

Display and GPU Sharing Case Study

October 10th, 2018 | using Renesas R-Car H3 Canvas Demo

Stephen Lawrence

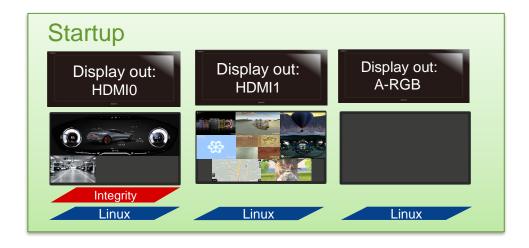
Principal Engineer, Renesas BIT Lead, Genivi

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries.

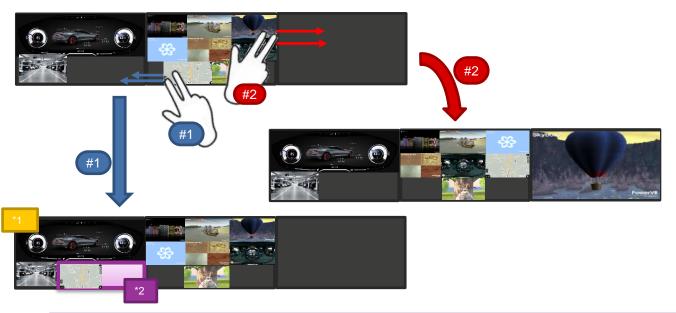
Copyright © Renesas Electronics 2018.

Display and GPU Sharing in Canvas Demo

- Overview
- Video demonstrations
 - Video 1: showing gfx interaction
 - Video 2: focus on gfx sharing into cluster
- Enabling technology
 - Major building blocks
 - Some benefits of the approach



Canvas Demo Overview


- Created to demonstrate consolidation of cockpit onto single H3 SoC running on single Salvator-X board
- Various variants created, combining cluster/adas/ivi, but today showing you Linux gfx sharing into cluster running Integrity
- Demo has three Displays
 - Integrity and Linux share display 1. Display 2 and 3 dedicated to Linux.
- Touch gestures allows Linux apps to be swiped and scaled on screen

Canvas Demo Overview

*1:Make the cluster partially transparent in order to see the Linux graphics.

*2:When Linux app windows are swiped to the display shared with Integrity apps they are put in this space.

Enabling Technology

- H/W (Renesas R-Car H3)
 - GPU Virtualisation
 - IPMMU and GPU Multiple Input Ports, OS ID and GPU Scheduler provides OS guest separation and protection
 - Each OS "sees" its own GPU
 - Display compositor layers with per pixel alpha blending (VSPD IP)
 - Each OS has its own dedicated layer to draw into
 - Compositing them so Linux is behind the Cluster in Z-ordering protects the Cluster from being overwritten
 - Per pixel alpha allows flexible combination of the layers
 - Image/video processing and transformation (various IP)
 - Provides smooth application window transformation
- Green Hills Integrity RTOS and Multivisor Hypervisor (HV)
 - Further strengthens guest separation and protection
 - Cluster Safety OS
 - Display Manager provides Display Sharing for display 0
 - Describes display and GPU each OS sees

Positives

- Linux/Android does not need to know about cluster or concern itself about maintaining a high cluster fps
- Safety OS gains protection from being drawn over by Linux, whilst its performance (fps) is maintained
- If HV already present, no extra protocols to invent to get gfx/interaction etc, from Linux to "other OS" and back. Native apps just do their thing.
- HV Display Sharing can provide flexibility on display size and position for each OS, which can be enhanced further by H/W compositor layer alpha blending.
 - E.g. Present window between cluster dials to Linux for it to draw maps, multimedia.
- But like all tech it of course is not a silver bullet for all use cases...
 - Inter-ECU vs consolidated ECU. Display Sharing vs Surface Sharing.
 - Lucky we have a day to discuss tomorrow!

Thank you!

Visit GENIVI at http://projects.genivi.org

Contact us: help@genivi.org

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries.

