GENIVI

AR
-, g
\ -
| a‘_\ y
A

¥ -

A
GENIVI Developme
Activities
October 10, 2018 | GENIVI Technical Summit, Bangalore
Gunnar Andersson

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries.

Copyright © GENIVI Alliance 2018.

Code Development Overview

GENIVI Code development

GENIVI

* Mission: Set automotive standards & specifications and
produce code maintained within or by the GENIVI Alliance

- GENIVI Development Platform

Software Components
GENIVI Baseline
Domain-interaction technologies

Software Development Environment

Copyright © GENIVI Alliance 2018 |10 October 2018 |

GENIVI Code development

0!
* Supporting activities and functions o
- Confluence & JIRA
- Continuous Integration/Deployment
- Quality & Maintenance Policy

- GENIVI Open Source Policy and License Review Team

* Google Summer of Code project

- Machine learning and voice control

Copyright © GENIVI Alliance 2018 |10 October 2018 |

GENIVI Development Platform (GDP)

GENIVI

* Yocto build system

* Normally 2 Released/tagged major versions per year
(but we recommend “GDP Master” as a rolling release)

* Proving ground for GENIVI software
* And starting point for a lot of product development
* “IVI demo” — changed to development & platform focus

Copyright © GENIVI Alliance 2018 |10 October 2018 |

GENIVI Development Platform (GDP)

I}
« GDPisa... o
* ... Yocto-built,

* ... Continuous-Iintegration-backed,

* ... Profile divided,

* ... Simple,

* ... Logical,

* Base platform for early development of Automotive Software

* ... with integrated GENIVI technologies, + matching SDE

* ... and trying out useful “non-GENIVI” tech (e.g. NiFI Big Data)

Copyright © GENIVI Alliance 2018 |10 October 2018 |

GENIVI Development Platform — Recent Updates

Ik
* OSTree support (some targets) o
* Lots of recipe/project quality-improvements, cleanups

* Updates to latest GENIVI baseline

* Updated BSPs

* Updated to support rocko and sumo branches, with thud
to follow shortly.

* Note: Easy python dev (see new web page)
* “Big Data” support: MINIFI C++
* Profiles

Copyright © GENIVI Alliance 2018 |10 October 2018 |

Sat 11:54

Activities racle VM VirtualBox =
gdp-sdk-porter-201610062205 [Running] - Oracle VM VirtualBox X

File Machine View Input Devices Help

Qt Creator Eclipse with D-Feet Terminal Terminal
(SDK env)

Franca
Java - Eclipse

gmltest.pro - gmitest - Qt Creator
File Edit Navigate Search Project YoctoProjectTools Run Window Help

File Edit Build Debug Analyze Tools Window Help
gmltest i Welcome 2

Build & Run Editor Code Style Dependencies Clang Static Analyzer .
o i < i : Welcome to the Eclipse DSL Tools

H
L 1]}

Welcome 4d K
Add Kit .
Desktop Qt 5.6.1 GCC 64bit GDP-SDK for Porter What's New

E Manage Kits... Build | Run Build Run

Deployment

Method: Deploy to Remote Linux t & Add ~ Rename...

Ecl{jlpse I:)Iatfohrm _ ; i ' New Updates
Find out about the major new features in this ©/ Get the latest updates from Eclipse.org

release

-

| § Files to deploy:
Local File Path
Eclipse community

)‘ fhome/vagrant/Qt-5.6/Examples/Qt-5.6/gmitest/gmltest/tst_item.qml - P
/home/vagrant/Qt-5.6/Examples/Qt-5.6/build-qmltest-GDP_SDK_for_Porter-Debug/qmltest/tst_gmltestexample - Java dEVEIDPmEnF tools 4y Join the community, read articles and news on
(¥ Find out about significant changes made to the Java I Eclipse.org

Overview Tutorials Samples What's New Workbench

Projects

o |

Check for free disk space

Upload files via SFTP

Add Deploy Step ~
SDK Terminal

R File Edit Tabs Help
un :

Run configuration: | tst gmitestexample (on R Add ~ Rename... E.g. try echo $CC, or which qmake
0] * 2
vagrant@gdp-sdk-porter:~$ arm-poky-linux-gnueabi-gcc -march=armv7veljmyapp.cpp
gmltest
|:| , Executable on host:
Executable on device:

fhome/vagrant/Qt-5.6/Examples/Qt-5.6/build-gmltest-GDP_SDK_for_H
/home/vagrant/gdp-sdk/yocto-sdk/porter/sysroots/cortexal5hf-neon

Alternate executable on device: [Use this com)|

> Arguments:

Working directory:

1
e

1 Issues@ 2 Search R... 3 Applicati... 4 Compile ... 5 Debugge... %

= el amitestpro - a..| M sDK Tenina__| @)ava - Eclse
B EE & @@ @ right Ctrl

Software Development Environment (SDE)

Activities [Oracle VM VirtualBox v Sat11:54

gdp-sdk-porter-2016 10062205 [Running] - Oracle VM VirtualBox x

File Machine View Input Devices Help

~ -

File Edit Build Debug Analyze Tools Window Help File Edit Navigate Search Project YoctoProjectools Bun Window Help

] [] [] [] -
Eclipse with Terminal Terminal
Franca (SDK env)
gmitest.pro - gmitest - Qt Creator Java - Eclipse

qmitest

% Welcome 51 ==
[EEEEI) | editr | CodeStyle | Dependencies | Clang Static Analyzer 3
n 2 i 9 Y & Welcome to the Eclipse DSL Tools
Addkit ~ .
u Desktop at 5.6.1 cec sanie I L) What's New
Manage Kits. Buiia Run un
Deployment |
a ploy; 5
Method: Deploy to Remote Linux t & Rename.
s o derkcy B o ot e mofrne eatures in i New updates
& Find out about the maj ures in thi
T NG ¢ Get the latest updates from Eclipse.org
item.qmi O Eclipse community
K for Java development tools . Join the community, read articles and news on
s = (Find out about significant changes made to theJava (41 Eclipse.org ¢

I O E ¢

Check for free disk space

s samples What's N

* Matching Yocto SDK
* GENIVI tools

- DLT Viewer

- Franca/Common-API| code-generators
* Qt Creator with ready-to-deploy settings
* Eclipse with Franca & plugins installed

Upload files via SFTP

Add Deploy Step v
'SDK Terminal

File Edit Tabs Help

NOTE: Yocto-SDK environment has been set up.

E.g. try echo $CC, or which qmake

vagrantegdp-sdk-porter:~$ arm-poky-linux-gnueabi-gcc -march=armv7veljnyapp.cpp

Run

Run configuration: Rename,

tst_qmitestexample (on A S

amitest

Executable on host:

Executable on device: K

Alternate executable on device:

Arguments:

Working directory:

ST : 5o ® 2 s R
1

3 Applicati... 4 Compile... 5 Debugge

™ [LXTerminal] gmitest.pro - gm.

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

Software Development Environment (SDE)

* ...being fundamentally reworked

* for flexibility, quicker build
& updates.

 Lots of Ideas. Less time.

* As always, show Interest & offer
and the priority will be increased

gdp-sdk-porter-2016 10062205 [Running] - Oracle VM VirtualBox x

File Machine View Input Devices

Qt Creator Eclipse with DLT-Viewer D-Feet Terminal Terminal
Franca (SDK env)
gmitest.pro - gmitest - Qt Creator Java - Eclipse

File Edit Build Debug Analyze Tools Window Help File Edit Navigate Search Project YoctoProjectools Bun Window Help

qmitest

. @ velcome 2 =
NPT | edior | CodeStyle | Dependencies | Clang Static Analyzer ;
e = 2 i & Welcome to the Eclipse DSL Tools
adaxit -
Desktop at5. What's New
Manage ks suia
Deployment
Method Deploy to Remote Linux 13 [Add_~ Rename.
Files to deploy: P ket - . New Updates
& Findout about the major new features in this
R NG ¢ cetthe latest updates from Eclipse.org
_item.qml Eclipse communi
. SDK _for Java development tools - Join the community, read articles and news on
Proects DK for f
(3 Find out about significant changes made tothe Java (1 Eelipse.org o

(2]

>

& @

€

Check for free disk space

°

torials Samples kbench

Upload files via SFTP

Add Deploy Step
SDK Terminal

Run
NOTE: Yocto-SDK environment has been set up.
Rename E.g. try echo $CC, or which qmake
$ arm-poky-linux-gnueabi-gcc -march=armv7veljnyapp.cpp

Run configuration: |tst_gqmitestexample (on f S

Executable on host:

Executable on device: K

Alternate executable on device:

Arguments:

Working directory:

EETEERE : 5o ® 2 Scrch R 3 Applcati.. 4 Compile

| gmitest.pro - gm. T L —————————————————————————————————————— —
BFES @ 0 O @ Right curl

™ [LXTerminal]

to help

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

Releases?

GENIVI

®

T

GDP 14.0 (rocko-based) is tagged and ready!

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

GENIVI

®

T

GDP 14.1 (sumo-based) is tagged and ready!

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

(S

GENIVI

As always, GDP Master
(plus frequent communication among
developers) is recommended.

Copyright © GENIVI Alliance 2018 |10 October 2018 |

GENIVI Development Platform - Variants & Profiles

T

GENIVI

e Starting with GDP 14 a long-expected “feature”

* GDP is split into 3 variants (a.k.a. profiles)
- Core : A core to build on. No graphics.
- IVI : Everything (almost). Also, “compliant”
- Data : cloud-connectivity, telematics & “big data”

Copyright © GENIVI Alliance 2018 |10 October 2018 |

GENIVI Development Platform - potentials

L

GENIVI

Of course, profiles build-out
Flatpak build-out

Rock-solid containment (RedHat standard tech)

Tools & standard method for application dev already there
Versioned, fully controlled application build environment
Versioned, fully controlled runtime

Storage & update in OSTree, (just like the system)

GDP partial impl. (container sandbox) since v12.
Application “handling” still pending interest

Various ideas around great Yocto CI/CD speed-up and SDE

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

GENIVI Development Platform - support functions

H;B@

GENIVI

* Go or GoCD nowadays (https://go.cd)

* We needed pipeline focus from the start
* Somewhat similar to Jenkins plus various plugins

* GDP CI/CD is done at https://go.genivi.org
* Detalls, instructions, account see GENIVI Wik

* GENIVI “Cl Policy”: Go for GDP, GitHub integrated services for
components (Travis, AppVeyor, Semaphore, CircleCl...)

Copyright © GENIVI Alliance 2018 |10 October 2018 |

https://go.cd/
https://go.genivi.org/

GENIVI Development Platform - other support functions i
! I

* Public Confluence and JIRA
* Email to: genivi-projects@lists.genivi.org

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

https://at.projects.genivi.org/wiki/GDP
https://at.projects.genivi.org/jira/browse/GDP
mailto:genivi-projects@lists.genivi.org

GENIVI Development Platform - CIAT infrastructure

* Pipelines because:

i

GENIVI

Logically separate stages Build, Test, Upload
- Chain pipelines together
- Control of artifacts going into and out of each stage
* Go.cd because:

Pipelines from the beginning. We knew we needed them

Powerful templating with combination of Parameters & Env. Variables
It was familiar (for the person installing it)

- One-shot install, less plugins

* There are other systems... potentially even better

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

https://go.genivi.org/go/pipelines/GDP-SDE-minnowboard/25/Assemble/2

Quality & Maintenance Policy — Scope i

GENIVI

The document outlines code quality requirements and maintenance
processes for all* software hosted on GENIVI GitHub account.

There are different requirements depending on maintenance level

These are minimum common principles only — each maintainer retains
a lot of freedom to define the details (see later slides), and can of
course do more.

*Except if GENIVI GitHub hosts a fork which has a clear upstream location
defining its own processes.

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

GENIVI

Background & Needs

Promote trust in GENIVI code quality and development processes
Quickly understand which software projects are still maintained
Document process/policy to back up our interaction with maintainers

Agree on expectations between GENIVI and code maintainers
for all projects hosted on GENIVI's GitHub account

Accountability to a mutually agreed standard & process for recognizing
and addressing any project issues with maintainer (manager).

Provide better information to our community, what to expect, and how
to resolve issues

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

Component Maintenance Level i

GENIVI

Maintenance level Expectations

Response time: 1-3 days

ACTIVE Resolution time: ~1 week

Response time: 1-2 weeks
Resolution time: ~2-4 weeks

Response time: N/A
NOTACTIVE Resolution time: N/A

Response time: Reading and submitting a first on-topic response to Tickets/Issues, Mailing List questions,
and submitted patches / pull-requests.

Resolution time: Discussing towards, and reaching, a conclusion to close a ticket, merge (or reject) a patch
or pull-request. (Understandably, resolution time can differ depending on the situation).

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

D

L

GENIVI

o,
g

Quality & Maintenance

All GENIVI GitHub projects shall follow the Q&M policy
Requirements and guidelines around these topics:

* Continuous Build

* Community communication
* Static Analysis

* Automated Testing

* Commit messages, etc.

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

Google Summer of Code Project

Video presentation H
GENIVI
Including the slides at the end of this presentation, plus narration.
Also including live demo of the system.

Video linked from this page : hitps://at.projects.genivi.org/wiki/x/xImxAQ

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

https://at.projects.genivi.org/wiki/x/xImxAQ

GSoC slides i’?{i

GENIVI

Here follows a copy of GSoC project slides.
(They were showed on the video but are here so we can refer to them)

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

GENIVI - Google Summer of

2018 project

GENIVI'

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries.

https://creativecommons.org/licenses/by-sa/4.0/

GENIVI’'s 2018 Google Summer of Code project

:I:. :J
. ° ®
€. {i '
® GENIVI <
Genes, Genomes and Variation GENIVI Alliance Gentoo Foundation
Genomic sequence and Developing open software for IV A flexible, source-based Linux
ar 55 @ and the connected car distribution
bro
GENIVI Alliance X

yocto c/ct+ java

Topics

Operating Systems

automotive
functional safety

The GENIVI Alliance provides an open connectivity platform that
accelerates innovative solutions based on open software for In-
Vehicle Infotainment (IVI) systems.

LEARN MORE & SEE PROJECTS

_|I GENIVI participated for the second year in the
Google sponsored “Summer of Code”.

_| Google Summer of Code is a global program
focused on introducing students to open source
software development. Students work on a 3 month
programming project with an open source
organization during their break from university.

_| Project focus this year was on using voice
commands to an InVehicle Infotainment system.
This ambitious project integrated state of the art
technologies and had a successful outcome thanks
to the student and mentors.

GENIVI

https://summerofcode.withgoogle.com/

GSoC results

The GSoC project Results and artifacts

Provides a stipend to a student so they Integration of a Text-To-Speech (TTS)
can focus on code solution on a GENIVI target

Teaches a student about key interactions Test of an end to end TTS and Voice
In developing open source software Control integrated system with

Ideally it provides a new contributor to an Google Cloud

open source project On hardware and Qemu emulated
Code, proof-of-concepts, bug fixes, testing

documentation and other artifacts are Recipes and strategy for embedded
provided to the community at large which targets built with Yocto

can be reused

Participants

Chandeepa Dissanayake -- Participating student. Responsible for input on
specification as well as how the resulting implementation meets the specification.
Responsible for technology selection, discussion of technology selection with
mentors, implementation of technology including any additional source code.

Gunnar Andersson -- GENIVI lead developer. Played key technical mentorship
role, responsible for advising the student on technical choices as it relates to
GENIVI. Gave guidance in implementation as well as technical assistance on
Integration in GENIVI's development platform. Code and technology review.

Jeremiah Foster -- GENIVI community manager. Project management, liaison
with GSoC org, documentation and dissemination.

GENIVI

Functionality

% At a high level Voice Control for IVI Next Generation (VCIVING)
Implements voice commands on GENIVI's InVehicle Infotainment

platform.

% It provides mechanism for
> capturing speech input via a microphone
> transform speech into text
> text recognition via a neural network
> processing the resulting commands

GENIVI

How a Speech Application Learns

Step 1. Record voices Step 2. Input voice data Step 3. Train the speech algorithm

the quick brown

WA A > do X
@ m =) |STTEngine| oy kick X

m Q) m — o = bound X
J

m /]/

QD — [=0 | — quick
gorithm
= ,
— —> brown CorrectfiUpdatofiLearn

Common Voice Project Open Source STT Engine Deep Learning Architecture

amp — —> the

VCIVING Pipelin

* VCIVING pipeline is composed of four consecutive

Audio (speech) Transform speech

Interpret text via

Input through to text neural network

microphone

Execute command
o on target

GENIVI'

VCIVING Pipeline Step 1: Capturing Input

Just as in the Moazilla

example, the ﬁrSt Step iS to def _ivi_process_microphone_data(heard_
capture speech input from if exception is None:
the user. The python COde print("Read from Microphone: " + heard_text)
Used uses a microphone as input_processor.process_data(InputProcessor.PROCESS_TYPE_MICROPHONE_DATA, heard text)
the input mechanism, then :
paSSGS that tO the SpeeCh if exception == SR.Unknown¥alueError:
recognition functions.
if exception == SR.RequestError:
output_handler.output_via _mechanism(mechanism=output_handler.default_output_mechanism,
data="Google Cloud API Error. Could not interpret your speech.",
wait until completed=True, log=True)
grabbers list = [Grabber(ivi process microphone data)]
grabber_controller = GrabberController(grabber list=grabbers_list, notify_all=False)
microphone input = InputMicrophone(grabber controller)
. microphone input.start listening()
o2

VCIVING Pipeline Step 2: Speech-

e COTS hardware plugged directly into a USB port /
on a Raspberry Pi 3 is sufficient for voice capture ' . /
on GNU/Linux |

0 LY o) :] . £
e Once we have the audio data, we convert it into

text for processing

e Adopting any technology such as pre-trained
model or third party API, the audio data is
converted into text. (Implementation dependent)

e (Google's Speech To Text API then returns back the
textual representation of the captured speech

iiii
GENIVI

VCIVING Pipeline Step 2: Spe

This project used Google Cloud Speech-To-Text API togetf\ s

party library, but also looked at technology from Mozilla. The goal was
agnostic to where the pre-trained model resided -'

Offers selection of pre-built models,

tailored for your use case o o]
— | %44 =

Cloud Speech-to-Text comes with multiple pre-built speech 7\ ®

recognition models so you can optimize for your use case (such

as, voice commands). Example: Our pre-built video transcription 3 9 1

model is ideal for indexing or subtitling video and/or multispeaker
content and uses machine learning technology that is similar to

YouTube captioning.

i
GENIVI'

VCIVING Pipeline Step 3: Interpretation

* The textual representation of the audio data received from step 2, Is
Interpreted.

* The underlying meaning (the gist) of the user’s speech is refined and
converted to a Task/Process/Function in the VI system

A pre-trained model which contains a wide-variety of different phrases through
which the user can execute the IVI commands, should be used.

* Neural network model training requires lots of data to be effective as well as
ample computing power.

iiii
GENIVI

VCIVING Pipeline Step 3: Interpr

* The model should accept the phrases/sentences as the input and map the

* Instead of directly addressing TPFIVIS, a wrapper should be used where it
IVl and also directly providing outputs based on the responses from IVI.

® Mapping to a TPFIVIS wrapped function.

I'-:::l
l"
GENIVI’

VCIVING Pipeline Step 4: Execution

* After the user’s speech has successfully been interpreted, the wrapper fun
subsequently.
* The wrapper function should,
» Execute the TPFIVIS(by interacting with VI systems directly).
* Provide outputs to the user regarding the status of execution. 77 4
* Handle every necessity after it is called. ¥

* For example: If more information is required, implementing features like continued
conversation with user.

-,

GENIVI'

VCIVING Pipeline Step 4: Execu

 Since wrapper function is handling the execution after it gets called, ther
* The wrapper functions will handle the output by itself.

-

* Mapping to a TPFIVIS wrapped function.

e (No Output)

GENIVI'

EmulationCore

* EmulationCore is the implementation of VCIVING on
COTS.

* It's name derives from the idea that this emulates a
complete system on target

* |t performs the same tasks;
1. Captures inputs from the user.
2. Recognizes and interprets speech to text
3. Executes the task which is meant by the input.
i
GENIVI

References

Project Wiki and Documentation:
o https://bit.ly/2R8X6c0
Project Repository:

o https://github.com/GENIVI/GENIVI-GSoC-18
o Build Instructions: https://bit.ly/21073yk

Initial Project Idea

© https://bit.ly/2N915Cb
o Section: Voice command of IVI system

Comprehensive Explanations, Guides and Documentation
o EmulationCore: https://bit.ly/2R8X6c0
o Input Handling and Input Handler: https://bit.ly/21pDrAt
o Output Handling and Output Handler: https://bit.ly/2Iror5h
o Task Executors: https://bit.ly/2y1J3w4

SSe.
l..l
GENIVI’

https://bit.ly/2R8X6c0
https://github.com/GENIVI/GENIVI-GSoC-18
https://bit.ly/2Io73yk
https://bit.ly/2N915Cb
https://bit.ly/2R8X6c0
https://bit.ly/2IpDrAt
https://bit.ly/2Iror5h
https://bit.ly/2y1J3w4

Functions of EmulationCore

1. The main focus of the EmulationCore would
be to capture and control the inputs and their

flow and to handle the outputs.

* Example: Once user speaks, the input is grabbed
through the microphone by listening consistently,
performs Speech Recognition to convert audio data to
its textual representation, finally interpreting the data.

iiii
GENIVI

Functions of EmulationCore

2. Upon interpretation, the execution of the
underlying TPFIVIS is handled over to the set of

wrapper classes: TaskExecutors.

* Example: The final interpretation from EmulationCore will
be a mapping to a method in one of the wrapping classes
of TaskExecutors. Subsequently, the respective method
will be executed.

iiii
GENIVI

VCIVING Pipeline in EmulationCore

1. Step 1: Grabbing Inputs
* Input Mechanisms are used to listen and read
inputs from Input Devices.
2. Step 2: Speech-To-Text

* Third party APIs and libraries are used to convert
the audio data to its textual representation(Speech
Recognition).

iiii
GENIVI

VCIVING Pipeline in EmulationCore

3. Step 3: Interpretation
A pre-trained model is utilized to understan the
user speech.

4. Step 4: Execution 4
Wrapper classes, wrapped around TPFIVIS are
used. =

iiii
GENIVI

VCIVING Pipeline on EmulationCore: Step 1 -
Grabbing Inputs

*The primary concern of this step is to
collect/grab information from the input devices.

*The Input Devices are wrapped inside another
set of wrapper classes: InputMechanismes.

iiii
GENIVI

VCIVING Pipeline on EmulationCore: Step 1 — Grabbing Inputs

Each an every Input Device Is wrapped inside
a separate InputMechanism class.
Depending on how each InputMechanism
reads input data from the Input Device,
Implementation is slightly different with
several characteristic methods.

iiii
GENIVI

Example for Step 1: Microphone

* Microphone is the major Input Mechanism in the
EmulationCore.

* When the microphone is initialized, functions are
defined to,
* Wait for input from the microphone.

* Transfer the captured audio data to Step 2(Speech-
To-Text).

iiii
GENIVI

Example for Step 1: Microphone

Since Interpretation of the speech Is done
under another protocol(Grabbers and
GrabberController), It Is not Implemented In
the wrapper class.

Listening to the microphone and processing
IS carried out on a separate thread.

iiii
GENIVI

VCIVING Pipeline on EmulationCore: Step 2 -
Speech-To-Text

* Audio data received from the microphone is
converted to textual representation.

* Google Cloud Speech-To-Text APl was used

together with a third-party library in order to
facilitate the process.

iiii
GENIVI

VCIVING Pipeline on EmulationCore: Step 2 — Speech-To-Text

Audio data Is sent to Google STT API which
would return back the textual representation.
If useful speech Is not found In audio data, an

error will be thrown by Google APIs which Is
handled by notifying the user.

iiii
GENIVI

VCIVING Pipeline on EmulationCore: Step 3 -
Interpretation

* A model is trained to interpret/refine the underlying
command related to a TPFIVIS.

* Training data: Training dataset would contain a
phrase by which the user implies a certain
command, as the feature and the mapping to a
method in a wrapping class of TaskExecutors, as the
label, per each example.

iiii
GENIVI

VCIVING Pipeline on EmulationCore: Step 3 — Interpretation

A bag of words Is maintained by the algorithm for
encoding into numeric data.

It Is used to convert text data to numerical format.
Finally the model is trained to accept textual input

and return a mapping to existing TaskExecutor
method.

iiii
GENIVI

VCIVING Pipeline on EmulationCore: Step 3 -
Interpretation

* The textual data is passed through the described
model.

* This would provide us a TaskExecutor name followed
by a method inside it.

* This combination is known as a Mapping.
* Mapping is returned through this step.

iiii
GENIVI

VCIVING Pipeline on EmulationCore: Step 4 -
Execudon

* The respective mapping to the method(from Step 3) is
converted to a callable function(in python).

* This function would collect data by calling other different
functions and methods which are required to execute
TPFIVIS.

* Ultimately, the method will be executed,

* In a separate thread
* Passing required data as arguments.

iiii
GENIVI

Workflow of EmulationCore

EmulationCore proceeds through the fol
steps.

a. Reading the Settings file _
Settings file is a JSON file where all required parameters reqt
for EmulationCore are stored. —a
A SettingsContainer is used to pass the settings throughout the
program. -

iiii
GENIVI’

Workflow of EmulationCore

b. Initialization of I/O Handlers
Input Handler defines and controls all the Input
Mechanisms(Wrappers around Input Devices such as
Microphone).
TaskExecutors(Wrappers around TPFIVIS) are loaded dynamically
Into the program during the Initialization of Input Handler.
Output Handler defines and controls all the Output
Mechanisms(Wrappers around Output Devices such as Speaker)
while handling a queue-based mechanism.

iiii
GENIVI

Workflow of EmulationCore

c. Initialization of Text-Input Handler
Text-Input handler is merely for debugging purposes.
Inputs through the console are accepted and currently supports
several commands to bypass microphone inputs, output data from
speaker etc.

Comprehensive Explanation:
https://bit.ly/2R8X6¢c0

iiii
GENIVI

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

