
Open Media Manager

Dr. Roland Krause
Director of Engineering

Integrated Computer Solutions

Check it out

git clone --recursive \
https://github.com/githubics/MediaManager

Open the project
with QtCreator

https://github.com/githubics/MediaManager
https://github.com/githubics/MediaManager

Configuration

Add:
CONFIG+=build_all QJSONRPC_LIBRARY_TYPE=staticlib

to your build configuration here:

Build and Run

Plug in a USB Pen Drive with music files

Prototype Implementation

● ICS developed an In-Vehicle-Infotainment
Prototype based on automotive hardware and
middleware
○ Modern UI, Plugin based architecture, easily

customizable and extendable
● Features a rich Media Stack

○ BYOD Music, Bluetooth Connectivity, Navigation, Rear
Seat Entertainment and much more

● Already had remote control capabilities from
speech recognition module

● Ideal for fast prototyping of the Connected Car
scenario

Media Management

● At ICS we have designed and built many
In-Vehicle-Infotainment systems (see e.g. this video)

● When asked to look into Media Management we found this
to be a vexing and complex problem

● The challenge for automotive IVI implementations is that
○ People’s media -- their music, videos, audiobooks, podcasts and

television -- exist in a multitude of forms and originate from many
disparate sources.

○ For example, some music files may reside at home in an iTunes library,
others may have been purchased from Amazon Music or Google Play.

○ Media may have then been downloaded to a computer, a USB drive or a
phone, or stored on a cloud server.

○ Management of digital rights adds yet another layer of complexity to the
situation -- one that can’t be ignored.

https://youtu.be/Y2x3v3UpssE

Requirements

● The job of finding and making available media to the
passengers of a car is that of the Media Manager

● First step: Recognizing a Device is brought into the car
● Next: Finding and Indexing Media on the Device
● Possibly: Enhancing Media Information to allow improved

search, filtering, etc..
● Definitely: Playing of Media using the car’s advanced

audio systems
● Controlling the flow of Media to e.g. different Speaker

Zones, Headphones, Videos to headrest screens etc..
○ When multiple occupants drive in the car each individual should be able

to enjoy their own audio and video selections.
○ Hence a media manager should be able to direct media to specific

passengers.

The Idea - Coding for the Unknown

Today’s media consumers behavior changes rapidly:
● Remember the “Walkman” - Enjoyed it for Decades
● CDs - Lasted maybe 10 years
● MP3s on CDs, USB Pendrives, Less than 5 years
● Cloud based music sharing, Amazon tbd.
● Streaming:
● Pandora, by all means not saying it’s dead but:
● Spotify, is the current Darling (< 2 years)
● What is next?

○ The cycles become shorter and shorter
○ Consumers change phones 2-3 years on average

● We must keep in mind that what we create might be
partially outdated by the time is is released - Ouch!

Possible Solutions

● Use a Mobile Phone or Tablet OS in the Car

● Use a Web Technology Based Stack in the Car

● Design an Open Standards based, Car specific OS and
create a system of plugins and components with open
interfaces that can be easily updated

● Architecture of the ICS Media Manager follows this idea

Architecture

Plugin Architecture

Media Manager Core Functionality
● Load Plugins:

○ Device Manager
○ Media Devices
○ Media Players
○ Services (Audio Manager, Media Enrichment)
○ Controllers (UI, RC, RVI)

● Organize Flow of Media Info Data from Device
to Player and Device to Controller

Media Devices

Device Manager Plugin Interface
/** DeviceManagerInterface is a Plugin Interface for DeviceManagers

* that detect MediaDevices which contain Media that can be indexed

* by a suitable MediaDevice.

**/

class DeviceManagerInterface : public QObject

{

 Q_OBJECT

public:

 explicit DeviceManagerInterface(QObject * parent=0) : QObject(parent) {}

 virtual ~DeviceManagerInterface() {}

signals:

 void deviceCreated(const QString mediaDeviceType, const QUrl mediaDevicePath) const;

 void deviceRemoved(const QString mediaDeviceType, const QUrl mediaDevicePath) const;

};

#define DeviceManagerInterface_iid "com.ics.media-manager.DeviceManagerInterface"

Q_DECLARE_INTERFACE(DeviceManagerInterface, DeviceManagerInterface_iid)

Data Flow

Core Components

● MediaSource
○ Provide interfaces to devices.
○ Devices are physical media such as Phones, iPads, USB thumb drives,

Microsoft Media Players, DLNA, Bluetooth, cloud or any source that can
be indexed.

● MediaSource Playlists
○ Each source presents to the media manager one or more source

playlists.
○ The media manager takes these lists and add them to corresponding

MediaSessions.
○ For example, video playlists are offered to the session that interfaces to a

video player, whereas Bluetooth playlists are offered to a Bluetooth
Player which in turn controls a Bluetooth device through the AVRCP
protocol.

MediaSession and MediaSource

● MediaSession
○ Each MediaSession holds a playlist of tracks specific to a media type e.g.

mp3 files, video files or Bluetooth streams.
○ MediaSession interfaces a single instance of a media player for the

specific media type.
○ Contains a JSON Object consisting of multiple JSON Arrays,
○ One per MediaType present on the device.

● MediaPlaylist is a JSON Array
○ Each JSON Array contains indexing data
○ Indexing data are JSON Objects,

■ one for each media item
■ containing attributes of a single media item
■ e.g., file names, artists, cover art

and many other things of interest to the end user.

DataStructure: MediaPlaylist
{
 "AudioFileMediaType": [
 {
 "Album": "Southernality",
 "Artist": "A Thousand Horses",
 "CompleteName": "/mm_test/audio/a.mp3",
 "Title": "(This Ain’t No) Drunk Dial",
 },
 {
 "Album": "Billboard Top 60 Country Songs",
 "Artist": "Big & Rich",
 "CompleteName": "/mm_test/audio/b.mp3",
 "Title": "Run Away with You",
 }
],
 "VideoFileMediaType": [
 {
 "CompleteName": "/mm_test/video/mad_max.mp4",
 "FileName": "mad_max",
 "Format": "MPEG-4",
 "InternetMediaType": "video/mp4",
 },
 {
 "CompleteName": "/mm_test/video/sup-vs-bat.mp4",
 "FileName": "sup-vs-bat",
 "Format": "MPEG-4",
 "InternetMediaType": "video/mp4",
 }
]
}

Core Components

● MediaPlayer
○ MediaPlayers control the output of media
○ Implement functionality of media reproduction e.g., play, pause, stop, play

index, play next, play previous etc.
○ Can also be controlled to direct output to specific channels through an

audio manager component.
● MediaManager

○ MediaManager maintains a set of session objects and a set of source
objects.

○ Interfaces with an audio manager for audio channels
○ Interfaces with a device manager for device notifications.
○ Provides a controller interface which allows for direct user interface (UI)

implementation using the toolkit of choice as well as remote control
through RVI or web interfaces.

Media Manager Core Functionality

● When a device is connected, e.g. a USB pen drive is
plugged in:
○ Media Manager receives a notification from the Device Manager plugin.
○ With the help of a suitable MediaDevice indexing results in a

MediaSource object - delivered to and received by the Media Manager.
○ Media Manager stores and accesses MediaSession objects

corresponding to MediaTypes contained in the MediaSource
○ Appends the playlists coming from the MediaSource object to the

MediaSession.
○ During this step, filtering and sorting can be applied.

● MediaSessions store sets of playlists (in JSON Arrays)
○ Identified with the MediaSource they came from
○ It is trivial to update playlists upon removal of a device at the cost of

rebuilding the playlist and transferring it to the MediaPlayer again.
○ Use of “implicitly shared” container classes is fundamental to a robust and

efficient implementation.

Indexer - MediaInfo

● The problem of indexing media is two-fold:
○ Files must be found, identified and the results stored.
○ Media contained in files and streams must be

classified.
○ We are looking to answer questions like:

■ How long is this “mp3” file? Who sang this song?
Who directed this orchestra?

○ All of this information should be available to the user as
fast as the medium permits while preserving an always
responsive, modern user experience.

Indexer - MediaInfo

● Notable Open Source indexing solutions:
○ Gnome projects Tracker and KDE’s Nepomuk are

powerful and complex search and indexing solutions
○ appropriate for desktop solutions.
○ Light Media Scanner (LMS), and FFMpeg project’s

ffprobe are more suited for constrained environments
and use cases.

● Another widely used option is MediaInfo
○ Highly customizable,
○ can easily be integrated in C++ based applications,
○ has support for hundreds of media types and is a fast

and robust solution with a long standing track record.

https://wiki.gnome.org/Projects/Tracker
https://userbase.kde.org/Nepomuk
https://github.com/profusion/lightmediascanner
https://ffmpeg.org/ffprobe.html
https://github.com/MediaArea/MediaInfo

MediaPlayers

● MediaPlayers do not provide UI control
elements!
○ They do

however have
visible elements

○ E.g. video surfaces
○ Control is through

a plugin interface

Controllers

● Media Manager employs the concept of active
MediaSessions
○ Control the actual playback of media.
○ It calls the active sessions player with the standard

actions of playing
○ E.g. play, pause, next, previous, play by index etc..
○ The control of the Media Manager itself is through a

MediaManagerControllerInterface that is implemented
by a variety of “stateless” plugins.

○ E.g., a simple UI plugin allows for a graphical user
interface to be implemented while a “remote controller”
plugin allows mobile devices to control the Media
Manager and thus its playing functionality.

QtQuick - UI Controller

Integration GENIVI Development Platform

JSON Rpc Controller

● TCP based JSON-RPC
● Utilizes QJsonRpc
● Implements MediaManagerControllerInterface
● Same Interface as UI based Controllers
● Stateless Controller Architecture guarantees

that all Controllers are in the same state
● Signal and Slot implementation allows to add

controllers at will without changing the
MediaManager code

Currently in Development

● Plugins and Indexers for Phones and Tablet
devices - these require mobile apps

● Plugins for DLNA devices
● Plugins for Bluetooth device playback

○ BlueZ, AVRCP and A2DP protocols

What to do for Home Connectivity

● Customized Media Player Plugin
○ RVI client implementation

● Tap into a Car CAN Bus or simply retrofit a car
with additional sensors and an IoT Hub
○ Seat sensors notify of occupancy
○ Car notifies home controller
○ Home Controller locks doors turns off lights
○ Home Controller brings video to Smart-TV

What is Next?

● Automotive industry is at the center of a
paradigm shift
○ Demand for connected lifestyle is evident

● Must keep up with the pace of developing
mobile and home automation ecosystems
○ Automotive industry could separate shareable

components from differentiating value propositions
○ Joint development of common, shareable components

based on open standards
○ Provides the platform to hold pace with development

cycles of mobile industry
● Autonomous mobility will accelerate demand

for connected lifestyle

Conclusion

● As the vision of autonomous driving changes
the role of the automobile itself:
○ Our Vision is to create software that allows the

Automobile to be an integration point for Media
○ Similar to the “Connected Home”
○ Central point where Media “comes together”

● Architecture of our components should not
withstand the developments of the future but
adopt to it.

● Visit us - Talk to us - Work with us!
● How can we help you?

ICS Automotive Components

● Wayland based Launcher
○ Launching Applications (Phone, Nav, Media, etc..)
○ Surface Management

● Bluethooth Pairing
○ Linux BlueZ stack
○ Others to come in the near future..,

● Phone
○ HFP Calling, Address book, Texting and Answering

● Media
○ BYOD, Bluetooth, Radio

● Climate Control UI
○ UI stack for fast development

