
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries.

Copyright © GENIVI Alliance 2016.

Security Architecture Overview
19 October, 2016  |  Access Control, DAC, MAC, LSM and more...

Gunnar Andersson
Lead Architect, GENIVI Alliance



Abstract and introduction



Main topic:

A secure system is more than access control, but this is where 
we build our foundation (after a trusted boot process).

It has been the primary topic of interest in the open-source
systems we have compared in the past (Tizen IVI, AGL, Apertis, 
Android...) which makes it relevant to discuss from a GENIVI 
standards point of view.

Abstract

3Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



• Set the stage for the following case-studies in this 
presentation track, and make a few concrete proposals

• Warning: Some very basic principles will be covered.  For the 
security experts in the room, realize that the purpose is not 
always to teach something new to you

• For efficient collaboration, getting everyone “on the same 
page” is worth covering some basics.  This should facilitate 
further collaboration.

Purpose

4Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



• What does the GENIVI architecture say so far about 
different patterns and options for controlling access to 
data and resources?

Questions (as promised in Abstract)

5Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



• What are the basic expectations of system design 
inherent in some GENIVI components today?

Questions

6Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



• What are the differences between Linux's Discretionary 
and Mandatory Access Control?

Questions

7Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



• Does using user IDs to identify individual applications 
(Android style) make it impossible to properly protect 
user confidential data?

Questions

8Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



• Beginner's intro into available options for Linux Security 
Modules options.

Questions

9Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



• What are the limits of using the vanilla UNIX users-and-
groups system to model fine-grained access control?

Questions

10Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



• How do we as an alliance recommend to apply 
multiple security techniques?

Questions

11Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



• Finally, from a GENIVI standards point of view, is it 
possible to speak of an access control architecture that 
could be realized using different technical solutions?

Questions

12Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



Not covered today

Kernel development... a lot happening.
• Kernel hardening

– Additional memory protection, etc.
• Long term projects - Grsecurity, RSBAC.  

– Stacked LSMs.

• Networking
– Lots to consider, and some new development

• Seccomp and new proposals (Secomp+BPF)
• POSIX Capabilities ( read: $ man 7 capabilities)
• New IPCs:  kdbus → bus1?



Principle of least privilege



This is what we are aiming for, for every individual part in the system:

Every Actor (process) shall have access to only the 
resources (files, system resources, ...) that is necessary for 
its function, and none other.

Principle of least privilege

15Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



Discretionary vs Mandatory
Access Control



Discretionary 

adjective dis·cre·tion·ary \-ˈkre-shə-ˌner-ē\

: available to be used when and how you decide

: done or used when necessary

Dictionary definition

17Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



Mandatory

adjective man·da·to·ry \ˈman-də-ˌtȯr-ē\

: required by a law or rule

Dictionary definition

18Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



Discretionary Access Control (DAC)

19

Standard file permissions.  Built into all UNIX/Linux

1. File owner can (within rules) modify the permissions
2. Checked on file open only
3. A valid file handle stays valid
4. Open file handle can be passed to another process 

(within rules)



Mandatory Access Control (MAC)

20

...as implemented by Linux Security Modules(LSM)

1. Users cannot modify policy
2. Checked on every new access
3. (Potentially) rich policy language / flexible rules



Access control setup



Before talking about solutions let’s bring this up 
a level to the very basics.

We have a set of Actors

to access a set of Resources

Introduction

22Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



Before talking about solutions let’s bring this up
a level to the very basics.

Translation: 

Linux Processes access 
Files (and IPC*, and Networking*, Hardware*

and Kernel syscalls, and ...)

(* much of which is modelled as files in UNIX)

Introduction

23Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



User ID approaches

24

Traditional UNIX (desktop) approach:
– User IDs, one per person

• alice, bob, charlie, dan

Alternative approach for application separation:
– User IDs, one per application

• mediaplayer, browser, ...

= Android approach
(later modified for multi-user support and hardened security)



ACTORS
(processes)

RESOURCES 
(interfaces)
AudioManager::
AudioInterface

Audiomanager::
PrioritySound

Addressbook::
GetAddress

Networking::
InternetAccess

Mediaplayer

Browser

NodeState
Manager

Navigation  
Application

Access matrix (principle)

25



Access matrix (IPC interfaces)

26

ACTORS
(processes)

RESOURCES 
(IPC interfaces)
AudioManager::
AudioInterface

Audiomanager::
PrioritySound

Addressbook::
GetAddress

Networking::
InternetAccess

Mediaplayer YES NO NO NO

Browser YES NO NO YES

NodeState
Manager

NO NO NO NO

Navigation  
Application

YES YES YES NO



Access matrix (files)

27

ACTORS

FILE or 
DIRECTORY

/foo/bar /etc/netwk.config addressbook.dat networksocket

A Read Write -- Read

B Write Read Read --

C Read Write Read --

D Write -- -- --



Access matrix (files)

Typical DAC solution

Owner write access
Group read access
Other no access

rw- r-- --- alice users /foo/bar

28

ACTOR

FILE

File 1 File 2 File 3 File 4

A Read Write -- Read

B Write Read Read --

C Read Write Read --

D Write -- -- --



Access matrix (files)

Guaranteed to work for an
arbitrary matrix only if:
- one writer, multiple readers
- no other access modes
(e.g. execute) are modeled.

=> Limits of expression

29

ACTOR

FILE

File 1 File 2 File 3 File 4

A(lice) Read Write -- Read

B(ob) Write Read Read --

C(harlie) Read Read Write --

D(an) Write -- -- --

perms        owner      group     filename

rw- r-- --- bob grp1 File1
rw- r-- --- alice grp2 File2
rw- r-- --- charlie grp3 File3
rw- r-- --- dan grp4 File4

Group membership:
alice ~=grp1,grp4
bob ~= grp2,grp3
charlie ~=grp1,grp2
dan ~=



We had Read and Read/Write

Add Executable bit into the previous matrix,

and you are already struggling with the expressivity

of the users and groups model.

Access matrix (files)

30Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



Key point: 

To fully model an arbitrary access matrix 
there is a certain expressivity (degrees of freedom) 
required.

Problem: You may run out of degrees of freedom...

Solution: Add an independent (orthogonal) mechanism.

Access Matrix

31Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



Users and group permissions do work reliably doing 
exactly what they do, but nothing more…  

Be aware of limits 

– File open → file handle stays valid forever. 

– File owners can change permissions.

Not always enough expressivity

Conclusions about DAC?

32Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



DAC, MAC. diff?

33

Users/groups DAC:    
Owner can change permissions!

Checked on open only 

– a valid filehandle stays valid

– a valid filehandle can be passed on (conditionally)

MAC (normally): 

Owner cannot change permissions!

Arbitrary restriction, e.g. fail on any access



DAC, MAC. diff?

34

Granularity

Users/groups DAC: Read, Write, Execute

Smack modes Read, Write, Execute (Append, Transmute)



Not only do the semantics help and in some cases provide a 
stronger lock down...

Typically you need at least one more independent mechanism 
to be sufficiently expressive

Some LSM/MAC are more expressive, i.e. have more 
freedoms in themselves, but that is rare.

The point is COMBINING multiple independent mechanisms.

Reason to use LSM/MAC?

35Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



Use multiple mechanisms  

Example: Tizen IVI

36

User ID used to separate (person) user data

Smack to separate application data (coarse-grained)

Manifest and a separate database for fine-grained services restrictions 

(+Groups to cover some needs)



Use multiple mechanisms  

Example: AGL

37

Similar.
I defer to the upcoming presentation for the details ☺



GENIVI Reference Architecture



User ID approaches

39

Traditional UNIX (desktop) approach:
– User IDs, one per person

• alice, bob, charlie, dan

Alternative approach to achieve application separation:
– User IDs, one per application

• mediaplayer, browser,

= Android approach
(Modified for multi-user support and hardened security)



https://developer.android.com/guide/topics/security/permissions.html :

“Android is a privilege-separated operating system, in 
which each application runs with a distinct system 
identity (Linux user ID and group ID)”

“Parts of the system are also separated into distinct 
identities. Linux thereby isolates applications from each 
other and from the system.”



User ID per application is a

“Misuse of user IDs” ?

Long-running processes (daemons) have always 

run with unique User IDs.  Look for yourself:

$ cat /etc/passwd

(www, apache, spool, mail, ftp, sshd, gdm, pulse, nobody...)



Noteworthy early design decisions

42

Persistence API  (low-level)

pclKeyWriteData(unsigned int ldbid, const char* resource_id, 
unsigned int user_no, 

unsigned int seat_no, 
unsigned char* data, int size);

� Users are at different seats.  
A seat is an abstract concept and can be mapped differently in the 
actual vehicle

Caller must specify User ID for user-specific data
... Why not just read the application’s Effective User ID?

How is this secure
for user data?
And why is it needed?

Abstract addressing
persistence resource



43Copyright © GENIVI Alliance 2016   |   Month XX 2016   | 

AppArmor

(E.g. Apertis)



44Copyright © GENIVI Alliance 2016   |   Month XX 2016   | 

External policy 
database
(E.g. Tizen IVI)



• If processes are run with different (personal) Effective 
User ID for each “logged in” person, the theory is:
– Data files will be written so that the user becomes file owner

– Data files will be set up so that only the owner can read them

– Data files are set up so that others except owner cannot read them.

– Processes cannot fake their Effective User ID

– -> An exploit or malicious application cannot leak personal data.

– Leak?  Means to share one person’s data with another person.

Keeping user data private

45Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



• If processes are run with one Effective User ID 
(long lived daemon)

– Typically these are claimed to be “insecure” because it is feasible for 
a process to read all (any) user data at the same time.  

– An exploit does indeed give more direct access to all user’s data.

But...  

1. There are reasons for long-lived processes, even “applications”

2. Stay tuned... We evaluate if the difference in private data leak risk

Keeping user data private

46Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



Profile Manager distributes the system opinion about the
current active user (multiple users, one per seat) to other 
processes.

PM has a protocol to switch all applications together 
(synchronized)

Long-lived processes do not restart just 
to get a different Effective User-ID

This principle does not make it impossible to also have      
processes that are restarted with different Effective User ID

47Copyright © GENIVI Alliance 2016   |   Month XX 2016   | 



48Copyright © GENIVI Alliance 2016   |   Month XX 2016   | 

User management subsystem 



Different strokes...for different processes

1. Infrastructure/Platform ("built-in”, vetted, long-lived)

2. Native* Applications       (“built-in”, vetted, long-lived)

3. Managed Applications  (per-user, 3rd-party, short-lived)

* Note that in GENIVI architecture “Native” Application definition has nothing 
to do with whether it is compiled or interpreted code.



50Copyright © GENIVI Alliance 2016   |   Month XX 2016   | 

Different process needs

(Similar arrangement for User Mgmt & Persistence)



51Copyright © GENIVI Alliance 2016   |   Month XX 2016   | 

User-aware Platform Components and Native applications, both of 
which are assumed to run like daemons and not as “user session” 
processes, are defined because of requirements on the GENIVI platform.

Native applications are defined because OEM requirements had a need for 
long-lived applications.  They shall not, as required, restart themselves 
simply because a user switch happens.

(Consider User Experience of Navi, Media, etc not resetting 
just because you switch driver, but still providing some 
user-awareness)

This is by design, and they are as secure as they can be made.  These 
processes are likely privileged to read any user data at any time and need 
to be carefully vetted for that reason.



52Copyright © GENIVI Alliance 2016   |   Month XX 2016   | 

Other options:

Decouple long-lived process and user-aware process.

I.e. delegate the reading of user data to a smaller process 
that is running (restarted) with access to one user data at a 
time.



• Does using user IDs to identify individual applications 
(Android style) really make it impossible to properly protect 
user confidential data?

Questions



Persistence API – User ID is sent in, not inferred from process 
effective user ID.
BUT:
• A file based persistence back-end is set up so that personal 

data is written with the actual effective user ID.  In other 
words, the data file is still protected if you have made sure of 
this by running the process with the right Effective User ID.

• Group ID is used to set up application/shared data 
(see persistence for details)

• Since persistence backends can vary, this varies 
(system design needed here).

Keeping user data private

54Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



GENIVI Reference Architecture says:

Application manager for Managed apps 

can run its apps with Effective User ID = personal login ID.

It’s a valid choice and nothing prevents it.

(In theory nothing prevents it for Native apps either but it is 
not the default expected behavior.)

Keeping user data private

55Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



Keeping user data private

56Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    

But how much more secure 
is a “logged in” approach?



Consider “MalApp” running with 
the same Effective User ID no 
matter who is logged in*

or

“MalApp” is restarted with different User ID (logged in user).

This is a possible setup for Managed Applications

(*More generally defined – Consider that the trusted system
somehow ensures the untrusted application can only access 
data of the currently logged in user)

Keeping user data private

alternative 1

57Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



“MalApp” runs the same Effective User ID 
(or can otherwise access any user’s data at the same time).

This is the default Native Application approach.

Keeping user data private

alternative 2

58Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



Attack approach 1:

- When Dan is logged in MalApp reads Alice’s data (which 
it can get access to because it is not protected by the 
system per-user).  MalApp can leak that data to Dan.

Keeping user data private

59Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



Attack approach 2:

- When Alice is logged in MalApp reads Alice’s data and 
stores it in any shared or application-level storage*.  
If MalApp has internet access*, it stores data in the cloud.

- Then, when Dan is logged in MalApp reads back data 
from the shared storage and leaks Alice’s data to Dan.

(*Yes, a few additional assumptions but very often these are true)

Keeping user data private

60Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



Attack approach 2 is just as feasible* for an application that 
only has access to one person’s data at any single time.

Conclusion: Design 2 may be partly more secure for a short 
time, but from a fundamental point of view it is often not.

=> If we share sensitive data with an application 
at any time, then all bets are off.

Keeping user data private

61Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



Native 
Applications

Managed
Applications

Lower Platform 
(Infrastructure)

Upper Platform  
(Middleware)

Persistence

SQLite, 
Custom 
storage

Persistence 
Client Lib

Pers. 
Health 
Monitor

Pers. Admin

Persistence

SQLite, 
Custom 
storage

Persistence 
Client Lib

Pers. 
Health 
Monitor

Pers. Admin

Lifecycle

Node
Health 
Monitor

Node
State Mgr

Node
Resource 

Mgr

Node
Startup 

Controller

Lifecycle

Node
Health 
Monitor

Node
State Mgr

Node
Resource 

Mgr

Node
Startup 

Controller

User Mgmt

User 
Identification

User Data 
Migration

User 
Switch

User Mgmt

User 
Identification

User Data 
Migration

User 
Switch

SW Management

Module 
Loader

SW Loading 
Mgr Package Mgr

SOTA Client

SW Management

Module 
Loader

SW Loading 
Mgr Package Mgr

SOTA Client

Housekeeping

Coding / 
System 
Config.

Error/Event 
Logging(DLT)

Exception 
Handling

Statistics

Housekeeping

Coding / 
System 
Config.

Error/Event 
Logging(DLT)

Exception 
Handling

Statistics

Security 
Infrastructure

Anomaly 
Detection

HSM

LSM

Encryption,  
Signatures

Security 
Infrastructure

Anomaly 
Detection

HSM

LSM

Encryption,  
Signatures

Diagnostics

DTCs

Remote Diagnostics

Automotive 
Diagnostics

UDS

Diagnostics

DTCs

Remote Diagnostics

Automotive 
Diagnostics

UDS

Device Mgmt

Advanced 
Handover 
Support

uevent / udev

Device Mgmt

Advanced 
Handover 
Support

uevent / udev

Audio Mgmt

Pulse Audio

Audio Manager

Audio Mgmt

Pulse Audio

Audio Manager

IPC

Message 
Broker/Routers

DBUS CommonAPI 
Runtime

IPC

Message 
Broker/Routers

DBUS CommonAPI 
Runtime

Networks

Teth-
ering

EAVB

Wifi

SOME-IP Vehicle Bus Proxy
(CAN, FlexRay)

NFC INC ICC

Networks

Teth-
ering

EAVB

Wifi

SOME-IP Vehicle Bus Proxy
(CAN, FlexRay)

NFC INC ICC

Audio/Video Processing

Codecs

EC/NR

Src

Alsa

Gstreamer

Video 
Inputs 

(i.e. V4L)

Audio/Video Processing

Codecs

EC/NR

Src

Alsa

Gstreamer

Video 
Inputs 

(i.e. V4L)

Graphics Support

IVI Compositor 
(Wayland Protocol)

Layer 
Manage-
ment

OpenGL 
(EGL)

Graphics Support

IVI Compositor 
(Wayland Protocol)

Layer 
Manage-
ment

OpenGL 
(EGL)

Camera 
Functions

Rear View 
Camera

Guidance / 
Overlay

Camera 
Functions

Rear View 
Camera

Guidance / 
Overlay

CE Device Integration

MirrorLink

Smart 
Device 
Link

Android 
Auto

CarPlayTM

CE Device Integration

MirrorLink

Smart 
Device 
Link

Android 
Auto

CarPlayTM

Telephony

Telephony 
Stack 

(eg.Ofono)

Telephony

Telephony 
Stack 

(eg.Ofono)

Internet Functions

Cloud Based 
Services

Web Browser

Internet Functions

Cloud Based 
Services

Web Browser

Media Sources

Internet 
Radio

Commercial 
Streaming

MTP

USB Mass 
Storage

Bluetooth 
Stream

AUX DLNA iAP

Media Sources

Internet 
Radio

Commercial 
Streaming

MTP

USB Mass 
Storage

Bluetooth 
Stream

AUX DLNA iAP

Media Framework

Indexer

Playback 
Control

Music 
Identi-
fication

Browser

Media Framework

Indexer

Playback 
Control

Music 
Identi-
fication

Browser

Radio & Tuners

Terres-
trial TV

AM/FM

SDARS

DAB/DRM Broadcast  
Data services

HD Radio TMC/VICS

Radio & Tuners

Terres-
trial TV

AM/FM

SDARS

DAB/DRM Broadcast  
Data services

HD Radio TMC/VICS

Network Mgmt

Firewall 
Rule Mgmt

ConnMan Traffic 
Shaping

D/L
Manager

Network Mgmt

Firewall 
Rule Mgmt

ConnMan Traffic 
Shaping

D/L
Manager

Navigation/LBS

Posi-
tioning

Navigation
Core

Map 
Viewer

POI Mgr

Traffic 
Info

Map Data 
Service

Navigation/LBS

Posi-
tioning

Navigation
Core

Map 
Viewer

POI Mgr

Traffic 
Info

Map Data 
Service

Vehicle Interface

Seat 
Heating

Vehicle 
Settings

Climate 
Control

Vehicle 
Interface 
API(Eg.AMB)

Vehicle Interface

Seat 
Heating

Vehicle 
Settings

Climate 
Control

Vehicle 
Interface 
API(Eg.AMB)

Bluetooth

Media 
Playback

Mess-
aging

Hands-
free

Phone 
Book

Bluetooth 
Stack 

(eg.Bluez)

Tethering

Bluetooth

Media 
Playback

Mess-
aging

Hands-
free

Phone 
Book

Bluetooth 
Stack 

(eg.Bluez)

Tethering

Speech

Speech 
Input 
(ASR)

Speech 
Output 
(TTS)

Speech 
Dialog

Speech to 
Text 

Dictation

Speech

Speech 
Input 
(ASR)

Speech 
Output 
(TTS)

Speech 
Dialog

Speech to 
Text 

Dictation

PIM

Internet 
Account 
Sync

Shared 
Address Book

Calendar

Internet 
Account 
Manager

Device 
Sync

PIM

Internet 
Account 
Sync

Shared 
Address Book

Calendar

Internet 
Account 
Manager

Device 
Sync

HMI Support

Pop-Up 
Mgr

Internation-
alization

Graphical 
Framework

Buttons Hand-
writing

HMI Support

Pop-Up 
Mgr

Internation-
alization

Graphical 
Framework

Buttons Hand-
writing

Generic libraries (libc, etc.) Low-level system libraries (libusb etc.)

Business Logic / Platform Adaptions (optional, dep. on circumstance)

Application Manager Web App Runtime Java App Runtime Prog. framework/abstraction (Qt and others)

System User Interface

“Apps“, e.g. Commercial Music Services     Weather     Social Networks...“Apps“, e.g. Commercial Music Services     Weather     Social Networks... E.g.  Vehicle Functions      Climate (HVAC)      Navigation      Radio ...

Initial Bootloader
Drivers, BSP, Linux Kernel

GENIVI 
Software 
Reference 
Architecture

Block Diagram
2.1

Security throughout, but particular supporting 
functions are part of this subsystem



Linux Security Modules



Linux Security Modules

“Plugin” enabled at kernel compile. Adds additional permission checks.

Simplified flow:
KERNEL asks itself: “Can this process perform this access?”

1. Does the process have the required CAPABILITY?  Yes/No

2. (DAC) Is the effective user allowed the access? Yes/No
(e.g. file owner + permission bits)

3. Is there an LSM in the kernel or not?  Yes/No

If yes – ask LSM (MAC) the same question.

(* Stacked (multiple) LSMs → ask next one) 

First denied access breaks the chain and returns.
If all checks return permitted the operation is permitted.

64



Linux Security Modules

Label based: Minor / targeted:

Smack Yama

SELinux

Path/executable rule based: Trends:

AppArmor * more LSMs, stacking  
Tomoyo * liblsm (shared code...)

Others left out for brevity...Google

65



Linux Security Modules

Label based:

- Process label compared against file label.

- Labels are independent of user/group.

- Flexible matching rules.
Example from Smack.  SE-Linux has more complex semantics.

- Any process labeled “audio” can open socket labeled with 
“audiosink” for writing. ← arbitrary example 

- Any process labeled with “^” (wildcard) can open any file ← built 

in rule

66



Access Control
Why and how - details



In here, as well as GENIVI Reference Architecture:

• Coarse-grained access control is basically dividing actors into categories or 
groups and drawing up the fundamental battle lines that limit access.  
– For example, particular processes only have access to hardware devices
– The application space may use the services layer, but never direct hardware access, 

etc.
– System files are closed off from access unless highly privileged

• Fine-grained policy means to put access limits on individual interfaces and 
sometimes partial interfaces (methods).
– For example, one app may be allowed to make a phone call over Bluetooth, but never to 

add new pairing of phones.    
This is a partial access to the Bluetooth service

MORE INFO:  GENIVI Reference Architecture Document, Application Framework chapter.

Definitions

68Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



• Tizen IVI team taught us all a valuable lesson.  In an early 
attempt, a fine-grained and comprehensive Smack policy 
was tried.

• To finely tune which actors had access to which interfaces 
using Smack failed on its own complexity

• Tizen IVI went back to setting up the fundamental
large-scale, coarse-grained, access control rules with 
Smack, and deferring fine-grained policy to a separate 
manifest and a separate security policy daemon.

• This approach proved successful and can be recognized 
(even if further refined) in AGL today.

Previous work (1)

69Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



• The Apertis system uses AppArmor to lock down all 
components access, both system components and 
applications.

• AppArmor provides a rich language and tools that help 
manage complexity of fine-grained policies

• By that approach, Apertis manages to both encode the 
system-level rules, and fine-grained manifest of applications, 
keeping all the security checks into the Kernel.

(Look out for an update in this week’s Application Framework session)

Previous work (2)

70Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



• GENIVI recommends implementers of Compliant platforms to apply 
multiple layers of security... including application of LSMs for Mandatory 
Access Control and other purposes.

• At the moment, platform vendors are applying different choices of LSMs
– SELinux and AppArmor are popular choices among platform vendors.

• We recognize Smack as a reasonable and good choice by AGL
• Requiring a (non-Smack) Mandatory Access Control solution, as used by 

GENIVI platform vendors, would make it impossible to make use of AGL 
to create a compliant system.
It would reduce our ability for important collaboration.

• Therefore the GENIVI specification does not (can not) mandate only one.

Linux Security Modules in 

GENIVI Architecture

71Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



• GENIVI recommends implementers of Compliant 
platforms to apply multiple layers of security...

– Optionally use namespaces, if appropriate, for example in 
application management space

– Set resource usage and other limits using control groups

– Augment with seccomp and kernel hardening as appropriate 

Other security mechanisms in 

GENIVI Architecture

72Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



• Use tools to manage the complexity of a full 
access control matrix.

• A Franca IDL + Component Description Language 
would be a great foundation for code-generating the 
specific policies against different mechanisms.
(ref: Klaus Uhl presentation GENIVI AMM Paris)

• Several companies do this. It’s time for a shared standard!

• Alliance/community work needed in this area

Final conclusions

73Copyright © GENIVI Alliance 2016 CC BY-SA 4.0 |  AMM Fall 2016    



Thank you!

Visit GENIVI at http://www.genivi.org or http://projects.genivi.org

Contact us: help@genivi.org



BACKUP SLIDES



Expressivity differs

76

Users/groups DAC: Process Effective User ID
Process Effective Group ID

File Owner (user) and Group 
and R,W,X permission bits

SELinux:

Process Security Context
Resource Security Context

Resource class (type) ← any number of types

Read, Write, Execute permission rules



Expressivity (2)

77

Users/groups DAC: Process Effective User ID      – ONE (1)

Matched against ONE (1) File Owner

Matched against ANY number of Groups

User can be a member of: – ANY group

and R,W,X permission bits

SELinux

Process Security Context – ONE
Resource Security Context – ONE

Resource class (type) ← ANY number of types

Read, Write, Execute permission rules


