
GENIVI Development Platform
Activities
October 10, 2018 | GENIVI Technical Summit, Bangalore

Gunnar Andersson
Development Lead, GENIVI Alliance

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries.

Copyright © GENIVI Alliance 2018.

Code Development Overview

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

GENIVI Code development

• Mission: Set automotive standards & specifications and
produce code maintained within or by the GENIVI Alliance

 GENIVI Development Platform
 Software Components
 GENIVI Baseline
 Domain-interaction technologies
 Software Development Environment

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

GENIVI Code development

• Supporting activities and functions
 Confluence & JIRA
 Continuous Integration/Deployment
 Quality & Maintenance Policy
 GENIVI Open Source Policy and License Review Team

• Google Summer of Code project
 Machine learning and voice control

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

GENIVI Development Platform (GDP)

• Yocto build system
• Normally 2 Released/tagged major versions per year

(but we recommend “GDP Master” as a rolling release)
• Proving ground for GENIVI software
• And starting point for a lot of product development
• “IVI demo” → changed to development & platform focus

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

GENIVI Development Platform (GDP)

• GDP is a...
• … Yocto-built,
• … Continuous-Integration-backed,
• … Profile divided,
• … Simple,
• … Logical,
• Base platform for early development of Automotive Software
• … with integrated GENIVI technologies, + matching SDE
• … and trying out useful “non-GENIVI” tech (e.g. NiFi Big Data)

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

GENIVI Development Platform – Recent Updates

• OSTree support (some targets)
• Lots of recipe/project quality-improvements, cleanups
• Updates to latest GENIVI baseline
• Updated BSPs
• Updated to support rocko and sumo branches, with thud

to follow shortly.
• Note: Easy python dev (see new web page)
• “Big Data” support: MiNiFi C++
• Profiles

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

Software Development Environment (SDE)

 | Month xx, 2018 | Copyright © GENIVI Alliance 2018

• Providing a
•
•
• Rework ongoing. Lots of ideas. Less time.
• As always – show interest and provide help, will increase

priority

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

Software Development Environment (SDE)

• Providing a integrated starting
point for development:

• Matching Yocto SDK
• GENIVI tools

 DLT Viewer
 Franca/Common-API code-generators

• Qt Creator with ready-to-deploy settings
• Eclipse with Franca & plugins installed

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

Software Development Environment (SDE)

• ...being fundamentally reworked
• for flexibility, quicker build

& updates.
• Lots of ideas. Less time.

• As always, show interest & offer to help
and the priority will be increased

Releases?

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

GDP 14.0 (rocko-based) is tagged and ready!

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

GDP 14.1 (sumo-based) is tagged and ready!

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

As always, GDP Master
(plus frequent communication among

developers) is recommended.

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

GENIVI Development Platform – Variants & Profiles

• Starting with GDP 14 a long-expected “feature”

• GDP is split into 3 variants (a.k.a. profiles)
 Core : A core to build on. No graphics.
 IVI : Everything (almost). Also, “compliant”
 Data : cloud-connectivity, telematics & “big data”

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

GENIVI Development Platform - potentials

• Of course, profiles build-out
• Flatpak build-out

 Rock-solid containment (RedHat standard tech)

 Tools & standard method for application dev already there

 Versioned, fully controlled application build environment

 Versioned, fully controlled runtime

 Storage & update in OSTree, (just like the system)

• GDP partial impl. (container sandbox) since v12.
Application “handling” still pending interest

• Various ideas around great Yocto CI/CD speed-up and SDE

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

GENIVI Development Platform – support functions

 Go or GoCD nowadays (https://go.cd)
 We needed pipeline focus from the start
 Somewhat similar to Jenkins plus various plugins
 GDP CI/CD is done at https://go.genivi.org
 Details, instructions, account see GENIVI Wiki

 GENIVI “CI Policy”: Go for GDP, GitHub integrated services for
components (Travis, AppVeyor, Semaphore, CircleCI...)

https://go.cd/
https://go.genivi.org/

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

GENIVI Development Platform – other support functions

 Public Confluence and JIRA
 Email to: genivi-projects@lists.genivi.org

https://at.projects.genivi.org/wiki/GDP
https://at.projects.genivi.org/jira/browse/GDP
mailto:genivi-projects@lists.genivi.org

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

GENIVI Development Platform – CIAT infrastructure
 Pipelines because:

 Logically separate stages Build, Test, Upload

 Chain pipelines together

 Control of artifacts going into and out of each stage

 Go.cd because:
 Pipelines from the beginning. We knew we needed them

 Powerful templating with combination of Parameters & Env. Variables

 It was familiar (for the person installing it)

 One-shot install, less plugins

 There are other systems... potentially even better

https://go.genivi.org/go/pipelines/GDP-SDE-minnowboard/25/Assemble/2

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

Quality & Maintenance Policy – Scope

 The document outlines code quality requirements and maintenance
processes for all* software hosted on GENIVI GitHub account.

 There are different requirements depending on maintenance level
 These are minimum common principles only – each maintainer retains

a lot of freedom to define the details (see later slides), and can of
course do more.

*Except if GENIVI GitHub hosts a fork which has a clear upstream location
 defining its own processes.

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

Background & Needs

 Promote trust in GENIVI code quality and development processes
 Quickly understand which software projects are still maintained
 Document process/policy to back up our interaction with maintainers
 Agree on expectations between GENIVI and code maintainers

for all projects hosted on GENIVI’s GitHub account
 Accountability to a mutually agreed standard & process for recognizing

and addressing any project issues with maintainer (manager).
 Provide better information to our community, what to expect, and how

to resolve issues

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

Component Maintenance Level

1. Maintenance level Expectations

Response time: Reading and submitting a first on-topic response to Tickets/Issues, Mailing List questions,
 and submitted patches / pull-requests.

Resolution time: Discussing towards, and reaching, a conclusion to close a ticket, merge (or reject) a patch
or pull-request. (Understandably, resolution time can differ depending on the situation).

Response time: 1-3 days
Resolution time: ~1 week

Response time: 1-2 weeks
Resolution time: ~2-4 weeks

Response time: N/A
Resolution time: N/A

ACTIVE

PARTIAL

NOT ACTIVE

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

Quality & Maintenance

 All GENIVI GitHub projects shall follow the Q&M policy

 Requirements and guidelines around these topics:

 Continuous Build
 Community communication
 Static Analysis
 Automated Testing
 Commit messages, etc.

Google Summer of Code Project

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

Video presentation
Including the slides at the end of this presentation, plus narration.

Also including live demo of the system.

Video linked from this page : https://at.projects.genivi.org/wiki/x/xImxAQ

https://at.projects.genivi.org/wiki/x/xImxAQ

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

GSoC slides

Here follows a copy of GSoC project slides.
(They were showed on the video but are here so we can refer to them)

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

GENIVI - Google Summer of Code
2018 project

Chandeepa Dissanayake
Gunnar Andersson, GENIVI

Jeremiah Foster, Luxoft

Chandeepa Dissanayake
Gunnar Andersson, GENIVI

Jeremiah Foster, Luxoft

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries.

https://creativecommons.org/licenses/by-sa/4.0/

GENIVI’s 2018 Google Summer of Code project

❑ GENIVI participated for the second year in the
Google sponsored “Summer of Code”.

❑ Google Summer of Code is a global program
focused on introducing students to open source
software development. Students work on a 3 month
programming project with an open source
organization during their break from university.

❑ Project focus this year was on using voice
commands to an InVehicle Infotainment system.
This ambitious project integrated state of the art
technologies and had a successful outcome thanks
to the student and mentors.

https://summerofcode.withgoogle.com/

GSoC results

The GSoC project

Provides a stipend to a student so they
can focus on code

Teaches a student about key interactions
in developing open source software

Ideally it provides a new contributor to an
open source project

Code, proof-of-concepts, bug fixes,
documentation and other artifacts are
provided to the community at large which
can be reused

Results and artifacts

Integration of a Text-To-Speech (TTS)
solution on a GENIVI target

Test of an end to end TTS and Voice
Control integrated system with
Google Cloud

On hardware and Qemu emulated
testing

Recipes and strategy for embedded
targets built with Yocto

Participants
❑Chandeepa Dissanayake -- Participating student. Responsible for input on

specification as well as how the resulting implementation meets the specification.
Responsible for technology selection, discussion of technology selection with
mentors, implementation of technology including any additional source code.

❑Gunnar Andersson -- GENIVI lead developer. Played key technical mentorship
role, responsible for advising the student on technical choices as it relates to
GENIVI. Gave guidance in implementation as well as technical assistance on
integration in GENIVI’s development platform. Code and technology review.

❑Jeremiah Foster -- GENIVI community manager. Project management, liaison
with GSoC org, documentation and dissemination.

Functionality
❖ At a high level Voice Control for IVI Next Generation (VCIVING)

implements voice commands on GENIVI’s InVehicle Infotainment
platform.

❖ It provides mechanism for

➢ capturing speech input via a microphone

➢ transform speech into text

➢ text recognition via a neural network

➢ processing the resulting commands

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

VCIVING Pipeline

Audio (speech)
input through
microphone

Interpret text via
neural network

Execute command
on target

• VCIVING pipeline is composed of four consecutive steps

Transform speech
to text

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

VCIVING Pipeline Step 1: Capturing Input

Just as in the Mozilla
example, the first step is to
capture speech input from
the user. The python code
used uses a microphone as
the input mechanism, then
passes that to the speech
recognition functions.

Input: User’s speech through mic

Output: Digital audio of user’s voice

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

VCIVING Pipeline Step 2: Speech-to-Text
● COTS hardware plugged directly into a USB port

on a Raspberry Pi 3 is sufficient for voice capture
on GNU/Linux

● Once we have the audio data, we convert it into
text for processing

● Adopting any technology such as pre-trained
model or third party API, the audio data is
converted into text. (Implementation dependent)

● Google's Speech To Text API then returns back the
textual representation of the captured speech

Input: Digital audio of user’s voice

Output: Text version of user’s spoken
words

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

VCIVING Pipeline Step 2: Speech-To-Text

This project used Google Cloud Speech-To-Text API together with a third-
party library, but also looked at technology from Mozilla. The goal was to be
agnostic to where the pre-trained model resided

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

VCIVING Pipeline Step 3: Interpretation

• The textual representation of the audio data received from step 2, is
interpreted.

• The underlying meaning (the gist) of the user’s speech is refined and
converted to a Task/Process/Function in the IVI system

• A pre-trained model which contains a wide-variety of different phrases through
which the user can execute the IVI commands, should be used.

• Neural network model training requires lots of data to be effective as well as
ample computing power.

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

VCIVING Pipeline Step 3: Interpretaton

• The model should accept the phrases/sentences as the input and map them to a TPFIVIS.

• Instead of directly addressing TPFIVIS, a wrapper should be used where it handles the interactions with
IVI and also directly providing outputs based on the responses from IVI.

Input

• The textual representaton of user’s speech.

Output

• Mapping to a TPFIVIS wrapped functon.

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

VCIVING Pipeline Step 4: Execution

• After the user’s speech has successfully been interpreted, the wrapper function should be called
subsequently.

• The wrapper function should,
• Execute the TPFIVIS(by interacting with IVI systems directly).
• Provide outputs to the user regarding the status of execution.
• Handle every necessity after it is called.

• For example: If more information is required, implementing features like continued
conversation with user.

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

VCIVING Pipeline Step 4: Executon

• Since wrapper function is handling the execution after it gets called, there is no output from this step.

• The wrapper functions will handle the output by itself.

Input

• Mapping to a TPFIVIS wrapped function.

Output
• (No Output)

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

EmulationCore

• EmulatonCore is the implementaton of VCIVING on
COTS.

• It's name derives from the idea that this emulates a
complete system on target

• It performs the same tasks;
1. Captures inputs from the user.
2. Recognizes and interprets speech to text
3. Executes the task which is meant by the input.

References
● Project Wiki and Documentation:

○ https://bit.ly/2R8X6c0
● Project Repository:

○ https://github.com/GENIVI/GENIVI-GSoC-18
○ Build Instructions: https://bit.ly/2Io73yk

● Initial Project Idea
○ https://bit.ly/2N915Cb
○ Section: Voice command of IVI system

● Comprehensive Explanations, Guides and Documentation
○ EmulationCore: https://bit.ly/2R8X6c0
○ Input Handling and Input Handler: https://bit.ly/2IpDrAt
○ Output Handling and Output Handler: https://bit.ly/2Iror5h
○ Task Executors: https://bit.ly/2y1J3w4

https://bit.ly/2R8X6c0
https://github.com/GENIVI/GENIVI-GSoC-18
https://bit.ly/2Io73yk
https://bit.ly/2N915Cb
https://bit.ly/2R8X6c0
https://bit.ly/2IpDrAt
https://bit.ly/2Iror5h
https://bit.ly/2y1J3w4

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

Functons of EmulatonCore

1. The main focus of the EmulatonCore would
be to capture and control the inputs and their
fow and to handle the outputs.
• Example: Once user speaks, the input is grabbed

through the microphone by listening consistently,
performs Speech Recogniton to convert audio data to
its textual representaton, fnally interpretng the data.

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

Functons of EmulatonCore

2. Upon interpretaton, the executon of the
underlying TPFIVIS is handled over to the set of
wrapper classes: TaskExecutors.
• Example: The fnal interpretaton from EmulatonCore will

be a mapping to a method in one of the wrapping classes
of TaskExecutors. Subsequently, the respectve method
will be executed.

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

VCIVING Pipeline in EmulatonCore

1. Step 1: Grabbing Inputs
• Input Mechanisms are used to listen and read

inputs from Input Devices.

2. Step 2: Speech-To-Text
• Third party APIs and libraries are used to convert

the audio data to its textual representaton(Speech
Recogniton).

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

VCIVING Pipeline in EmulationCore

3. Step 3: Interpretation
A pre-trained model is utilized to understand the
user speech.
4. Step 4: Execution
Wrapper classes, wrapped around TPFIVIS are
used.

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

VCIVING Pipeline on EmulatonCore: Step 1 –
Grabbing Inputs

•The primary concern of this step is to
collect/grab informaton from the input devices.

•The Input Devices are wrapped inside another
set of wrapper classes: InputMechanisms.

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

VCIVING Pipeline on EmulationCore: Step 1 – Grabbing Inputs

Each an every Input Device is wrapped inside
a separate InputMechanism class.
Depending on how each InputMechanism
reads input data from the Input Device,
implementation is slightly different with
several characteristic methods.

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

Example for Step 1: Microphone

• Microphone is the major Input Mechanism in the
EmulatonCore.

• When the microphone is initalized, functons are
defned to,
• Wait for input from the microphone.
• Transfer the captured audio data to Step 2(Speech-

To-Text).

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

Example for Step 1: Microphone

Since interpretation of the speech is done
under another protocol(Grabbers and
GrabberController), it is not implemented in
the wrapper class.
Listening to the microphone and processing
is carried out on a separate thread.

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

VCIVING Pipeline on EmulatonCore: Step 2 –
Speech-To-Text

•Audio data received from the microphone is
converted to textual representaton.

•Google Cloud Speech-To-Text API was used
together with a third-party library in order to
facilitate the process.

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

VCIVING Pipeline on EmulationCore: Step 2 – Speech-To-Text

Audio data is sent to Google STT API which
would return back the textual representation.
If useful speech is not found in audio data, an
error will be thrown by Google APIs which is
handled by notifying the user.

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

VCIVING Pipeline on EmulatonCore: Step 3 –
Interpretaton

• A model is trained to interpret/refne the underlying
command related to a TPFIVIS.
• Training data: Training dataset would contain a

phrase by which the user implies a certain
command, as the feature and the mapping to a
method in a wrapping class of TaskExecutors, as the
label, per each example.

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

VCIVING Pipeline on EmulationCore: Step 3 – Interpretation

A bag of words is maintained by the algorithm for
encoding into numeric data.
It is used to convert text data to numerical format.
Finally the model is trained to accept textual input
and return a mapping to existing TaskExecutor
method.

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

VCIVING Pipeline on EmulatonCore: Step 3 –
Interpretaton

• The textual data is passed through the described
model.

• This would provide us a TaskExecutor name followed
by a method inside it.

• This combination is known as a Mapping.
• Mapping is returned through this step.

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

VCIVING Pipeline on EmulatonCore: Step 4 –
Execution
• The respectve mapping to the method(from Step 3) is

converted to a callable function(in python).
• This function would collect data by calling other different
functions and methods which are required to execute
TPFIVIS.

• Ultmately, the method will be executed,
• In a separate thread
• Passing required data as arguments.

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

Workflow of EmulationCore

EmulationCore proceeds through the following
steps.

a. Reading the Settings file
Settings file is a JSON file where all required parameters required
for EmulationCore are stored.
A SettingsContainer is used to pass the settings throughout the
program.

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

Workflow of EmulationCore

b. Initialization of I/O Handlers
Input Handler defines and controls all the Input
Mechanisms(Wrappers around Input Devices such as
Microphone).
TaskExecutors(Wrappers around TPFIVIS) are loaded dynamically
into the program during the initialization of Input Handler.
Output Handler defines and controls all the Output
Mechanisms(Wrappers around Output Devices such as Speaker)
while handling a queue-based mechanism.

Copyright © GENIVI Alliance 2017 | May 9, 2017 |

Workflow of EmulationCore

c. Initialization of Text-Input Handler
Text-Input handler is merely for debugging purposes.
Inputs through the console are accepted and currently supports
several commands to bypass microphone inputs, output data from
speaker etc.

Comprehensive Explanation:
https://bit.ly/2R8X6c0

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

