
Qt WebAssembly

● Kimmo Ollila

› WebAssembly is a bytecode format intended to be executed in a web browser
› Allows applications to be deployed to a device without any going through any explicit installation steps

› Device needs to have a compliant web browser

› The applications will be running inside a secure sandbox in the web browser

› Appropriate for apps that do not need full access to device capabilities but benefits from zero-installation process

9/26/18 © The Qt Company2

WebAssembly (Wasm)

› Shared HMI

› Car companion apps (targeted to passangers)
› Benefits zero installation, temporary usage

› Remote control for radio tuner, volume etc. from the rear seat

› Diagnostics, vehicle information

9/26/18 © The Qt Company3

Example use cases

› Qt WebAssembly makes it possible to build Qt applications as WebAssembly modules
› Target Qt applications to run on all major web browsers

› Currently in development, a second tech preview is scheduled for release with Qt 5.12.0

9/26/18 © The Qt Company4

WebAssembly and Qt

› Requires Emscripten
› Toolchain for compiling to asm.js and WebAssembly

› Built using LLVM compiler infrastructure

› Known good version for Qt: 1.38.1

› Getting the code

› The Qt sources can be downloaded from the Qt Account or checked out manually from git repositories

9/26/18 © The Qt Company5

WebAssembly and Qt

› Qt modules for WebAssembly (5.11 TP)
› QtBase (Qt Core, Qt Gui, Qt Graphics)

› QtDeclarative (Qt Qml, Qt Quick)

› Qt Graphical Effects

› Qt Quick Controls

› Qt Quick Controls 2

› Qt Svg

› Qt Web Sockets

› Qt Charts

9/26/18 © The Qt Company6

Supported Qt modules

› Get Emscripten
› Supported host platforms: Linux, MacOS, Windows Subsystem for Linux

› Configure and build Qt

› ./configure -xplatform wasm-emscripten -developer-build -release -static -no-feature-thread -nomake tests -nomake
examples -no-dbus -no-headersclean -no-ssl -no-warnings-are-errors

› make

9/26/18 © The Qt Company7

Building Qt for WebAssembly

› Build like any other Qt application
› /path/to/qmake && make

› Generates .wasm, appname.js and appname.html

› Run your Qt application

› Start a web server (python -m SimpleHTTPServer)

› Open localhost:8000/appname.html in a web browser

› Or use /path/to/emscripten/emrun –browser=firefox appname.html

9/26/18 © The Qt Company8

Building and running Qt application

› Mainly developed and tested on desktop
› Chrome, Firefox, Safari

› Firefox (nightly) has the most performant wasm compiler

› Some mobile testing is done in Android and iOS

9/26/18 © The Qt Company9

Supported browsers

› Wasm modules can be large, but compress quite well
› Compression is typically handled on the server side using standard compression features

● Server compresses automatically

● Provides pre-compressed version of the files

› No need to have special handling of wasm files

9/26/18 © The Qt Company10

Footprint (download size)

› Disabled threading support in WebAssembly

› Nested event loops are not supported

› No QDialog::exec() or new QEventLoop objects

› No access to system fonts

› Apps need to distribute their fonts in .qrc for example

› Qt renders to canvas, not using any other DOM elements

› Accecibility (screen readers) are not supported, text inputs won’t trigger VKBs

› All known issues

› https://bugreports.qt.io/browse/QTBUG-63917

9/26/18 © The Qt Company11

Some known issues

› QtWebAssembly demos available
› https://msorvig.github.io/qt-webassembly-examples/

9/26/18 © The Qt Company12

Demos

https://msorvig.github.io/qt-webassembly-examples/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

