name, login prompt, version number, etc.

 Selected from the build environment configuration by setting the DISTRO

variable.

49
41-43

Distribution

Configuration

User

Configuration

Recipes

Classes

Machine

Configuration

How does it work? 50

Source Fetching

 Recipes call out the location of the sources
such as source packages, patches and
auxiliary files using the SRC_URI variable.

 BitBake can retrieve sources from local and
remote locations (git, svn, cvs, p4, hg, bzr, osc,
repo, ssh, ftp, http, https, file) in raw or
compressed formats (tar, zip, rar, xz, gz, bz2).

 Source download locations are tried in the
following order:

 Local Download Directory (DL_DIR)

 Source Pre-Mirrors (PREMIRRORS)

 Upstream Project Sources (SRC_URI)

 Source (Post-) Mirrors (MIRRORS)

51
43-45

Source Extracting and Patching

 Source Extraction

 Unpack tarballs or other archives

 Check out source from SCM branch, tag,

version

 Patch Application

 Local integration patches, if any, are applied in

the order they appear in SRC_URI using quilt.

 Integration patches are sometimes necessary to

adjust the sources for building in a system root

environment.

 Cross-building for other architectures may also

require patching the sources.

52
43-45

Build and Install

 Recipe specifies build rules

 Configure – Source configuration using GNU

Autotools or other mechanisms

 Compile – Build the software using the specified

build tools such as compilers, linkers and other

for any language

 Install – Copy the build artifacts into a private

system root for packaging

 Standard build rules in form of classes for

common builders (make, GNU Autotools,

NodeJS npm, cmake)

53
43-45

GNU Autotools Recipe Example

 Short Description

 Section information for
package management
system

 License used by the software

 File containing the license with
checksum to track changes to
the license

 Upstream source location

 Classes for build instructions
and GNU Gettext i18n, l10n

54

SUMMARY = “GNU Helloworld Application”

SECTION = “examples”

LICENSE = “GPLv2+”

LIC_FILES_CHKSUM = “ \

file://COPYING;md5=751419260aa954499f7abaabaa882bbe”

SRC_URI = “${GNU_MIRROR}/hello/hello-${PV}.tar.gz”

inherit autotools gettext

Output Analysis and Packaging

 Output Analysis

 Categorize created artifacts (runtime, debug,

development, documentation, locales)

 Split into different packages according the standard

Linux packaging rules

 QA Checks

 Verify if all generated artifacts are packaged

 Check symbolic links for shared libraries

 Package Generation

 Create package formats rpm, deb, ipk, tar dependent
on PACKAGE_CLASSES

55
43-45

Image Creation

 Images are constructed using the package feeds built by
the software package recipes.

 Image creation is based on the required set of
components specified by the IMAGE_INSTALL variable of
an image recipe.

 The build system automatically expands the specified set
of components to include all of their runtime
dependencies.

 Images contain the root file system for the OS stack.

 Root file system images can be created in different
formats:

 Compressed tar – extract into a formatted partition on
media

 File system images (ext2, ext3, ext4, jffs, btrfs, …) – bytecopy
to raw media

 Root file system and license manifests are generated.

56
43-45

SDK Generation

 An SDK consists of

 Cross-toolchain

 Native tools and scripts such as QEMU for target
emulation

 Root file system based on the image recipe containing
development and debug packages for all installed
components

 An SDK can be used from the command line invoking
make, gcc, etc. or can be integrated with the Eclipse
IDE and Qt Creator IDE.

 An SDK is packaged as a self-installing archive
simplifying distribution to application developers.

 An SDK may also contain remote on-target
debugging and target profiling tools.

57
43-45

Build System Architecture 58
45-47

Build System Structure 59
45-47

 Build System Components

 bitbake – BitBake task execution engine

 documentation – complete documentation set in DocBook format

 LICENSE – build system license

 meta – OpenEmbedded Core layer

 meta-poky – Poky reference distribution layer

 meta-selftest – test layer used by the Yocto Project continuous integration

 meta-skeleton – template layer

 meta-yocto – backwards compatibility layer

 meta-yocto-base – reference BSP for hardware supported by the Yocto
Project

 oe-init-build-env – initialization script for build environments

 oe-init-build-env-memres – initialization script for build environments with
memory-resident BitBake

 README – basic info and contribution instructions

 README.hardware – instructions for the reference BSP

 scripts – setup and support scripts

poky

bitbake

scripts

meta

meta-poky

meta-selftest

meta-skeleton

meta-yocto

meta-yocto-bsp

LICENSE

oe-init-build-env

oe-init-build-env-memres

README

README.hardware

documentation

Build Environment Structure
 /build/cache – recipe cache

 /build/conf – build environment
configuration

 /build/tmp – build output

 buildstats – build staticstics

 cache – cache for specific build
artefacts

 deploy – target build output

 log – BitBake logging

 sstate-control – shared state
cache manifests

 stamps – task completion tags
and signatures

 sysroots – root file systems
organized by architecture

 sysroots-uninative – unified build
host root file system

 work – build directories

 work-shared – build directories for
shared packages

60
50-51

build

cache sstate-control

tmp

deploy

buildstats

log

cache
bblayers.conf

local.conf

sanity_info

templateconf.cfg

abi_versionconf

images

licenses

deb

ipk

rpm

saved_tmpdir

stamps

sysroots

sysroots-uninative

work

work-shared

Layers

 Layers are containers that

organize meta-data into

logical entities.

 Layers are like building blocks

supporting reusability of

components.

 Layers commonly build upon

and extend each other.

61
53-54

OpenEmbedded Core Layer (meta)

Hardware-specific BSP Layer

Distribution Layer

User Interface Layer

Application Layer(s)

Layer Layout

 A layer is simply a directory layout
following certain conventions.

 Every layer must have a
conf/layer.conf file defining the
layer setup.

 All other directories and files depend
on the layer purpose:

 BSP layers define machines.

 Distribution layers define distros.

 A layer may define classes shared
between recipes and for reuse by
dependent layers.

 Layers organize recipes into categories
i.e. recipes-networking, recipes-
graphics etc.

62
53-54

meta-<layername>

conf

layer.conf

machine1.conf

machine2.conf

machine

distro

distro1.conf

distro2.conf

classes

class1.bbclass

class2.bbclass

recipes-category1

package1

package1_1.0.bb

package1_1.1.bb

package2

package2_1.0.bb

package2_1.1.bb

recipes-category2

recipes-category3

Layer Configuration

 A layer is identified as a

layer and configured by
its conf/layer.conf file.

 Replace layername with

the actual name of your
layer from meta-

layername.

63

Add the layer's directory to BBPATH
BBPATH =. "${LAYERDIR}:"

Add the layer's recipe files to BBFILES
BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \

${LAYERDIR}/recipes-*/*/*.bbappend"

Add the name of the layer to the layer collections
BBFILE_COLLECTIONS += "layername"

Set the recipe file search pattern
BBFILE_PATTERN_layername = "^${LAYERDIR}/"

Set the priority of this layer
BBFILE_PRIORITY_layername = "5"

Set version of this layer
(should only be incremented if changes break compatibility)
LAYERVERSION_layername = "2"

Specify other layers this layer depends on. This is a white
space-delimited list of layer names. If this layer depends on a
particular version of another layer, it can be specified by
adding the version with a colon to the layer name: e.g.,
anotherlayer:3
LAYERDEPENDS_layername = "core"

54-55

Creating Layers

Using the yocto-layer script

simplifies creating layers by

setting up the base structure
and the conf/layer.conf

file:
yocto-layer create layername

Layer Best Practices

 Use layers for your projects:

 Layers help separating your own recipes from the standard recipes.

 The small overhead of creating a layer at the beginning pays off during maintenance.

 Group your recipes:

 Organize your recipes into subdirectories according to logical grouping.

 For example: recipes-apps for applications, recipes-network for networking

 Append don’t overlay:

 Reuse recipes from other layers by appending them with bbappend files rather than
copying the recipe into your own layer.

 Include don’t duplicate:

 Reuse include files from other layers rather than copying them or their content.

 For example: require recipes-core/udev/udev.inc

64
56

IT IS NEVER A QUESTION OF IF BUT WHEN THINGS GO

WRONG

65

Troubleshooting

Logging

 BitBake logs various events:

 Debug statements inserted into executable metadata.

 Output from any command executed by tasks and other code.

 Error messages emitted by any command executed by tasks and other code.

 Log Files

 General log files of the BitBake cooker process:

 LOGDIR = “${TMPDIR}/log/cooker”

 Log files are organized in subdirectories by target system with timestamps as names.

 Task log files are stored in the work directory of the recipe:

 T = ${WORKDIR}/temp”

 Task log files are named log.do_taskname.pid; the symbolic link log.do_taskname always points
to the most recent task log file.

66
110-115

Cooker Log File

 Build Configuration

 BB_VERSION: The BitBake version number.

 BUILD_SYS: Type of the build system. The variable is defined in bitbake.conf
as BUILD_SYS = "${BUILD_ARCH}${BUILD_VENDOR}-${BUILD_OS}". BUILD_ARCH
contains the output of uname -m, BUILD_OS contains the output of uname -
s, and BUILD_VENDOR is a custom string that is commonly empty.

 NATIVELSBSTRING: Distributor ID and release number concatenated with a
dash as obtained by the lsb_release command.

 TARGET_SYS: Type of the target system. This variable is defined in
bitbake.conf as TARGET_SYS = "${TARGET_ARCH}${TARGET_VENDOR}${@['-' +
d.getVar('TARGET_OS', True), ''][d.getVar('TARGET_OS', True) == ('' or
'custom')]}".

 MACHINE: The target machine BitBake is building for.

 DISTRO: The name of the target distribution.

 DISTRO_VERSION: The version of the target distribution.

 TUNE_FEATURES: Tuning parameters for the target CPU architecture.

 TARGET_FPU: Identification for the floating-point unit of the target
architecture.

 meta[-xxxx]: Branch and commit ID for the metadata layers if they were
checked out from a Git repository.

67
110-115

NOTE: Resolving any missing task queue dependencies

Build Configuration:

BB_VERSION = "1.21.1"

BUILD_SYS = "x86_64-linux"

NATIVELSBSTRING = "Fedora-18"

TARGET_SYS = "i586-poky-linux"

MACHINE = "qemux86"

DISTRO = "poky"

DISTRO_VERSION = "1.5+snapshot-20140210"

TUNE_FEATURES = "m32 i586"

TARGET_FPU = ""

meta

meta-yocto

meta-yocto-bsp =

"master:095bb006c3dbbfbdfa05f13d8d7b50e2a5ab2af0"

NOTE: Preparing runqueue

NOTE: Executing SetScene Tasks

NOTE: Executing RunQueue Tasks

<task execution order>

Task Logging

 Tasks in recipes can log messages as well as raise warnings and errors:

 Plain: Logs the message exactly as passed without any additional information.

 Debug: Logs the message prefixed with DEBUG:. Debug message have a log level between 1 and 3.

 Note: Logs the message prefixed with NOTE:. It is used to inform the user about a condition or information to be aware of.

 Warn: Logs the message prefixed with WARNING:. Warnings indicate problems that eventually should be taken care of by

the user; however, they do not cause a build failure.

 Error: Logs the message prefixed with ERROR:. Errors indicate problems that need to be resolved to complete the build.

 Fatal: Logs the message prefixed with FATAL:. Fatal conditions cause BitBake to halt the build process right after the

message has been logged.

 All messages levels are always logged to the respective log files.

 Note, warning, error and fatal messages are also outputted to the console.

 Debug messages are only sent to the console if if BitBake’s debug level is equal or higher to the message level:

 bitbake –D <target> - level 1

 bitbake –DD <target> - level 2

 bitbake –DDD <target> - level 3

68
115-119

Task Execution

 Sometimes build failures are due to the task execution order of a recipe. BitBake
shows the task execution order for a recipe with:

 bitbake <target> -c listtasks

 Running individual tasks provides for tracking down issues:

 bitbake <target> -c <task>

 Force task execution:

 bitbake <target> -C <task>

 BitBake creates script files for each task:

 Located in T = “${WORKDIR}/temp” and named run.do_<taskname>.pid

 Task script files contain the environment settings (variables) and commands. They can
be run directly from your command line.

 Script files are organized by process id so that they can be compared.

 Clean the recipe build environment:

 bitbake <target> -cleanall

69
115-119

Metadata Analysis

 BitBake outputs its global

metadata store with its

default settings, before

substitutions for specific

recipes have occurred with:

 bitbake –e

 BitBake outputs metadata

for a specific recipe by

providing the recipe name:

 bitbake –e <target>

70
119-120

Metadata output includes all metadata,
variables as well as functions. However, most
of time you only need to examine the
variables. A simple task added to a class can
solve this problem:

addtask showvars

do_showvars[nostamp] = "1"

python do_showvars() {

emit only the metadata that are variables and not functions

isfunc = lambda key: bool(d.getVarFlag(key, 'func'))

vars = sorted((key for key in bb.data.keys(d) \

if not key.startswith('__')))

for var in vars:

if not isfunc(var):

try:

val = d.getVar(var, True)

except Exception as exc:

bb.plain('Expansion of %s threw %s: %s' % \

(var, exc.__class__.__name__, str(exc)))

bb.plain('%s="%s"' % (var, val))

}

Development Shell

 For debugging build failures it is helpful to be able to directly run
configure, make, etc. with the exact same configuration and
environment of the build system:

 bitbake <target> -c devshell

 The command opens a shell window and sets all environment variables
to point to the build system toolchain and system root.

 You can make changes to the source code and run make to build the
package.

 BitBake tries to open a suitable shell window automatically according to
your Linux desktop configuration. You can override it by setting the
OE_TERMINAL variable in conf/local.conf of your build environment
i.e.:

 OE_TERMINAL = “gnome”

71
110-121

Dependency Graphs 72
121-122

 Creating Dependency Graphs

 DOT Graphs: bitbake –g <target>

 View a DOT Graph: dot –Tpng –o pn-depends.png pn-depends.dot

 Dependency Explorer: bitbake –g –u depexp <target>

 Dependency files:

 pn-buildlist: This file is not a DOT file but contains the list of packages in reverse

build order starting with the target.

 pn-depends.dot: Contains the package dependencies in a directed graph

declaring the nodes first and then the edges.

 package-depends.dot: Essentially the same as pn-depends.dot but declares

the edges for a node right after the node. This file may be easier to read by

humans because it groups the edges ending on a node with the node.

 task-depends.dot: Declares the dependencies on the task level.

Layer Debugging

 The bitbake-layers command can assist with debugging layers such as layer

priority, recipe list with version and layers that provide them and more:

 bitbake-layers help – Usage information

 bitbake-layers show-layers – Display a list of the layers used by the build

environment with their paths and priority.

 bitbake-layers show-recipes – Display a list of recipes in alphabetical order

including the layer providing it.

 bitbake-layers show-overlayed – Displays a list of overlaid recipes. A recipe is

overlaid if another recipe with the same name exists in a different layer.

 bitbake-layers show-appends – Displays a list of recipes with the files

appending them. The appending files are shown in the order they are applied.

73
122-123

Lab Exercise

 Create a dependency graph for busybox with the task

dependencies.

 Use the development shell to make changes to the configuration
file .config and rebuild busybox.

 Clean the bash build environment, then execute just the compile

task and find the log file.

 Run the compile task file for bash manually.

74

RECIPES FOR CREATING YOUR OWN LINUX DISTRIBUTION FOR

ANYTHING FROM EMBEDDED DEVICES TO CLOUD SERVERS

75

Building Custom Linux Systems

Core Images – Linux Distribution

Blueprints

 The OE Core metadata layer provides a set of sample images

called core images:

 Core images range from simple command-line systems to systems with

graphical UI support.

 Core images can be used as a base for your own custom system image

or as examples on how to construct system images from scratch.

 Find images from the metadata layers with

 find ./meta*/recipes*/images -name "*.bb" –print

76
146-149

Sample Core Images (1/3)

 core-image-minimal: This is the most basic image allowing a device to boot to a Linux
command-line login. Login and command-line interpreter are provided by BusyBox.

 core-image-minimal-initramfs: This image is essentially the same as core-image-minimal

but with a Linux kernel that includes a RAM-based initial root filesystem (initramfs).

 core-image-minimal-mtdutils: Based on core-image-minimal, this image also includes

user space tools to interact with the memory technology device (MTD) subsystem in the

Linux kernel to perform operations on flash memory devices.

 core-image-minimal-dev: Based on core-image-minimal, this image also includes all the
development packages (header files, etc.) for all the packages installed in the root

filesystem. If deployed on the target together with a native target toolchain, it allows

software development on the target. Together with a cross-toolchain, it can be used for

software development on the development host.

 core-image-rt: Based on core-image-minimal, this image target builds the Yocto Project

real-time kernel and includes a test suite and tools for real-time applications.

77
146-149

Sample Core Images (2/3)

 core-image-rt-sdk: In addition to core-image-rt, this image includes the system development kit
(SDK) consisting of the development packages for all packages installed; development tools such

as compilers, assemblers, and linkers; as well as performance test tools and Linux kernel

development packages. This image allows for software development on the target.

 core-image-base: Essentially a core-image-minimal, this image also includes middleware and

application packages to support a variety of hardware such as WiFi, Bluetooth, sound, and serial

ports. The target device must include the necessary hardware components, and the Linux kernel

must provide the device drivers for them.

 core-image-full-cmdline: This minimal image adds typical Linux command-line tools—bash, acl,

attr, grep, sed, tar, and many more—to the root filesystem.

 core-image-lsb: This image contains packages required for conformance with the Linux Standard
Base (LSB) specification.

 core-image-lsb-dev: This image is the same as the core-image-lsb but also includes the

development packages for all packages installed in the root filesystem.

78
146-149

Sample Core Images (3/3)

 core-image-lsb-sdk: In addition to core-image-lsb-dev, this image includes development tools
such as compilers, assemblers, and linkers as well as performance test tools and Linux kernel

development packages.

 core-image-x11: This basic graphical image includes the X11 server and an X11 terminal

application.

 core-image-directfb: An image that uses DirectFB for graphics and input device management,

DirectFB may include graphics acceleration and a windowing system. Because of its much

smaller footprint compared to X11, DirectFB is the preferred choice for lower-end embedded

systems that need graphics support but not the entire functionality of X11.

 core-image-clutter: This is an X11-based image that also includes the Clutter toolkit. Clutter is
based on OpenGL and provides functionality for animated graphical user interfaces.

 core-image-weston: This image uses Weston instead of X11. Weston is a compositor that uses the

Wayland protocol and implementation to exchange data with its clients. This image also includes

a Wayland-capable terminal program.

79
146-149

Image Recipes

 Images are built by recipes like any software package.

 Image creation logic is provided by the imaging classes:

 image – Base imaging class that does not add any packages by default.

 core-image – Class used to create the core images. Adds packagegroup-core-boot and packagegroup-base-
extended packages by default and provides image features.

 The variable IMAGE_INSTALL contains a list of packages and package groups to be added to the image.

 Other variables control various aspects of the image creation process (we discuss them later).

80

SUMMARY = "A small image just capable of allowing a device to boot."

IMAGE_INSTALL = "packagegroup-core-boot ${ROOTFS_PKGMANAGE_BOOTSTRAP} \

${CORE_IMAGE_EXTRA_INSTALL}"

LICENSE = "MIT"

inherit core-image

IMAGE_ROOTFS_SIZE ?= "8192"

IMAGE_ROOTFS_EXTRA_SPACE_append = \

"${@bb.utils.contains("DISTRO_FEATURES", "systemd", " + 4096", "" ,d)}"

Extending Images

 You can easily extend images by adding packages and
package groups to the IMAGE_INSTALL variable in the

conf/local.conf file of your build environment:

 IMAGE_INSTALL_append = “ <package> <package group> …”

 Directly adding to IMAGE_INSTALL every image. If you only want

to add packages to a particular image, specify the name of the

image:

 IMAGE_INSTALL_append_pn-<image name> = “ <package> …”

 Core images, that is images whose recipe inherits the core-

image class, can also be extended by using:

 CORE_IMAGE_EXTRA_INSTALL = “<package> <package group> …”

81
149-150

Don’t forget

to add a

space in front

of the first

entry as the
_append

operator does

not do it

automatically.

Testing Your Image with QEMU

 QEMU is an open source

 Machine Emulator running on a host with one architecture emulating the
instruction set of another.

 Virtualizer running guest code for the same architecture as the host directly
on the host CPU.

 The build system builds QEMU for your build host according to the target
machine selection.

 You can run QEMU directly from within a build environment using the
runqemu script:

 runqemu <target arch> - Run the latest image built for the target
architecture i.e. runqemu qemux86-64.

 runqemu <target arch> <image> - Run <image> for <target arch> i.e.
runqemu qemux86-64 core-image-sato.

82
150-151

Lab Exercise

 Extend images with IMAGE_INSTALL_append in the

conf/local.conf file of your build environment adding the

minicom package.

 Build core-image-minimal.

 Launch your image in QEMU and verify that minicom is installed.

83

Extending an Image with a Recipe

 Adding package and package
groups to IMAGE_INSTALL and
CORE_IMAGE_EXTRA_INSTALL is
quick, easy and a good solution for
testing but lacks portability and
reusability.

 Using a recipe that includes
another image recipe solves this
problem.

 You can directly add packages
and package groups to
IMAGE_INSTALL.

 Use IMAGE_FEATURES to easily
include functionality without being
concerned about the packages
providing the functionality.

84
152-153

DESCRIPTION = "A console image with hardware\

support for our IoT device"

require recipes-core/images/core-image-base.bb

IMAGE_INSTALL += "sqlite3 mtd-utils coreutils"

IMAGE_FEATURES = "dev-pkgs"

• Unlike classes, you need to provide the path relative to the layer

for BitBake to find the recipe file to include, and you need to
add the .bb file extension.

• While you can use either include or require to include the

recipe you are extending, we recommend the use of require,

since it causes BitBake to exit with an explicit error message if it

cannot locate the included recipe file.
• Remember to use the += operator to add to IMAGE_INSTALL.

Do not use = or := because they overwrite the content of the

variable defined by the included recipe.

Image Features

 Image Features are convenient way of adding functionality to your
target.

 Image Features are defined by the image,the core-image and the
populate_sdk_base classes.

 To use an image in an image recipe add it to the IMAGE_FEATURES
variable.

 To use an image feature in the conf/local.conf configuration file
of your build environment, add it to the EXTRA_IMAGE_FEATURES
variable.

 The build system concatenates EXTRA_IMAGE_FEATURES to
IMAGE_FEATURES to combine the two. Duplicate inclusion of Image
Features are take care of and not an issue.

85
153-154

Image Class Image Features

 debug-tweaks: Prepares an image for development purposes. In
particular, it sets empty root passwords for console and Secure Shell
(SSH) login.

 package-management: Installs the package management system
according to the package management class defined by
PACKAGE_CLASSES for the root filesystem.

 read-only-rootfs: Creates a read-only root filesystem. This image feature
works only if System V Init (SysVinit) system is used rather than sytemd.

 Splash: Enables showing a splash screen instead of the boot messages
during boot. By default, the splash screen is provided by the psplash
package, which can be customized. You can also define an alternative
splash screen package by setting the SPLASH variable to a different
package name.

86
153-154

Core-Image Class Image Features

(1/2)

 eclipse-debug: Installs remote debugging tools for integration with the Eclipse IDE, namely the

GDB debugging server, the Eclipse Target Communication Framework (TCF) agent, and the

OpenSSH SFTP server.

 Hwcodecs: Installs the hardware decoders and encoders for audio, images, and video if the

hardware platform provides them.

 nfs-server: Installs Network File System (NFS) server, utilities, and client.

 qt4-pkgs: Installs the Qt4 framework and demo applications.

 ssh-server-dropbear: Installs the lightweight SSH server Dropbear, which is popular for

embedded systems. This image feature is incompatible with ssh-server-openssh. Either one of

the two, but not both, can be used.

 ssh-server-openssh: Installs the OpenSSH server. This image feature is incompatible with ssh-

server-dropbear. Either one of the two, but not both, can be used.

87
153-154

Core-Image Class Image Features

(2/2)

 tools-debug: Installs debugging tools, namely the GDB debugger, the GDB remote debugging

server, the system call tracing tool strace, and the memory tracing tool mtrace for the GLIBC

library if it is the target library.

 tools-profile: Installs common profiling tools such as oprofile, powertop, latencytop, lttng-ust,

and valgrind.

 tools-sdk: Installs software development tools such as the GCC compiler, Make, autoconf,

automake, libtool, and many more.

 tools-testapps: Installs test applications such as tests for X11 and middleware packages like the

telephony manager oFono and the connection manager ConnMan.

 x11: Installs the X11 server.

 x11-base: Installs the X11 server with windowing system.

 x11-sato: Installs the OpenedHand Sato user experience for mobile devices.

88
153-154

SDK Image Features

 dbg-pkgs: Installs the debug packages containing symbols for all packages

installed in the root filesystem.

 dev-pgks: Installs the development packages containing headers and
other development files for all packages installed in the root filesystem.

 doc-pkgs: Installs the documentation packages for all packages installed in

the root filesystem.

 staticdev-pkgs: Installs the static development packages such as static

library files ending in *.a for all packages installed in the root filesystem.

 ptest-pkgs: Installs the package test (ptest) packages for all packages
installed in the root filesystem.

89
153-154

Creating Layers

 Recipes must always reside in a layer and be included into the build
environment by adding the layer path to the BBLAYERS variable in
the conf/bblayers.conf configuration file of the build
environment.

 While it might be quick to simply add a recipe to an existing layer
such as one of the core metadata layers, it makes good sense that
you create your own layers for your recipes.

 The yocto-layer tool makes creating layers easy, eleviating you from
setting up the layer structure and configuration files yourself by
interactively prompting you for the parameters:

 yocto-layer create <layername>

 Specify layername without the leading meta- as the tool adds it
automatically.

90
56

Lab Exercise

 Create a layer using yocto-layer inside your build environment.

 Add the layer to your build environment.

 Create a directory recipes-core for your image recipes inside your

layer.

 Create an image recipe that builds on top of core-image-minimal

that adds minicom to IMAGE_INSTALL and uses the package

management image feature.

 Build your image recipe and verify that the components have

correctly been installed in your image.

91

Package Groups

 Adding individual packages to
IMAGE_INSTALL of image recipes can be

tedious for package sets that are commonly

installed and used together.

 For that purpose the build system provides

Package Groups that allow grouping

packages under a symbolic name.

 The symbolic name can then be used in
IMAGE_INSTALL and IMAGE_EXTRA_INSTALL

to add all of the packages of a package

group at once.

 Package groups are defined in recipes that
inherit from the packagegroup class.

92
155-159

SUMMARY = "Custom package group for our IoT devices"

DESCRIPTION = "This package group adds standard \

functionality required by \

our IoT devices."

LICENSE = "MIT"

inherit packagegroup

PACKAGES = "\

packagegroup-databases \

packagegroup-python \

packagegroup-servers"

RDEPENDS_packagegroup-databases = "\

db \

sqlite3"

RDEPENDS_packagegroup-python = "\

python \

python-sqlite3"

RDEPENDS_packagegroup-servers = "\

openssh \

openssh-sftp-server"

RRECOMMENDS_packagegroup-python = "\

ncurses \

readline \

zip"

Predefined Package Groups (1/6)

 packagegroup-core-ssh-dropbear: Provides packages for the Dropbear SSH server popular for
embedded systems because of its smaller footprint compared to the OpenSSH server. This package

group conflicts with packagegroup-core-ssh-openssh. You can include only one of the two in your

image. The ssh-server-dropbear image feature installs this package group.

 packagegroup-core-ssh-openssh: Provides packages for the standard OpenSSH server. This

package group conflicts with packagegroup-core-ssh-dropbear. You can include only one of the

two in your image. The ssh-server-openssh image feature installs this package group.

 packagegroup-core-buildessential: Provides the essential development tools, namely the GNU

Autotools utilitis autoconf, automake and libtool, the GNU binary tool set binutils which includes the

linker ld, assembler as and other tools, the compiler collection cpp, gcc, g++, the GNU

internationalization and localization tool gettext, make, libstc++ with development packages and

pkgconfig.

 packagegroup-core-tools-debug: Provides the essential debugging tools, namely the GDB
debugger, the GDB remote debugging server, the system call tracing tool strace and for the GLIBC

target library the memory tracing tool mtrace.

93
155-159

Predefined Package Groups (2/6)

 packagegroup-core-sdk: This package group combines the packagegroup-core-
buildessential package group with additional tools for development such as GNU Core Utilities
coreutils with shell, file, and text manipulation utilities; dynamic linker ldd; and others. Together
with packagegroup-core-standalone-sdk-target, this package group forms the tools-sdk
image feature.

 packagegroup-core-standalone-sdk-target: Provides the GCC and standard C++ libraries.
Together with packagegroup-core-sdk, this package group forms the tools-sdk image
feature.

 packagegroup-core-eclipse-debug: Provides the GDB debugging server, the Eclipse TCF
agent, and the OpenSSH SFTP server for integration with the Eclipse IDE for remote
deployment and debugging. The image feature eclipse-debug installs this package group.

 packagegroup-core-tools-testapps: Provides test applications such as tests for X11 and
middleware packages like the telephony manager oFono and the connection manager
ConnMan. The tools-testapps image feature installs this package group.

94
155-159

Predefined Package Groups (3/6)

 packagegroup-self-hosted: Provides all necessary packages for a self-hosted build system.

The build-appliance image target uses this package group.

 packagegroup-core-boot: Provides the minimum set of packages necessary to create a

bootable image with console. All core-image targets install this package group. The core-

image-minimal installs just this package group and the postinstallation scripts.

 packagegroup-core-nfs: Provides NFS server, utilities, and client. The nfs-server image feature

installs this package group.

 packagegroup-base: This recipe provides multiple package groups that depend on each

other as well as on machine and distribution configuration. The purpose of these package

groups is to add hardware, networking protocol, USB, filesystem, and other support to the

images dependent on the machine and distribution configuration.

95
155-159

Predefined Package Groups (4/6)

 packagegroup-cross-canadian: Provides SDK packages for creating a toolchain using the

Canadian Cross technique, which is building a toolchain on system A that executes on system

B to create binaries for system C. A use case for this package group is to build a toolchain

with the Yocto Project on your build host that runs on your image target but produces output

for a third system with a different architecture than your image target.

 packagegroup-core-tools-profile: Provides common profiling tools such as oProfile, PowerTOP,

LatencyTOP, LTTng-UST, and Valgrind. The tools-profile image feature uses this package group.

 packagegroup-core-device-devel: Provides distcc support for an image. Distcc allows

distribution of compilation across several machines on a network. The distcc must be installed,

configured, and running on your build host. On the target you must define the cross-compiler

variable to use distcc instead of the local compiler (e.g., export CC="distcc").

 packagegroup-qt-toolchain-target: Provides the package to build applications for the X11-

based version of the Qt development toolkit on the target system.

96
155-159

Predefined Package Groups (5/6)

 packagegroup-qte-toolchain-target: Provides the package to build applications for the
embedded version of the Qt development toolkit on the target system.

 packagegroup-core-qt: Provides all necessary packages for a target system using the X11-

based version of the Qt development toolkit.

 packagegroup-core-qt4e: Provides all necessary packages for a target system using the
embedded Qt toolkit. The qt4e-demo-image installs this package group.

 packagegroup-core-x11-xserver: Provides the X.Org X11 server only.

 packagegroup-core-x11: Provides packagegroup-core-x11-xserver plus basic utilities such as
xhost, xauth, xset, xrandr, and initialization on startup. The x11 image feature installs this
package group.

 packagegroup-core-x11-base: Provides packagegroup-core-x11 plus middleware and
application clients for a working X11 environment that includes the Matchbox Window
Manager, Matchbox Terminal, and a fonts package. The x11-base image feature installs this
package group.

97
155-159

Predefined Package Groups (6/6)

 packagegroup-core-x11-sato: Provides the OpenedHand Sato user experience for mobile

devices, which includes the Matchbox Window Manager, Matchbox Desktop, and a variety

of applications. The x11-sato image feature installs this package group. To utilize this package

group for your target image, you also have to install packagegroup-core-x11-base.

 packagegroup-core-clutter-core: Provides packages for the Clutter graphical toolkit. To use

the toolkit for your target image, you also have to install packagegroup-core-x11-base.

 packagegroup-core-directfb: Provides packages for the DirectFB support without X11. Among

others, the package group includes the directfb package and the directfb-example

package, and it adds touchscreen support if provided by the machine configuration.

 packagegroup-core-lsb: Provides all packages required for LSB support.

 packagegroup-core-full-cmdline: Provides packages for a more traditional Linux system by

installing the full command-line utilities rather than the more compact BusyBox variant.

98
155-159

Lab Exercise

 To the recipes-core directory of your layer add a packagegroups

subdirectory.

 Create a package group recipe in that subdirectory that defines
the package groups with their respective content:

 Package group apps to contain sqlite3, python, python-sqlite3

 Package group tools to contain sudo, gzip, tar

 Add the package group to your image recipe.

 Build the image and verify that the components of your package

groups have been installed.

99

Core Image from Scratch

 Inheriting from the image class in your
image recipe directly gives you the
most control over the content of your
root file system images.

 The image class does not install
packages and package groups by
default. If used with an empty
IMAGE_INSTALL variable it produces
an empty root file system image.

 The core-image class builds on top of
the image class and adds
packagegroup-core-boot and
packagegroup-base-extended to
the image by default to produce a
minimal bootable image.

100
160-161

SUMMARY = "Custom image recipe that does not get \

any simpler"

DESCRIPTION = "Well yes, you could remove SUMMARY, \

DESCRIPTION, LICENSE."

LICENSE = "MIT"

inherit core-image

Base Core Image with the Image

Class

 The example emulates the core-image-class in an image recipe using the

image class.

 Of course you will not get the image features defined by the core-image-class.

101
160-161

SUMMARY = "Custom image recipe from scratch"

DESCRIPTION = "Directly assign IMAGE_INSTALL and IMAGE_FEATURES for direct control over \

image content."

LICENSE = "MIT"

We are using the assignment operator (=) below to purposely overwrite

the default from the core-image class.

IMAGE_INSTALL = "packagegroup-core-boot packagegroup-base-extended \

${CORE_IMAGE_EXTRA_INSTALL}"

IMAGE_FEATURES = "${EXTRA_IMAGE_FEATURES} splash"

CORE_IMAGE_EXTRA_INSTALL ?= ""

inherit image

Lab Exercise

 Create an image recipe that inherits from core-image and adds

the mtd-utils package and the splash image feature.

 Build your image and test it.

102

Image Options

 The creation of images and their content can further be tuned by

specifying certain options:

 Languages and Locales – IMGE_LINGUAS

 Package Management – PACKAGE_CLASSES

 Image Size – IMAGE_ROOTFS_SIZE, IMAGE_ROOTFS_ALIGNMENT,

IMAGE_ROOTFS_EXTRA_SPACE, IMAGE_OVERHEAD_FACTOR

 Root File System Types – IMAGE_FSTYPES

 Users, Groups, Passwords

 Root File System Postprocessing

103
161-169

Languages and Locales

 Software packages may provide native language support (NLS) with
internationalization (i18n) and localization (l10n) through locale
packages.

 Many such programs use the GNU gettext package but other
schemes are supported too as long as the locale packages are
provided.

 By default the build system installs the en-us locale package.

 Other locales can be installed by adding them to the
IMAGE_LINGUAS variable:

 IMAGE_LINGUAS = “en-gb pt-br”

 The image class adds

 IMAGE_LINGUAS ?= “de-de, fr-fr and en-gb”

104
161-169

Package Management

 The build system can package software packages using the formats:

 Debian Package Management (dpkg)

 Open Package Management (opkg)

 Red Hat Package Management (rpm)

 Tape Archving (tar)

 The package management systems are selected by adding the
packaging classes to the PACKAGE_CLASSES variable:

 PACKAGE_CLASSES = “package_rpm package_ipk package_tar”

 More than one package class can be specified causing the build
system to create packages using all specified formats.

 The first package class is used to create the root file system.

 Tar cannot be the only of the first package class in the list, as root file
systems cannot be constructed from tar packages.

105
161-169

The build system does

not automatically install

the package manager

in the target’s root file

system. You can install it

by adding
package_management to

IMAGE_FEATURES.

Image Size

 The final size of a root file system is dependent on multiple factors but and computed
dynamically by the build system.

 Several variables influence the sizing:

 IMAGE_ROOTFS_SIZE: Defines the size in kilobytes of the created root filesystem image. The

build system uses this value as a request or recommendation. The final root filesystem image

size may be larger depending on the actual space required. The default value is 65536.

 IMAGE_ROOTFS_ALIGNMENT: Defines the alignment of the root filesystem image in kilobytes. If

the final size of the root filesystem image is not a multiple of this value, it is rounded up to the

nearest multiple of it. The default value is 1.

 IMAGE_ROOTFS_EXTRA_SPACE: Adds extra free space to the root filesystem image. The

variable specifies the value in kilobytes. For example, to add an additional 4 GB of space, set

the variable to IMAGE_ROOTFS_EXTRA_SPACE = "4194304". The default value is 0.

 IMAGE_OVERHEAD_FACTOR: This variable specifies a multiplicator for the root filesystem

image. The factor is applied after the actual space required by the root filesystem has been

determined. The default value is 1.3.

106
161-169

Image Size Computation 107
161-169

_get_rootfs_size():

ROOTFS_SIZE =`du -ks ${IMAGE_ROOTFS}`

BASE_SIZE = ROOTFS_SIZE * IMAGE_OVERHEAD_FACTOR

if (BASE_SIZE < IMAGE_ROOTFS_SIZE):

IMG_SIZE = IMAGE_ROOTFS_SIZE +

IMAGE_ROOTFS_EXTRA_SPACE

else:

IMG_SIZE = BASE_SIZE + IMAGE_ROOTFS_EXTRA_SPACE

IMG_SIZE = IMG_SIZE + IMAGE_ROOTFS_ALIGNMENT – 1

IMG_SIZE = IMG_SIZE % IMAGE_ROOTFS_ALIGNMENT

return IMG_SIZE

Root File System Creation

 The build system can create root file system in various

formats as files.

 Some formats such as tar, tar.gz, tar.bz2 etc. are intended to
be extracted onto a formatted partition of a storage media.

 Others such as ext3, btrfs etc. are created with partition and

file system information and just need to be extracted directly

to the media.

 File system creation is controlled by the image_types class

and the IMAGE_FSTYPES variable:

 IMAGE_FSTYPES = “ext3 tar.bz2 iso hddimg”

 Multiple format can be created at the same time.

108
161-169

Root File System Types (1/2)

 tar, tar.gz, tar.bz2, tar.xz, tar.lz3: Create uncompressed and compressed root filesystem images in the
form of tar archives.

 ext2, ext2.gz, ext2.bz2, ext2.lzma: Root filesystem images using the ext2 filesystem without or with
compression.

 ext3, ext3.gz: Root filesystem images using the ext3 filesystem without or with compression.

 Btrfs: Root filesystem image with B-tree filesystem.

 jffs2, jffs2.sum: Uncompressed or compressed root filesystems based on the second generation of the
Journaling Flash File System (JFFS2). Since JFFS2 directly supports NAND flash devices, it is a popular
choice for embedded systems. It also provides journaling and wear-leveling.

 cramfs: Root filesystem image using the compressed ROM filesystem (cramfs). The Linux kernel can
mount this filesystem without prior decompression. The compression uses the zlib algorithm that
compresses files one page at a time to allow random access. This filesystem is read-only to simplify its
design, as random write access with compression is difficult to implement.

 iso: Root filesystem image type using the ISO 9660 standard for bootable CD-ROM. This filesystem type is
not a standalone format. It uses ext3 as the underlying filesystem type.

109
161-169

Root File System Types (2/2)

 hddimg: Root filesystem image for bootable hard drives. It uses ext3 as the actual filesystem type.

 squashfs, squashfs-xz: Compressed read-only root filesystem type specifically for Linux, similar to cramfs
but with better compression and support for larger files and filesystems. Squashfs also has a variable
block size from 0.5 kB to 64 kB over the fixed 4 kB block size of cramfs, which allows for larger file and

filesystem sizes. Squashfs uses gzip compression, while squashfs-xz uses Lempel–Ziv–Markov (LZMA)
compression for even smaller images.

 ubi, ubifs: Root filesystem images using the unsorted block image (UBI) format for raw flash devices. UBI
File System (UBIFS) is essentially a successor to JFFS2. The main differences between the two is that UBIFS
supports write caching. Using ubifs in IMAGE_FSTYPES just creates the ubifs root filesystem image. Using
ubi creates the ubifs root filesystem image and also runs the ubinize utility to create an image that can

be written directly to a flash device.

 cpio, cpio.gz, cpio.xz, cpio.lzma: Root filesystem images using uncompressed or compressed copy in
and out (CPIO) streams.

 Vmdk: Root filesystem image using the VMware virtual machine disk format. It uses the ext3 as the
underlying filesystem format.

 elf: Bootable root filesystem image created with the mkelfImage utility from the Coreboot project
(www.coreboot.org).

110
161-169

http://www.coreboot.org/

Users, Groups, Passwords

 The extrausers class provides a
mechanism for a managing
users, groups, and passwords.

 Commands:

 useradd

 usermod

 userdel

 groupadd

 groupmod

 groupdel

 Passwords must be provided in
encrypted form.

111
161-169

SUMMARY = "Custom image using the extrausers class"

DESCRIPTION = “Create users, groups and set passwords"

LICENSE = "MIT"

IMAGE_INSTALL = "packagegroup-core-boot \

packagegroup-base-extended \

${CORE_IMAGE_EXTRA_INSTALL}"

inherit core-image

inherit extrausers

set image root password

ROOT_PASSWORD = "secret"

DEV_PASSWORD = "hackme"

EXTRA_USERS_PARAMS = "\

groupadd developers; \

useradd -p `openssl passwd ${DEV_PASSWORD}` developer; \

useradd -g developers developer; \

usermod -p `openssl passwd ${ROOT_PASSWORD}` root; \

"

Image Postprocessing

 Sometimes it is necessary to do processing such as adding,
modifying files and more after the root file system has been
created but before it is packaged into the different formats.

 Using the variable ROOTFS_POSTPROCESS_COMMANDS
specifies a list of shell functions to be executed.

 The variable and the functions are added to the image
recipe.

 The functions are executed in the order they appear in the
variable.

 The search path for shell commands includes the native
system root of the build environment and the build host PATH
from the user environment.

112
161-169

Image Postprocessing – Setting

Login Shells

113
161-169

SUMMARY = “Image Postprocessing"

DESCRIPTION = “Modify login shells."

LICENSE = "MIT"

We are using the assignment operator (=) below to purposely overwrite

the default from the core-image class.

IMAGE_INSTALL = "packagegroup-core-boot packagegroup-base-extended \

${CORE_IMAGE_EXTRA_INSTALL}"

inherit core-image

Additional root filesystem processing

modify_shells() {

printf "# /etc/shells: valid login shells\n/bin/sh\n/bin/bash\n" \

> ${IMAGE_ROOTFS}/etc/shells

}

ROOTFS_POSTPROCESS_COMMAND += "modify_shells;"

Image Postprocessing – Sudo

Configuration

114
161-169

modify_sudoers() {

sed 's/# %sudo/%sudo/' < ${IMAGE_ROOTFS}/etc/sudoers > \

${IMAGE_ROOTFS}/etc/sudoers.tmp

mv ${IMAGE_ROOTFS}/etc/sudoers.tmp ${IMAGE_ROOTFS}/etc/sudoers

}

ROOTFS_POSTPROCESS_COMMAND += "modify_sudoers;"

Image Postprocessing – SSH Server

Configuration

115
161-169

configure_sshd() {

disallow password authentication

echo "PasswordAuthentication no" >> ${IMAGE_ROOTFS}/etc/ssh/sshd_config

create keys in tmp/deploy/keys

mkdir -p ${DEPLOY_DIR}/keys

if [! -f ${DEPLOY_DIR}/keys/${IMAGE_BASENAME}-sshroot]; then

ssh-keygen -t rsa -N '' \

-f ${DEPLOY_DIR}/keys/${IMAGE_BASENAME}-sshroot

fi

add public key to authorized_keys for root

mkdir -p ${IMAGE_ROOTFS}/home/root/.ssh

cat ${DEPLOY_DIR}/keys/${IMAGE_BASENAME}-sshroot.pub \

>> ${IMAGE_ROOTFS}/home/root/.ssh/authorized_keys

}

ROOTFS_POSTPROCESS_COMMAND += "configure_sshd;"

Lab Exercise

 Create an image that adds user and a group of your choice and

makes the user a member of that group. Also assign a password to

that user and to the root user. Build and test the image.

 Create a post-process command to add that user to the sudoers list.

Build and test the image.

 Add the openssh server to your image and configure it:

 Disable password login

 Provision a key for the above user

 Build and test the image by logging into the system remotely via ssh.

116

Distribution Configuration

 Distribution configuration are settings that globally apply to all images. The settings are provided
by distribution configuration files.

 Any layer can contain distribution configuration files. They are typically located in the
conf/distro subdirectory of a layer.

 A build environment selects the distribution configuration by setting the DISTRO variable in
conf/local.conf:

 DISTRO ?= “poky”

 The meta-poky layer provides the Poky distribution variants:

 poky: Poky is the default policy for the Yocto Project’s reference distribution Poky.

 poky-bleeding: This distribution configuration is based on poky but sets the versions for all packages to the
latest revision.

 poky-lsb: This distribution configuration is for a stack that complies with LSB.

 poky-tiny: This distribution configuration tailors the settings to yield a very compact Linux OS stack for
embedded devices.

 Distribution configuration files can set any variable but there is a set of settings commonly used.

117
169-180

Distribution Configuration –
Distribution Information

118
169-180

 DISTRO: Short name of the distribution. The value must match the base name of the distribution
configuration file.

 DISTRO_NAME: The long name of the distribution. Various recipes reference this variable. Its contents is
shown on the console boot prompt.

 DISTRO_VERSION: Distribution version string. It is referenced by various recipes and used in file names’
distribution artifacts. Shown on the console boot prompt.

 DISTRO_CODENAME: A code name for the distribution. It is currently used only by the LSB recipes and
copied into the lsb-release system configuration file.

 MAINTAINER: Name and e-mail address of the distribution maintainer.

 TARGET_VENDOR: Target vendor string that is concatenated with various variables, most notably target
system (TARGET_SYS). TARGET_SYS is a concatenation of target architecture (TARGET_ARCH), target vendor
(TARGET_VENDOR), and target operating system (TARGET_OS), such as i586-poky-linux. The three parts are
delimited by hyphens. The TARGET_VENDOR string must be prefixed with the hyphen, and TARGET_OS must
not. This is one of the many unfortunate inconsistencies of the OpenEmbedded build system. You may
want to set this variable to your or your company’s name.

Distribution Configuration –
SDK Information

119
169-180

 SDK_NAME: The base name that the build system uses for SDK output files. It is derived by
concatenating the DISTRO, TCLIBC, SDK_ARCH, IMAGE_BASENAME, and
TUNE_PKGARCH variables with hyphens. There is not much reason for you to change
that string from its default setting, as it provides all the information needed to distinguish
different SDKs.

 SDK_VERSION: SDK version string, which is commonly set to DISTRO_VERSION.

 SDK_VENDOR: SDK vendor string, which serves a similar purpose as TARGET_VENDOR.
Like TARGET_VENDOR, the string must be prefixed with a hyphen.

 SDKPATH: Default installation path for the SDK. The SDK installer offers this path to the
user during installation of an SDK. The user can accept it or enter an alternative path.
The default value /opt/${DISTRO}/${SDK_VERSION} installs the SDK into the /opt system
directory, which requires root privileges. A viable alternative would be to install the SDK
into the user’s home directory by setting SDKPATH =
"${HOME}/${DISTRO}/${SDK_VERSION}".

Distribution Configuration –
Features, Preferences, Dependencies

120
169-180

 DISTRO_FEATURES: A list of distribution features that enable support for certain functionality
within software packages. The assignment in the poky.conf distribution policy file includes

DISTRO_FEATURES_DEFAULT and DISTRO_FEATURES_LIBC. Both contain default distribution

feature settings. We discuss distribution features and how they work and the default

configuration in the next two sections.

 PREFERRED_VERSION: Using PREFERRED_VERSION allows setting particular versions for software

packages if you do not want to use the latest version, as it is the default. Commonly, that is

done for the Linux kernel but also for software packages on which your application software

has strong version dependencies.

 DISTRO_EXTRA_RDEPENDS: Sets runtime dependencies for the distribution. Dependencies

declared with this variable are required for the distribution. If these dependencies are not

met, building the distributions fails.

 DISTRO_EXTRA_RRECOMMENDS: Packages that are recommended for the distribution to
provide additional useful functionality. These dependencies are added if available but

building the distribution does not fail if they are not met.

Distribution Configuration –
Toolchain Configuration

121
169-180

 TCMODE: This variable selects the toolchain that the build system uses. The default value
is default, which selects the internal toolchain built by the build system (gcc, binutils,
etc.). The setting of the variable corresponds to a configuration file tcmode-
${TCMODE}.inc, which the build system locates in the path conf/distro/include. This
allows including an external toolchain with the build system by including a toolchain
layer that provides the necessary tools as well as the configuration file. If you are using
an external toolchain, you must ensure that it is compatible with the Poky build system.

 TCLIBC: Specifies the C library to be used. The build system currently supports EGLIBC,
uClibc, and musl. The setting of the variable corresponds to a configuration file tclibc-
${TCLIBC).inc that the build system locates in the path conf/distro/include. These
configuration files set preferred providers for libraries and more.

 TCLIBCAPPEND: The build systems appends this string to other variables to distinguish
build artifacts by C library. If you are experimenting with different C libraries, you may
want to use the settings TCLIBCAPPEND = "-${TCLIBC}“ and TMPDIR .= "${TCLIBCAPPEND}“
in your distribution configuration, which creates a separate build output directory
structure for each C library.

Distribution Configuration –
Build System Configuration

122
169-180

 LOCALCONF_VERSION: Sets the expected or required version for the build environment configuration file
local.conf. The build system compares this value to the value of the variable CONF_VERSION in local.conf.
If LOCALCONF_VERSION is a later version than CONF_VERSION, the build system may be able to
automatically upgrade local.conf to the newer version. Otherwise, the build system exits with an error
message.

 LAYER_CONF_VERSION: Sets the expected or required version for the bblayers.conf configuration file of a
build environment. The build system compares this version to the value of LCONF_VERSION set by
bblayers.conf. If LAYER_CONF_VERSION is a later version than LCONF_VERSION, the build system may be
able to automatically upgrade bblayers.conf to the newer version. Otherwise, the build system exits with
an error message.

 OELAYOUT_ABI: Sets the expected or required version for the layout of the output directory TMPDIR. The
build system stores the actual layout version in the file abi_version inside of TMPDIR. If the two are
incompatible, the build system exits with an error message. This typically happens only if you are using a
newer version of the build system with a build environment that was created by a previous version and the
layout changed incompatibly. Deleting TMPDIR resolves the issue by re-creating the directory.

 BB_SIGNATURE_HANDLER: The signature handler used for signing shared state cache entries and creating

stamp files. Using the default value of OEBasicHash is typically sufficient for most applications.

Distribution Configuration –
Build System Checks, QA Checks

123
169-180

 INHERIT += "poky-sanity": Inherits the class poky-sanity, which is required to perform the
build system checks. It is recommended that you include this directive in your own
distribution configuration files.

 CONNECTIVITY_CHECK_URIS: A list of URIs that the build system tries to verify network
connectivity. In the case of Poky, these point to files on the Yocto Project’s high-
availability infrastructure. If you intend to use your own mirrors for downloading source
packages, you could use URIs pointing to files on you mirror servers to verify proper
connectivity.

 SANITY_TESTED_DISTROS: A list of Linux distributions the Poky build system has been tested
on. The build system verifies the Linux distribution it is running on against this list. If that
distribution is not in the list, Poky displays a warning message and starts the build process
regardless. Poky runs on most current Linux distributions, and in most cases, building
works just fine even if the distribution is not officially supported.

 WARN_QA: A list of QA checks that create warning messages, but the build continues.

 ERROR_QA: A list of QA checks that create error messages and the build terminates.

Distribution Configuration –
Mirror Configuration

124
169-180

 PREMIRRORS and MIRRORS: The Poky

distribution adds these variables to set its mirror

configuration to use the Yocto Project

repositories as a source for downloads.

Set your own mirrors in your

distribution configuration so

that all of your build

environments use the same

source file downloads.

System Manager 125
179

 The System Manager is the first user-space process the Linux kernel starts after booting.

 The System Manager is responsible for launching the user-space daemons and other processes
up to the login prompt.

 Supported System Managers:

 SysVinit – Common UNIX script-bases system management.

 systemd – Enhanced system service management with parallel execution and prioritization.

 SysVinit is the default System Manager. To enable systemd add to your distribution configuration:

 DISTRO_FEATURES_append = “ systemd”

 VIRTUAL-RUNTIME_init_manager = “systemd”

You can switch the System Manger simply by
assigning VIRTUAL-RUNTIME_init_manager to

systemd or to sysvinit.

Lab Exercise

 Create a distribution configuration in your layer based on the

default poky.conf file (just copy the file to your layer using a name

of your choice).

 Change the distribution information to personalize it and add your

info as a maintainer.

 Build an image and verify the results.

126

INTEGRATING AND BUILDING SOFTWARE PACAKGES

127

Software Package Recipes

Recipe Layout and Conventions

 The OpenEmbedded community and the Yocto Project developers
have established best practices and conventions on how to write
recipes. It’s like coding standards for the build system.

 Recipe Filename

 Convention: <packagename>_<version>-<revision>.bb

 If package sources are retrieved from an SCM: <packagename>_<scm>.bb
i.e. libxext_git.bb

 In this case PV must be set explicitly: PV = “<version>+git${SRCREV}”

 Recipe Layout

 Recipe layout is not strictly defined but follows some core conventions to
make them easier to understand.

 For this course we break them up into sections which we explain.

 Open the gettext recipe in an editor to follow along:
${POKYDIR}/meta/recipes-core/gettext/gettext_<version>.bb

128
185-196

Recipe Metadata (1/11)

 Descriptive Metadata

 SUMMARY: A one-line (up to 80 characters long), short description of the

package.

 DESCRIPTION: An extended (possibly multiple lines long), detailed description
of the package and what it provides.

 AUTHOR: Name and e-mail address of the author of the software package

(not the recipe) in the form of AUTHOR = "Santa Claus

<santa@northpole.com>". This can be a list of multiple authors.

 HOMEPAGE: The URL, starting with http://, where the software package is

hosted.

 BUGTRACKER: The URL, starting with http://, to the project’s bug tracking
system.

129
185-196

Recipe Metadata (2/11)

 Package Manager Metadata

 SECTION: The category the software package belongs to.

 PRIORITY: Priorities are used to tell the package management tools whether a software
package is required for a system to operate, is optional, or eventually conflicts with other
packages. Priorities are utilized only by the Debian package manager dpkg and the Open
Package Manager opkg. The priorities are

 standard—Packages that are standard for any Linux distribution, including a reasonably small but

not too limited console-mode system.

 required—Packages that are necessary for the proper function of the system.

 optional—Packages that are not necessary for a functional system but for a reasonably usable

system.

 extra—Packages that may conflict with other packages from higher priorities or that have

specialized requirements.

130
185-196

Recipe Metadata (3/11)

 Licensing Metadata

 LICENSE: The name of the license (or licenses) used for this software package. In most
cases, only a single license applies, but some open source software packages employ
multiple licenses. These can be dual licenses allowing the user of a package to choose one
of several licenses or multiple licenses where parts of the software package are licensed
differently. Dual licenses are specified by concatenating the license names with the pipe
symbol (|). Multiple licenses are specified by concatenating the license names with the
ampersand (&) symbol. The build system also supports complex logical license “arithmetic,”
such as GLv2 & (LGPLv2.1 | MPL-1.1 | BSD).

 LIC_FILES_CHECKSUM: This variable allows tracking changes to the license files itself. The
variable contains a space-delimited list of license files with their respective checksums. After
fetching and unpacking a software package’s source files, the build system verifies the
license by calculating a checksum over the license file, or portions thereof, and comparing
it with the checksum provided.

 Inheritance Directives and Includes

131
185-196

Recipe Metadata (4/11)

 Build Metadata

 PROVIDES: Space-delimited list of one or more additional package names typically
used for abstract provisioning.

 DEPENDS: Space-delimited list of names of packages that must be built before this
package can be built.

 PN: The package name. The value of this variable is derived by BitBake from the base
name of the recipe file. For most packages, this is correct and sufficient. Some
packages may need to adjust this value. For example, the cross-toolchain
applications for instance gcc-cross have the target architecture appended to their
names.

 PV: The package version, which is derived by BitBake from the base name of the
recipe file. For all but packages that directly build from source repositories, this value is
correct and sufficient. For those that build from SCM, Section 8.1.1 explains how to set
PV correctly.

132
185-196

Recipe Metadata (5/11)

 Build Metadata (continued)

 PR: The package revision. The default revision is r0. In the past, BitBake required you to
increase the revision every time the recipe itself has changed to trigger a rebuild.
However, the new signature handlers now calculate the signature of recipe metadata
including functions. The build system now entirely relies on the signatures for rebuilding.

 SRC_URI: Space-delimited list of URIs to download source code, patches, and other
files from.

 SRCDATE: The source code date. This variable applies only when sources are retrieved
from SCM systems.

 S: The directory location in the build environment where the build system places the
unpacked source code. The default location depends on the recipe name and
version: ${WORKDIR}/${PN}-${PV}. The default location is appropriate for virtually all
packages built from archives. For packages directly built from SCM, you need to set
this variable explicitly, such as ${WORKDIR}/git for GIT repositories.

133
185-196

Recipe Metadata (6/11)

 Build Metadata (continued)

 B: The directory location in the build environment where the build system places the

object created during the build. The default is the same as S: ${WORKDIR}/${PN}-${PV}.

Many software packages are built in tree or in location, placing the objects inside the

source tree. Recipes building packages with GNU Autotools, the Linux kernel, and

cross-toolchain applications separate source and build directories.

 FILESEXTRAPATHS: Extends the build system’s search path for additional local files
defined by FILESPATH. This variable is most commonly used for append files in the form

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}", which causes the build system to first

look for additional files in a subdirectory with the name of the package of the

directory where the append file is located before looking in the other directories

specified by FILESEXTRAPATHS.

134
185-196

Recipe Metadata (7/11)

 Build Metadata (continued)

 PACKAGECONFIG: This variable allows enabling and disabling features of a software

package at build time.

 EXTRA_OECONF: Additional configure script options.

 EXTRA_OEMAKE: Additional options for GNU Make.

 EXTRA_OECMAKE: Additional options for CMake.

 LDFLAGS: Options passed to the linker. The default setting depends on what the build
system is building: TARGET_LDFLAGS when building for the target, BUILD_LDFLAGS

when building for the build host, BUILDSDK_LDFLAGS when building an SDK for the host.

You typically won’t overwrite this variable entirely but instead will add options to it.

 PACKAGE_ARCH: Defines the architecture of the software package.

135
185-196

Recipe Metadata (8/11)

 Packaging Metadata

 PACKAGES: This variable is a space-delimited list of packages that are created during

the packaging process. The default value of this variable is "${PN}-dbg ${PN}-

staticdev ${PN}-dev ${PN}-doc ${PN}-locale ${PACKAGE_BEFORE_PN} ${PN}

${PN}".

 FILES: The FILES variable defines lists of directories and files that are placed into a

particular package. The build system defines default file and directory lists for the

default packages, such as FILES_${PN}-dbg = "<files>", where files is a space-

delimited list of directories and files that can contain wildcards.

 PACKAGE_BEFORE_PN: The variable lets you easily add packages before the final

package name is created.

136
185-196

Recipe Metadata (9/11)

 Packaging Metadata (continued)

 PACKAGE_DEBUG_SPLIT_STYLE: This variable determines how to split binary and debug
objects when the ${PN}-dgb package is created. There are three variants:

 ".debug": The files containing the debug symbols are placed in a .debug directory inside the

directory where the binaries are installed on the target. For example, if the binaries are installed in

/usr/bin, the debug symbol files are placed in /usr/bin/.debug. This option also installs the source

files in .debug, which is the default behavior.

 "debug-file-directory": Debug files are placed under /usr/lib/debug on the target, separating them

from the binaries.

 "debug-without-src": This variant is the same as .debug, but the source files are not installed.

 PACKAGESPLITFUNCS: This variable defines a list of functions that perform the

package splitting. The default, defined by package.bbclass, is PACKAGESPLITFUNCS

?= "package_do_split_locales populate_packages". Recipes can prepend to this

variable to run their own package-splitting functions before the default ones are run.

137
185-196

Recipe Metadata (10/11)

 Task Overrides, Prepends, and Appends

 Replacements and/or modifications of tasks.

 Variants

 BBCLASSEXTENDS: Define variant builds of the recipe.

138
185-196

Recipe Metadata (11/11)

 Runtime Metadata

 RDEPENDS: A list of packages that this package depends on at runtime and that must

be installed for this package to function correctly.

 RRECOMMENDS: Similar to RDEPENDS but indicates a weak dependency, as these

packages are not essential for the package to run.

 RSUGGESTS: Similar to RRECOMMENDS but even weaker in the sense that package

managers do not install these packages if they are available.

 RPROVIDES: Package name alias list for runtime provisioning.

 RCONFLICTS: List of names of conflicting packages.

 RREPLACES: List of names of packages this package replaces.

139
185-196

Mandatory Recipe Metadata

 Recipes are required to set these variables:

 SUMMARY

 LICENSE

 LICENSE_FILES_CHKSUM (unless LICENSE = “closed”)

 SRC_URI

 SRC_URI[md5sum], SRC_URI[sha256sum] unless SRC_URI fetches from an SCM

 Other variables are optional, however, setting the above variables does not mean
the recipe is functional.

 A package using make with proper variable definitions in the makefile i.e. CC, LD,
etc. can be built without any class inheritance.

 For other build system classes are provided:

 autotools

 cmake

140
185-196

Recipe Formatting Guidelines (1/2)

 Assignments

 Use a single space on each side of the assignment operator.

 Use quotes only on the right hand side of the assignment. VARIABLE = "VALUE"

 Continuation

 Continuation is used to split long variable lists, such as SRC_URI, for better readability.

 Use the line continuation symbol (\).

 Do not place any spaces after the line continuation symbol.

 Indent successive lines up to the level of the start of the value.

 Use spaces instead of tabs for indentation, since developers tend to set their tab sizes

differently.

 Place the closing quote on its own line.

141
185-196

Recipe Formatting Guidelines (2/2) 142
185-196

 Python Functions

 Use four spaces per indent; do not use tabs.

 Python is rather finicky about indentation. Never mix spaces and tabs.

 Shell Functions

 Use four spaces per indent; do not use tabs.

 Some layers, such as OECore, use tabs for indentation for shell functions. However, it is

recommended that you use four spaces for new layers to stay consistent with Python functions.

 Comments

 Comments are allowed and encouraged in recipes, classes, and configuration files.

 Comments must start at the beginning of the line using the # character.

 Comments cannot be used inside of a continuation.

143

Following the guidelines and best practices is required if you are

looking to contribute layers and recipes to OpenEmbedded and

the Yocot Project.

But even if you do not intend to make any contributions, following

these simple guidelines makes it much simpler for you and your

organization to share and maintain layers, recipes, configuration

files and classes.

Writing a New Recipe - Workflow 144
196-211

Establish Recipe

Fetch Sources

Unpack Sources

Add License Info

Provide do_configure
Autotools

or
cmake?

Configure Sources

Compile

Autotools
or

cmake?
Provide do_install

Install

System
Service?

Provide scripts or
service files

Package

Post Installation

Variants

No

No

No

Yes

Yes

Yes

Writing a New Recipe - Setup

 Establish the Recipe

 Create a layer if you do not already have one: yocto-layer create mylayer

 Setup a skeleton recipe (yocto-layer can create one for you)

 Add the layer to your build environment

 Fetch the Source Code

 Set SRC_URI to point to your sources

 Unpack the Source Code

 Adjust S if necessary e.g. for git repos: S = “${WORKDIR}/git”

 Patch the Source Code

 If patches are required place them in subdirectory next to the recipe.

 Add the patches to SRC_URI.

145
196-211

Writing a New Recipe – License

Information

 Add Licensing Information

 Set LICENSE:

 For proprietary source code use LICENSE = “closed”.

 Common open source licenses can be found in
${POKYDIR}/meta/files/common-licenses.

 Point LIC_FILES_CHKSUM to the license file:
LIC_FILES_CHKSUM = “file://COPYING;md5=<md5sum>”

 You can leave the checksum open and have the build system compute it for you.

146
196-211

Writing a New Recipe -

Configuration

 Configure the Source Code

 GNU Autotools

 Inherit the autotools class.

 For most source code adhering to the Autotools standards the autotools class will
configure it correctly based on the configure.ac file.

 CMake

 Inherit the cmake class.

 The cmake class will correctly configure the source code based on the
CMakeLists.txt file.

 Other

 Whether a configuration step is necessary or not depends on the source code.

 Provide your own configure task.

147
196-211

Writing a New Recipe - Building

 Compile

 Run the compile task to see if your source code builds correctly.

 Common issues:

 Missing header files and/or libraries: Add the packages providing them to the

DEPENDS variable.

 Host leakage: The source code’s build system references build host paths and files.

The QA tasks typically detects them and issues an error message.

 Parallel build issues: These are hard to track. Setting PARALLEL_MAKE = “” in

conf/local.conf turns parallel building off for testing.

148
196-211

Writing a New Recipe - Installation

 Install the Build Output

 GNU Autotools or CMake

 The autotools and cmake classes respectively take care of the installation.

 You just need to verify correct installation.

 Make

 The default install task runs the install target of the makefile.

 You may need to make adjustments dependent on the setup of the install target.

 Manual Installation

 If the makefile does not contain an install target you need to write an installing the build output.

 Always use the install command rather than cp.

149
196-211

do_install() {

install -d ${B}/bin/hello ${D}${bindir}

install -d ${B}/lib/hello.lib ${D}${libdir}

}

Writing a New Recipe – System

Services
 Setup System Services

 If your software package is a system service that eventually needs to be started when the system boots
you need to add the scripts and service files.

 SysVInit

 Inherit update-rc.d class.

 INITSCRIPT_PACKAGES: List of packages that contain the init scripts for this software package. This variable is
optional and defaults to INITSCRIPT_PACKAGES = "${PN}".

 INITSCRIPT_NAME: The name of the init script.

 INITSCRIPT_PARAMS: The parameters passed to update-rc.d. This can be a string such as "defaults 80 20" to
start the service when entering run levels 2, 3, 4, and 5 and stop it from entering run levels 0, 1, and 6.

 systemd

 Inherit systemd class.

 SYSTEMD_PACKAGES: List of packages that contain the systemd service files for the software package. This
variable is optional and defaults to SYSTEMD_PACKAGES = "${PN}".

 SYSTEMD_SERVICE: The name of the service file.

150
196-211

Writing a New Recipe – Packaging

 Package Splitting – Packaging of the installed build artifacts into different

packages:

 PACKAGES: This variable is a space-delimited list of package names.

 Default: PACKAGES = "${PN}-dbg ${PN}-staticdev ${PN}-dev ${PN}-doc ${PN}-

locale ${PACKAGE_BEFORE_PN} ${PN}“

 The do_package task processes the list from the left to the right. The order is important, since a

package consumes the files that are associated with it.

 FILES: The FILES variable defines lists of directories and files that are placed into a

particular package

 FILES_${PN}-dbg = "<files>"

 If there are unpackaged but installed build artifacts after the last package has been

created, the build system issues an error message.

151
196-211

Writing a New Recipe – Custom

Installation Scripts

 Package management systems have the ability
to run scripts before and after a package is
installed, upgraded, or removed.

 These are typically shell scripts and they can be
provided by the recipe using these variables:

 pkg_preinst_<packagename>: Preinstallation
script that is run before the package is installed.

 pkg_postinst_<packagename>: Postinstallation
script that is run after the package is installed.

 pkg_prerm_<packagename>: Pre-uninstallation
script that is run before the package is uninstalled.

 pkg_postrm_<packagename>: Post-uninstallation
script that is run after the package is uninstalled.

152
196-211

pkg_postinst_${PN}() {

#!/bin/sh

shell commands go here

}

pkg_postinst_${PN}() {

#!/bin/sh

if [x"$D" = "x"]; then

target execution

else

build system execution

fi

}

Conditional Execution

Script Skeleton

Writing a New Recipe – Variants

 Add required variants to BBCLASSEXTEND:

 native: Build for the build host

 native-sdk: Build for the SDK

153
196-211

Lab Exercise

 Directly Building an Application

 Create a recipe for this simple Hello

World application by directly using the

compile task to compile the three source

files. Use ${CC} to invoke the compiler.

 Build and test the application.

 Makefile-based Application

 Create a makefile for the application.

 Write a recipe to build the application

with the makefile.

 Build and test the application.

154
196-211

helloprint.h:

void printHello(void);

helloprint.c:

#include <stdio.h>

#include "helloprint.h"

void printHello(void) {

printf("Hello, World! My first

Yocto Project recipe.\n");

return;

}

hello.c:

#include "helloprint.h"

int main() {

printHello();

return(0);

}

Devtool

 Roundtrip development of recipes is greatly simplified using

devtool directly from within your build environment.

 Devtool creates workspace layers, integrates them with your
current build environment, lets you add new recipes and modify

existing ones, launch a build and more.

 Devtool provides workflows for new and existing recipes.

 Devtool downloads and extracts sources into the workspace

allowing you to modify them, create patches and add them to

the recipe.

 Deploy a software package directly to a running target which

can be QEMU or an actual hardware target.

155
196-211

Devtool – New Recipe Workflow

 Create workspace layer:

 devtool create-workspace [layerpath]

 Add a new recipe to the workspace layer:

 devtool add <recipe-name> <source-path>

 devtool add <recipt-name> <source-path> -f <source-uri>

 <source-path> points to a local source directory containing the sources. If you provide –f
<source-uri>, devtool fetches the sources from the provided location and extracts them
into <source-path>.

 Build the recipe:

 devtool build <recipe-name>

 Deploy the software package to a running target:

 devtool deploy-target <recipe-name> [user@]target-host[:destdir]

 Build an image:

 devtool build-image <image-name>

156
196-211

Devtool – Existing Recipe Workflow

 Add an existing recipe from any layer to your workspace:

 devtool modify –x <recipe-name> <source-path>

 For example: modify –x sqlite3 src/sqlite3

 Make changes to devtoolthe sources and build the package:

 devtool build sqlite3

 Create a patch and update the recipe:

 git add .

 git commit –s

 devtool update-recipe <recipe-name> (update the original layer)

 devtool update-recipe <recipe-name> -a <layer-dir> (create
append file in <layer-dir)

157
196-211

Lab Exercise

 Create a workspace layer.

 Create a new recipe with devtool:

 For the nano editor: https://nano-editor.org/dist/v2.6/nano-2.6.1.tar.gz

 Or use sources for your own project

 Build the recipe and deploy the package to QEMU.

 Modify an existing software package:

 Sqlite3 or any package of your choice

 Make changes to the source code (i.e. change the prompt of it).

 Build the recipe and deploy the package to QEMU.

 Create a patch.

158
196-211

https://nano-editor.org/dist/v2.6/nano-2.6.1.tar.gz

