
Bringing the Car to the Internet
October 10, 2018  |  GENIVI and W3C – Enabling the Connected

Car through Collaboration 

Rudolf J Streif
Networking Expert Group Lead, GENIVI Alliance

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries.

Copyright © GENIVI Alliance 2018.



Automotive Leadership meets Web Innovation

www.w3c.org/auto

www.genivi.org



W3C Automotive Working Group

• Mission – develop specifications for an open web platform for 

developers to access vehicle data through IVI systems and 

vehicle data protocols

• Participants – Access, Alibaba Group, APTOPT, Audi, Baidu, 

Caruso GmbH, ETRI, Fraunhofer Gesellschaft, GENIVI Alliance, 

Geotab, IBM, INRIX, Institut Telecom, International Forecourts 

Standards Forum, Jaguar Land Rover, KDDI, LG Electronics, 

Mitsubishi Electric, VW

• Status – Vehicle Information Service Specification (VISS) is 

currently in Candidate Recommendation (CR) state to become an 

official W3C standard.



The Problem

Smart City

Intermodal 

Transportation

Smart Home

Connected 

Devices

V2I V2V



The Challenge

• Providing access to vehicle status information and data to cloud 

services, web applications, mobile devices and more.

• There is no standard convention for a vehicle data API.

• OEMs wish to be able to easily extend a standard API with signals 

and controls for their purposes.

• Security mechanisms are required that provide authentication and 

authorization to access vehicle signals and control.

• Design that decouples signal interface from the electrical 

architecture of the vehicle.



Conventional Approach – “Fat API”

• An API for every signal or control:

• Issues with this approach:
– Addition of new signals and controls requires change of the specification.

– Challenges maintaining backwards compatibility.

– Complexity in providing per-API authorization and access control.

– Single end-point addressing.

var vehicle = navigator.vehicle;

vehicle.vehicleSpeed.get().then(function (vehicleSpeed) {

console.log("Vehicle speed: " + vehicleSpeed.speed);

}, function (error) {

console.log("There was an error"); });

var vehicleSpeedSub = vehicle.vehicleSpeed.subscribe(function (vehicleSpeed) {

console.log("Vehicle speed changed to: " + vehicleSpeed.speed);

vehicle.vehicleSpeed.unsubscribe(vehicleSpeedSub);

});



New Approach – Services with Signal Tree

• The core services get, set, subscribe, unsubscribe, getVSS and 
authorize are provided by a network server.
– The services get, set, subscribe and unsubscribe provide access to 

vehicle signals and controls.

– The service getVSS allows clients to query the server for available 
signals.

– Using the authorize service, the client presents a security token to the 
server for authentication and authorization.

• Vehicle Signals and Controls are identified as nodes of a vehicle 
signal tree.
– A fully qualified signal name addresses a single signal node.

– Wildcards for branches and node names provide for addressing of 
signal groups.



Vehicle Signal Tree
Vehicle Signal Specification



Vehicle Signal Tree

• Tree structure provides 
for hierarchical access 
to signals and 
attributes.

• Branches group signals 
and attributes into 
entities that logically 
belong together.

• Wildcards allow access 
to entire sets of 
signals.

Body 

Type

Body

Attribute Signal Private

Cabin

Refuel 

Position

Door

Count

Body Chassis

Trunk

Open Locked

Body

Suspension

Mode

Signal

Attribute
Branch



Addressing

• Dot-notation for name path.

• Last path component, called node, represents the signal or 
attribute.

• Leading path components represent the branches.

• Wildcards can be used to address multiple signals and/or 
branches.

Signal.Chassis.Brake.FluidLevel

Signal.Drivetrain.FuelSystem.Level

Attribute.Cabin.Door.Count

Attribute.Engine.Displacement



Specification Format

• Formatted as YAML lists

• Simple conversion into other formats such as JSON, France IDL, CSV, 
and more

• # denotes a comment or a directive

- Signal.Drivetrain.Transmission:

type: branch

description: Transmission-specific data

- Signal.Drivetrain.Transmission.Speed:

type: Int32

min: -250

max: 250

unit: m/s

description: Current vehicle speed, sensed by gearbox



• Tools written in Python transform VSS YAML (vspec) format into other formats.

• Standard Python library parses VSS YAML into a data structure.

• Output generators use the data structure to write their specific format.

• Output generators for Franca IDL, JSON, CSV and VSI are currently available. Other generators can 
easily be added.

• The VSI generator creates an alphabetically sorted list of the fully qualified signal and attribute names 
and assigns an index value to them.

Format Transformation

vss.vspec

attribute.vspec

signal.vspec

oem.vspec

VSS

Parser

Franca IDL 

Generator

JSON 

Generator

CSV

Generator

VSI

Generator

Franca IDL

Specification

JSON

Specification

CSV

Specification

VSI

Generator



• Contributor forks GENIVI VSS repo.

• Contributor makes changes and submits pull-request against develop branch.

• Contributor e-mail genivi-projects mailing list pull-request info (hypertext link).

• Maintainer and contributors discuss and approve. Maintainer merges pull request.

• Releases are created by merging the develop branch into the master branch and tagging the master 

branch.

Contribution and Releases

• Repository on Github under the GENIVI organization:
https://github.com/GENIVI/vehicle_signal_specification

master

develop

V1
GENIVI Github Repo

V2 V3 V4

develop

Contributor Fork

PR #1 PR #2 PR #3 PR #4 PR #5

ML ML ML ML ML

https://github.com/GENIVI/vehicle_signal_specification


Architecture



TCU

IVI / Headunit

Web 

Browser

Web 

Runtime

Vehicle Data Interfaces Architecture

Vehicle Signal 

Interface 

(VSI)

RVI

Core

IoTivity BridgeWebSocket

Server (WSS)

JS Library JS Library

Managed 

Runtime

RVI

Core

NiFi

Processor

Ingestion

Vehicle Bus



TCU

IVI / Headunit

Web 

Browser

Web 

Runtime

Vehicle Data Interfaces Architecture

Vehicle Signal 

Interface 

(VSI)

RVI

Core

IoTivity BridgeWebSocket

Server (WSS)

JS Library JS Library

Managed 

Runtime

RVI

Core

NiFi

Processor

Ingestion

Vehicle Bus

GENIVI

W3C

OCF



Vehicle Information Service Specification (VISS)



Vehicle

TCU

• A web socket server (NodeJS
etc.) provides access to vehicle 
signals.

• Web clients such as applications 
running inside a web runtime or 
a web browser communicate 
with the web socket server using 
a JavaScript library which 
implements the web socket 
server protocol and exposes an 
object API.

• Native clients can directly use 
the web socket server protocol.

• Clients can be agents with no 
UI or applications with UI.

Overview

IVI / Headunit

Web 

Browser

Web 

Runtime

WebSocket

Server (WSS)

JS Library JS Library

Managed 

Runtime

Internal 

Web Server

Internet 

Web Server



Service Messages

Service Messages

authorize Enables client to pass security tokens for Security Principals to the server to 

support access-control.

getVSS Allows the client to request metadata describing signals and data attributes that are 

potentially accessible.

get Enables the client to get a value once.

set Enables the client to set a value once.

subscribe Enables the client to receive a notification containing a JSON data structure with 

values for one or more vehicle signals and/or data attributes. The client requests 

that it is notified when the signal changes on the server.

unsubscribe Allows the client to notify the server that it should no longer receive notifications 

based on that subscription.

unsubsribeAll Allows the client to notify the server that it should no longer receive notifications for 

any active subscription.



Repository and Specification

https://github.com/w3c/automotive

https://w3c.github.io/w3c/automotive

https://github.com/w3c/automotive
https://w3c.github.io/w3c/automotive


Thank you!

Visit GENIVI at http://www.genivi.org or http://projects.genivi.org

Contact us: help@genivi.org

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries.

Copyright © GENIVI Alliance 2018.

Visit W3C Automotive at http://www.w3c.org/auto

https://www.w3.org/auto/wg / https://www.w3.org/community/autowebplatform

Contact Ted Guild: ted@w3c.org

http://www.genivi.org/
http://projects.genivi.org/
mailto:help@mail.genivi.org
http://www.w3c.org/auto
https://www.w3.org/auto/wg
https://www.w3.org/community/autowebplatform
mailto:ted@w3c.org


Backup Slides



Vehicle Signal Tree
Vehicle Signal Specification



Specification Format – Branch Description

• Fields

– type – always set to branch for a branch

– description – informative text describing the branch

- Signal.Drivetrain.Transmission:

type: branch

description: Transmission-specific data



Specification Format – Signal Description

• Fields
– type – data type expressed as France IDL data type

– unit – SI unit unless the type is Boolean

– min, max – unless the type is Boolean or enumeration

– enum – enumeration values for enumeration

– description – informative text describing the signal

- Signal.Drivetrain.Transmission.Speed:

type: Int32

min: -250

max: 250

unit: m/s

description: Current vehicle speed, sensed by gearbox



Specification Format – Attribute Description

• Fields
– Same as signal

– value – attribute setting

• Attributes are used to describe configuration data.

- Attribute.Cabin.Door.Count:

type: Uint8

value: 4

description: Current vehicle speed, sensed by gearbox



Aggregate File Inclusion

• Vehicle signal specification files (vspec) can include other 
vspec file using the #include directive.

• Content of the included file is inserted into the including file at 
the position of the #include directive.

• Facilitates collaboration and minimizes editorial conflicts.

vss.vspec

attribute.vspec

signal.vspec

oem.vspec

# top level vspec

#include attribute.vspec

#include signal.vspec

#include oem.vspec

vss.vspec



Reuse File Inclusion

• Specification fragments are included at a specific position of the 
signal tree.

• Specification fragments can be reused and an update is 
automatically reflected everywhere where the fragment is used.

Signal

Cabin

Door

Open

Row1

Left Right

Row2

Left Right

Locked

Open

Locked

Open

Locked

Open

Locked

# door signals

- Open:

type: Boolean

description: Door is open

- Locked:

type: Boolean

description: Door is locked

door.vspec

# doors

#include door.vspec Signal.Cabin.Door.Row1.Left

#include door.vspec Signal.Cabin.Door.Row1.Right

#include door.vspec Signal.Cabin.Door.Row2.Left

#include door.vspec Signal.Cabin.Door.Row2.Right

cabin.vspec



Private OEM Extensions

Body 

Type

Body

Attribute Signal

Cabin

Refuel 

Position

Door

Count

Body Chassis

Trunk

Open Locked

Private

OEM_X

Teleporter

Mode

WarpDrive

Power… …

vss.vspec oem_x.vspec

# Include standard vspec

#include vss.spec

# Add proprietary signals

- Private.OEM_X.Teleporter.Mode:

…

- Private.OEM_X.WarpDrive:

…

oem_x.vspec

• OEMs can use GENIVI vspec as a starting point and add proprietary signals.

• Use cases for
– Reserved use by OEM and chosen vendors;

– Public use by 3rd party application developers.

• Mature private extensions intended for public use can be submitted for VSS inclusion.



Attribute Declaration and Definition

Body Type

Body

Attribute

Cabin

RefuelPos Door

Count

vss.vspec

# Include standard vspec

#include vss.spec

# Override/define attributes

- Attribute.Body.BodyType:

value: Sedan

- Attribute.Cabin.Door.Count:

value: 4

oem_x.vspec

• Standard VSS either
– Only declares an attribute or

– Declares and attribute and assigns a default value.

• Declaration is overridden by definition in an OEM- or model-specific VSS file 
with the correct value.

Body Type

value: Sedan

Body

Attribute

Cabin

Refuelos

value: rearleft
Door

Count

value: 4

oem_x.vspec



Overriding Signal Definitions

GearChangeMode

enum: [ “auto”, “manual” ]

Drivetrain

Signal

vss.vspec

# Include standard vspec

#include vss.spec

# Override/define signal definitions

- Signal.Drivetrain.GearChangeMode:

enum: [“auto”, “manual”,

“semi-auto” ]

oem_x.vspec

• Standard vspec lacks setting or has incorrect setting for a OEM/model 

etc.

• OEM/model-specific vspec can override the setting.

oem_x.vspec

GearChangeMode

enum: [ “auto”, “manual”,

“semi-auto” ]

Drivetrain

Signal
# Default signal definitions

- Signal.Drivetrain.GearChangeMode:

enum: [“auto”, “manual” ]

vss.vspec



Vehicle Information Service Specification (VISS)



Authorization – Security Principles

Security Principal Token Name Description

User Authorization The user that the client is making requests on 

behalf of. This may be a person e.g. driver or 

passenger, it may be an organisation e.g. 

Emergency Services or may be any other 

legal entity.

Device www-vehicle-device The originating device that is making the 

request to the server. This may be an ECU in 

the vehicle that is hosting the WebSocket

Server or may be a device that is connected 

to the vehicle via a WiFi hotspot or may be 

any other device.



Authorization – Example

if(userTokenOnly){

// Pass user token only

vehicle.send('{ "action": "authorize",

"tokens": { "authorization": "<user_token_value>" },

"requestId": "<some_unique_value>" }');

} else if (deviceTokenOnly) {

// Pass vehicle/device token only

vehicle.send('{ "action": "authorize",

"tokens": { "www-vehicle-device": "<device_token_value>" },

"requestId": "<some_unique_value>" }');

} else if (userAndDeviceToken) {

// Pass tokens for user and device

vehicle.send('{ "action": "authorize",

"tokens": { "authorization": "<user_token_value>",

"www-vehicle-device": "<device_token_value>" },

"requestId": "<some_unique_value>" }');

}



Authorization – Security Token

Element Description

Path The signal path the token authorizes. The path may 

be a branch name or contain wildcards to authorize 

entire branches.

Actions List of actions that the token authorizes for the path. 

The list contains at least one of the actions getVSS, 

get, set, subscribe and unsubscribe.

Valid From Timestamp in UTC indicating the date and time from 

which on the token is valid.

Valid Until Tmestamp in UTC indicating the date and time until 

which the token is valid.



Introspection – getVSS

interface vssRequest {

attribute Action  action;

attribute string? path;

};

interface vssSuccessResponse {

attribute Action action;

attribute string path;

attribute object vss;

};

interface vssErrorResponse {

attribute Action action;

attribute string path;

attribute Error error;

};

WebIDL

client -> {

"action": "getVSS",

"path": "Signal.Body"

}

receive <- {

"action": "getVSS",

"path": "Signal.Body",

"vss": { }

}

Message



Get Signal Value – get

interface getRequest {

attribute Action  action;

attribute DOMString path;

};

interface getSuccessResponse {

attribute Action action;

attribute DOMString path;

attribute any value;

attribute DOMTimeStamp timestamp;

};

interface getErrorResponse {

attribute Action action;

attribute DOMString path;

attribute Error error;

attribute DOMTimeStamp timestamp;

};

WebIDL

client -> {

"action": "get",

"path": "Signal.Drivetrain.Speed",

}

receive <- {

"action": "get",

"path": "Signal.Drivetrain.Speed",

"value": 55,

“timestamp": <DOMTimeStamp>

}

Message



Set Signal Value – set

interface getRequest {

attribute Action  action;

attribute DOMString path;

attribute any value;

};

interface setSuccessResponse {

attribute Action action;

attribute DOMString path;

attribute any value;

attribute DOMTimeStamp timestamp;

};

interface setErrorResponse {

attribute Action action;

attribute DOMString path;

attribute Error error;

attribute DOMTimeStamp timestamp;

};

WebIDL

client -> {

"action": "set",

"path": "Signal.Cabin.Door.*.IsLocked",

"value":{ [ {"Row1.Right.IsLocked" : true },

{"Row1.Left.IsLocked" : true },

{"Row2.Right.IsLocked" : true },

{"Row2.Left.IsLocked" : true } ] }

}  

receive <- {

"action": "set",

"path": "Signal.Cabin.Door.*.IsLocked",

"value":{ [ 

{"Signal.Cabin.Door.Row1.Right.IsLocked" : true },

{"Signal.Cabin.Door.Row1.Left.IsLocked" : true },

{"Signal.Cabin.Door.Row2.Right.IsLocked" : true },

{"Signal.Cabin.Door.Row2.Left.IsLocked" : true } ] 

},

"timestamp": <DOMTimeStamp>

}

Message



Subscription Request – subscribe

interface subscribeRequest {

attribute Action  action;

attribute DOMString path;

attribute object? filters;

attribute string requested;

};

interface subscribeSuccessResponse {

attribute Action action;

attribute string requestId;

attribute string subscriptionId;

attribute DOMTimeStamp timestamp;

};

interface subscribeErrorResponse {

attribute DOMString path;

attribute string requestId;

attribute Error error;

attribute DOMTimeStamp timestamp;

};

WebIDL

interface subscriptionNotification {

attribute string subscriptionId;

attribute DOMString path;

attribute any value;

attribute DOMTimeStamp timestamp;

};

interface subscriptionNotificationError {

attribute string subscriptionId;

attribute DOMString path;

attribute object filters;

attribute Error error;

attribute DOMTimeStamp timestamp;

};



Subscription Request – subscribe

client -> {

"action": “subscribe",

"path": "Signal.Drivetrain.Transmission.TripMeter",

“requestId": 1004 }

}  

receive <- {

"action": “subscribe",

"reqestId": 1004,

“subscriptionId": 35472,

"timestamp": <DOMTimeStamp>

}

Message



Unsubscription Request – unsubscribe

interface unsubscribeRequest {

attribute Action  action;

attribute string subscriptionId;

attribute string requestId;

};

interface unsubscribeSuccessResponse {

attribute Action action;

attribute string? subscriptionId;

attribute string requestId;

attribute DOMTimeStamp timestamp;

};

interface unsubscribeErrorResponse {

attribute Action action;

attribute string subscriptionId;

attribute Error error;

attribute string requestId;

attribute DOMTimeStamp timestamp;

};

WebIDL

client -> {

"action": “unsubscribe",

"subscriptionId": 102,

"requestId": 5273

}  

receive <- {

"action": “unsubscribe",

"subscriptionId": 102,

"requestId": 5273

"timestamp": <DOMTimeStamp>

}

Message



Server-side Filtering

• For signal subscriptions filters 
can be provided to throttle 
messages on the server side.

• Filters only apply to nodes of 
the VSS tree and not to 
branches.

• Filter tags include:
– Interval

– Range

– Minimum Change

// client receives data every 100ms

{ "action": "subscribe",

"path": "<any_path>",

"filters": { "interval": 100 },

"requestId": "<some_unique_value>" }

// client receives data when the value is

// between 100 and 200 (inclusive)

{ "action": "subscribe",

"path": "<any_path>",

"filters": {

"range":{ "above": 100, "below": 200 } 

},

"requestId": "<some_unique_value>" }

// client receives data when the value is below

// 100 (inclusive)

{ "action": "subscribe",

"path": "<any_path>",

"filters": { "range": { "below": 100 } },

"requestId": "<some_unique_value>" }

Message


