
Graphics Project & Distributed HMI
October 10, 2018 | GENIVI Technical Summit, Bangalore

Gunnar Andersson
Development Lead, GENIVI Alliance

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries.

Copyright © GENIVI Alliance 2018.

Graphics Sharing and Distributed HMI

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

Project Goals

 All project participants gain thorough understanding of available choices
 Produce technology demonstrators, newly created or (if exists already) found

and highlighted.
 Publish hard data on learning: Performance, resource needs.
 Seek industry acceptance & alignment among Linux distributions, as well as

across operating systems and domains
 Seek alignment on solutions and protocols among proponents of “closed”

alternatives – commercial HMI-tools, etc.
 Promote open standards and implementations across industry
 Separately identify and describe Hypervisor-based opportunities, how they

differ, characteristics, advantages and disadvantages.
 Summarize and create (implementation) documentation for recommended

choices

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

Definitions – Graphics Sharing

1) Graphics in the form of bitmap, scene graph, or drawing
commands generated on one ECU and transferred for
display by another ECU (or between virtual machine
instances)

2) GPU sharing in a virtualized setup

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

Definitions – Distributed HMI Compositing

Methods and technologies to turn a multi-ECU system into
what appears and acts as a single user-experience.

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

The 5 Categories of Graphics Sharing technologies

 GPU sharing
 Display sharing
 Surface sharing

 Sub-category: Virtual Display.

 API Remoting
 Shared state, independent rendering

Reflections on GSHA as a domain-
interaction example

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

Surface Sharing

8 | Month xx, 2018 | Copyright © GENIVI Alliance 2018

• Operating systems exchange graphical (bitmap) content.

• Then, each OS has full flexibility to use this content.
• In some cases, the compositor API is made available remotely,

e.g. Wayland->Waltham.

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

• Wayland is a display server protocol for Linux
• Wayland defines how applications communicate their graphical

content (surfaces) to a compositor that assembles (multiple)
applications’ combined appearance into the complete graphical
screen output.

• On most computers this is a local communication between apps
and system.

• Waltham enables Wayland to work over a network. (very simplified*)

Since Wayland juggles “surfaces” - Waltham becomes an
example of surface sharing

• *GSHA project wiki contains an analysis with much more depth

Surface Sharing example: Wayland, Waltham

9 | Month xx, 2018 | Copyright © GENIVI Alliance 2018

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

• Other examples exist – probably numerous
• Proprietary HMI systems in particular
• Wayland is very Linuxy… can Waltham / Wayland protocol over

network) become cross-platform standard?
 GSHA topic: Study and compare to Android APIs

• Surface sharing with QNX? – See later case study

Surface Sharing

10 | Month xx, 2018 | Copyright © GENIVI Alliance 2018

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

Virtual Display (surface sharing)

11 | Month xx, 2018 | Copyright © GENIVI Alliance 2018

• The project considers this a sub-category to surface-sharing.

• Full display transfer by encoding as a video stream.

• Often characterized by a “transparent” API such that applications
can use it as if it were a real display. (But the system still
identifies “Virtual Display” as a separate object type – case in
point Android API)

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

GPU Sharing

12 | Month xx, 2018 | Copyright © GENIVI Alliance 2018

The GPU can be used from multiple operating systems, so it is
shared. Concurrent access to the physical GPU has to be
controlled by a hypervisor, hardware or other means which are
implementation specific.

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

GPU Sharing

13 | Month xx, 2018 | Copyright © GENIVI Alliance 2018

Considerations
• API standard?
• Unique hardware support?

 Pass-through instead of virtualization?
• Portability across hardware standards
• Are standards feasible?
• → Working session tomorrow

(Note: This is planned for the Hypervisor Working session)

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

Display Sharing

14 | Month xx, 2018 | Copyright © GENIVI Alliance 2018

One physical display can be shared across multiple operating systems.

A HW compositor unit composites final display buffer from HW Layers of each
OS.

This requires virtualization of the display controller hardware.

Hardware Layers

(contrast or complement: GENIVI Layer Management)

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

API Remoting

15 | Month xx, 2018 | Copyright © GENIVI Alliance 2018

Transfer API calls, corresponding to "drawing commands", or other abstract
graphics representation from one ECU to another. Commands or scene
representation to be executed on the GPU of the receiving ECU.

“Remoting” existing APIs – (note the GPRO project for protocol evaluation)
or
Custom API for the task

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

API Remoting

16 | Month xx, 2018 | Copyright © GENIVI Alliance 2018

Bandwidth efficient?

“It depends...”

Always, sometimes, in special cases only?

A current discussion point within the group

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

Shared State – Independent Rendering

17 | Month xx, 2018 | Copyright © GENIVI Alliance 2018

Each system has independent graphics systems and bitmap information.
The systems only synchronize their internal state and exchange abstract data.

Based on this shared data, each system independently render graphics to
make it appear like they are showing the same or related graphics.

Example: An appearance of synchronized map rendering could be achieved by
drawing maps independently, and exchanging only the GPS position, scale of
map, etc.

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

Shared State – Independent Rendering

18 | Month xx, 2018 | Copyright © GENIVI Alliance 2018

Consequences...

Each participating system needs its own basic graphics (bitmaps, textures)

Data and rules for HMI look & feel must be aligned beforehand,

Software updates – required on both sides if look&feel changes

Navigation example: Both must have map data.

Advantages:
 - The state/data transfer could be very small and bandwidth efficient

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

Shared State – Independent Rendering

19 | Month xx, 2018 | Copyright © GENIVI Alliance 2018

Consequences...

Each participating system needs its own basic graphics (bitmaps, textures)

Data and rules for HMI look & feel must be aligned beforehand,

Software updates – required on both sides if look&feel changes

Navigation example: Both must have map data.

Advantages:
 - The state/data transfer could be very small and bandwidth efficient

Copyright © GENIVI Alliance 2018 | 10 October 2018 |

Thank you!

Visit GENIVI at http://www.genivi.org or http://projects.genivi.org

Contact us: help@genivi.org

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries.
Copyright © GENIVI Alliance 2018.

http://www.genivi.org/
http://projects.genivi.org/
mailto:help@mail.genivi.org

First 2 Case Studies!

Case Studies (first session)

 | Month xx, 2018 | Copyright © GENIVI Alliance 2018

RAMSES : BMW Car IT
(API Remoting) – BMW

Violin Yanev (BMW)

Android & Linux
Navigation interaction HMI

(Shared State) – HARMAN

Sergey Klevitskiy (HARMAN)

Case Studies (session two)

 | Month xx, 2018 | Copyright © GENIVI Alliance 2018

• Qt studies : The Qt Company

 Qt Remote Objects (Shared State)

 Qt WebGL (API Remoting)

 Qt WebAssembly (API Remoting)

• Implementing Waltham in practice : ADIT/Bosch
(Surface Sharing)

• Android/QNX surface exchange : Harman
(Surface Sharing)

• The Canvas-demo : Renesas
(Display Sharing, GPU sharing)

• AllGo Multiple-display demo : AllGo
(Virtual Display)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

