

DECEMBER 2019
Category: Cloud & Connected Services

Vehicle Data Models – Overview & Gap Analysis

Introduction

With the proliferation of connected cars making them the predominant form of automotive transportation in a few
years, a number of parties are working at breaking down the barriers to adoption for mobility services based on
automotive data. At the core of such initiatives lie several vehicle data models.

Models describing data produced by vehicles are highly heterogeneous and non-interoperable to the extent that
many OEMs use proprietary specifications to define thousands of vehicle signals, different unit systems,
modelling patterns and formats. The competition between proprietary solutions and overlapping collaborative
efforts results in a fragmented ecosystem of vehicle data models. This fragmented ecosystem is a major
motivation for the work of the GENIVI Cloud and Connected Services (CCS) Project.

The main goal of this project is to join forces and harmonize activities when designing and implementing the full
data-oriented connected vehicle architecture (in-vehicle and back-end). In our charter, we present a list of
benefits that could be enabled by this project:

 Enable easy interoperability of building blocks, flexibility and choice

 Develop common solutions and software

 Enable access to all data we want to exchange

 Control access to data

 Enable user privacy and data security

 Clarify responsibilities

 Agree on terminology for improving the shared work around data: names, roles, responsibilities

 Facilitate business opportunities and contractual agreements.

Aligning the data model(s) is crucial for our industry and required to take the next planned step for this project,
which is to propose a reference architecture for the vehicle data oriented environment.

Analyzed Specifications

We investigate the topic of Vehicle Data Models in this gap analysis of major initiatives on Cloud and Connected
Services that have significant support and a current development:

 The Vehicle Signal Specification (GENIVI)

 SENSORIS

 The Extended Vehicle (ISO)

 Android™ Automotive Vehicle Interface (Vehicle HAL)

 The Common Vehicle Information Model (AutoMat) even though it is no longer actively developed.

https://at.projects.genivi.org/wiki/pages/viewpage.action?pageId=34963516&preview=/34963516/40404199/Connected-Services-Project-Overview.docx

Of course, many more initiatives exist. Some of the projects were examined but not included in this gap
analysis such as the Connected Car Consortium, SAREF Automotive, Open Group Data Exchange and ViWi.
ViWi’s main focus is the proposed extensible protocol, but when that proposal was made to the W3C, only some
example data model descriptions were also shown and we have no definitive list/source to know all of them.
Most of those data areas are covered in more detail in the VSS with the exception of multimedia metadata
information (e.g., artist, track, playlist, etc.), which is not our main focus in the CCS project. Other projects were
not included because they either did not have yet enough delivered documentation, no updates for years, or
little support from the community.

Analysis Criteria

We analyzed the previously mentioned projects in regard to a set of criteria: motivation and problem space, data
model and data characteristics, contents of the specification, stakeholders, metadata and policies.

In the Motivation and Problem Space criterion, we look into the scope of the specification, its license and if it is
applicable to different domains. In the Data Model and Data Characteristics criterion, we look into how data is
encoded and which technologies are required. In the Content criterion, we look into the general specification, its
tooling and related implementation, if applicable. In the Stakeholder criterion, we look into the current list of
stakeholders and if a roadmap is known. Finally, in the Metadata and Policies criterion, we look into how
interoperable the data are, how their semantics are chosen and what policies are included for future users.

The remainder of this document is a presentation of each selected project in regard to our set of criteria.

Motivation and Problem Space

Vehicle Signal Specification (VSS)

Overview

The Vehicle Signal Specification proposal has been active since at least early 2016, when it originally outlined
the intention to produce standard data descriptions among different car brands.

The first driving consideration, but as we shall see not the only, was that data signals on CAN networks tended
to be completely proprietary and different among every car vendor. The discussion of this may have led to the
misunderstanding that VSS would stand or fall only on the condition of car OEMs being able to use the exact,
same CAN network signals, but this is not the case. As we will see later, data standards like VSS are not only
for the low-level network but also for other data exchange across cars, for cloud-based application, and for any
place where development APIs need to be common to increase third-party developer opportunities and other
synergistic effects like:

 Agreement on data definitions and APIs are also needed on other levels of the system, not just the low-

level CAN bus

 Translations and mappings are not only possible from one level to another, but in every system they are
necessary, if a single data model is not yet used throughout the entire family of systems. Thus, if CAN
networks are not based on VSS signals directly, they can still be mapped into those. Since the VSS
signal collection and CAN databases are formally described, it should even be possible to use semi-
automated tooling in order to make some of those translations. The potential for third-party application
development APIs appears only once translation of data is performed to a common standard.

 In-car network technologies have evolved over time. CAN remains a popular choice for lower bandwidth
and local buses but Ethernet/TCP-IP style communication, FlexRay, CAN-XL (in development) and
other types of vehicle-buses are also used. The usage of those will drive a different encoding of data
since they often do not have the size and usage limits imposed by data encoding into CAN frames. In
such cases, having a standard specification of data like VSS can help to quickly achieve this migration

to new data encodings that are more optimized for the newer network types. Without it, it is more
challenging since that work essentially starts with a blank sheet of paper.

The proprietary nature of CAN buses is still a reality today and it is a challenge to change this since it incurs
significant cost and involves large parts of the OEM electrical engineering departments that would rely on the
used signal databases. Of course, more standardization may over time reduce development cost and integration
concerns also for CAN, but in the immediate timeframe, expect to incur an expense.

The perception that benefiting from VSS requires standardization of all signals on all CAN networks has likely
slowed the acceptance of VSS as a good starting point. This is changing now as more and more see that the
approach is also well designed for the broader data exchange challenge. It is also possible that additional non-
technical and business strategy concerns were hampering the project. For example, it may have been unclear
to what extent OEMs would release control over the actual data if there is a common standard. This too is a
largely misunderstood aspect of any data access standards and it remains a discussion worth having.

Some of the concerns among OEMs included the current situation of CAN buses being physically accessible
(through ODB2-port or similar) and that the idea that the proprietary nature of signals was preventing
unauthorized access to OEM-only features. Unauthorized access to such features might have a minor to
medium impact (boosting engine power) or perhaps more serious (unlocking cars and bypassing start-
prevention systems). Keeping data definitions secret has of course been a very ineffective prevention, since the
knowledge of many OEM-proprietary signals exist among proponents of both legal and illegal activities and
tooling. The solutions lie instead in proper security architectures. Nonetheless, the main point here is the
understanding that VSS outlines a standard for vehicle data that OEMs can agree upon, as well as a
methodology and tooling, whereas methodology and tooling is still also applicable also on extension data trees
that can be kept proprietary:

 VSS can standardize "harmless" and common signal data, without requiring all car signals to be

standardized.

 The ability to write data and affect functions is separate from the ability to read information, and this
shall always be controlled by access-control mechanisms that are applied in the implementations for the
signal database

 Finally, we should recognize that agreement on VSS (or any standard) brings with it not only the signal
data definitions, but an agreement on the format to describe data, including future extensions (common
or proprietary), and it brings a whole set of methods, middleware-implementations, and related tooling
that can still be shared. It might be that it is in that agreement on standard formats, methods and tools
that even the greatest value can be found.

 Finally, the acceptance of VSS as an underlying signal description database in the web-protocol work
by the W3C Automotive Working Group have proven that the hierarchical and extensible data
description of VSS goes far beyond the low-level signaling buses like CAN.

Scope

In its current form the VSS covers a good selection of varying vehicle data organized in separate sub-trees (see
Content chapter). Because of its history, it is relatively focused on the type of data that would either be
exchanged between ECUs on a CAN or similar network (i.e., data that are useful for several subsystems in the
car as opposed to limited use within one ECU only). There is also some focus on the type of data that external
applications (i.e., on-board, cloud and web) might find attractive in developing new applications that extend the
standard function of the car itself, which matches among other things the needs of the W3C Automotive Working
Group specifications of web-protocol access to vehicle data.

The flexible and highly extensible format of VSS opens opportunities. As previously mentioned, the agreement
on standard description format, methods and tools are in themselves a reusable part. They open up for
extensions (common or proprietary) to be added and, therefore, there should be no limit to usage of the VSS
principles in any car domain. Of course, the wider the usage, the more commonality car companies can expect
to achieve across their entire engineering activities.

It might happen that some domains require a different set of data description (more complex data types), or a
focus that is more on streaming-data than on the concept of a "signal". While flexible, it is still possible that car
companies choose a different method for particularly unique engineering areas but this would then only
complement the VSS standard.

Standard Development Application Programming Interfaces (APIs)

Translating data descriptions using a shared standard at some level of the system would open up for
programming standards above it, both within the car (application API) and outside (big data exchange,
cloud/web applications or other). It is fundamentally necessary to have some kind of known data API if data is
to be used by applications. Therefore, a standard like VSS would be necessary somewhere, even if there is a
translation required from, for example, the CAN level to this API level. If the desire is there to create a third
party application development ecosystem, then those developers require some standardization of those APIs so
that they are consistent. A standard like VSS in effect defines a shared API, regardless of whether the low-level
data is fully equal across adopters.

The protocol work by the W3C Automotive Working group is one initiative that aims to enable such a common
standard for third party developers and other VSS-based initiatives are underway.

Licensing

The licensing of VSS appears unique among similar projects in that it started from the beginning with a well-
known, free and open-source license. Since the signal specification definition was mostly perceived as a
document, a permissive Creative-Commons Attribution (CC-BY) license was used whereas some of the
software had other licenses. This was later unified and the project now continues under one single license,
namely the Mozilla Public License, v2 (MPLv2). Using this style of open-source licensing ensures high usability
of the specification by all types of companies and this can be an advantage for companies that bet on the VSS,
or any derivative thereof, as it protects against unexpected privatization of the specification and related tools.

SENSORIS

Overview

Sensor Interface Specification Innovation Platform, SENSORIS, is a group of significant actors from the global
vehicle industry, map and data providers, sensors manufacturers and telecom operators who joined forces,
under the form of this Innovation Platform, driven by the common vision that, defining an appropriate interface
for exchanging information between the in-vehicle sensors and a dedicated cloud as well as between clouds
would:

 enable broad access, delivery and processing of vehicle sensor data

 enable easy exchange of vehicle sensor data between all players

 enable enriched location based services

 drive global growth in this field.

Scope

SENSORIS’ scope is to deliver and maintain technical specifications defining the format and content of sensor
and campaign data.

In Scope

 Vehicle-to-cloud data upload format* (vehicle-based data only)

 Cloud-to-cloud data exchange format (vehicle-based data and other data needed for mobility services)

 Cloud-to-vehicle ‘campaign’ request format (request for specific data at specific locations and times
only)

 Conformance to data authorization/authentication process

 Conformance to data privacy regulations

 Conformance to approved security regulation

*An initial list data item definitions (data model) for some subject areas has also been published by SENSORIS,
as described in the data model and data characteristics chapter.

Out of Scope

SENSORIS will not:

 Define infrastructure or architecture

 Establish commercial agreement frameworks for data exchange

 Define data exchange for v2v, v2i, i2v (cooperative data) exchange*

 Define cloud-to-vehicle services

* We interpret this as meaning that the low-level communication mechanism is out of scope, rather than the data
definitions that may be exchanged between v2v/v2i/i2v.

Licensing

SENSORIS specifications will be handled through a dual license model. Every release will be first released
internally to the members of SENSORIS under a SENSORIS license. As SENSORIS is committed to be open to
the public, all schemas and documentation will be published after a 12-month retention period to the public
under the Creative Commons Attribution-NoDerivatives 4.0 International license. Please review the referred
license for the exact description of the rights and obligations related to the use of the SENSORIS schemas and
documentation.

The published package under this license also contains HTML-documentation as well as the schema description
in Google Protocol Buffers (protobuf) language.

This program and the accompanying materials are made available under the terms of the Creative Commons
Attribution-NoDerivatives 4.0 International license, which accompanies this distribution, and is available
at https://creativecommons.org/licenses/by-nd/4.0/legalcode.

The following clarification of the license is provided in SENSORIS specifications as follows:

What is allowed:

 Download the schema from the website

 Compile a protobuf library using the openly available protobuf compiler

 Use the protobuf library to implement any software that encodes or decodes SENSORIS messages

 Define proprietary (non-standardized) Any-extensions

 Use SENSORIS and your proprietary extensions even commercially between non-member to non-
member business cases

 Join the consortium and contribute

https://creativecommons.org/licenses/by-nd/4.0/legalcode
https://sensor-is.org/wp-content/uploads/sites/21/2019/07/sensoris-specification-v1.0.0-public-1.zip

What is not allowed:

 Change the protobuf schema and distribute it to third parties under any name (SENSORIS or other) to
exchange data.

Extended Vehicle (ExVe) ISO Standard

Overview

There were three main factors for introducing the ExVe ISO standard:

1. Increasing demand from third parties to access vehicle data and functionality. The workaround to date
has been installing additional hardware into the car, which has limited scale but more importantly raises
the question of how security and safety is being handled.

2. OEMs have already equipped vehicles with telematics units and built up IT-infrastructure to handle data
connectivity between vehicles and backend systems. To some extent, OEMs have offered external
parties to integrate with vehicle data using web services; this has been done however without any
guidelines or requirements on the system design.

3. As there is active data sharing already, either through external hardware or individual OEM web
services, there is a need to define a design and requirements to ensure that security, safety and data
privacy is handled with best practices and common methods.

Scope

The scope of the ISO standard is web services only, which means data offered by OEM back-ends. It assumes
that OEMs have vehicle data available in their back-end and applies no requirements on how the data collection
is done.

A large part of the standard focuses on authorization, in other words how user consent should be obtained and
maintained. There are several categories of vehicle data: personalized (identifiable to a specific vehicle with a
VIN), pseudonymized, and anonymized. If we consider a vehicle data point as a resource, in each of these
data categories the resource controller depends on the nature of the data and has specific authorization
requirements. All of the data categories are considered in this standard.

Apart from data retrieval, the standard also provides requirements and methods for handling modification to the
vehicle state through functions.

Licensing

The documentation is provided by the ISO body under a commercial license. The license can be obtained
from www.iso.org for the following documents:

 ISO 20078-1 Road Vehicles – Extended Vehicle (ExVe) web services – Part 1: Content

 ISO 20078-2 Road Vehicles – Extended Vehicle (ExVe) web services – Part 2: Access

 ISO 20078-3 Road Vehicles – Extended Vehicle (ExVe) web services – Part 3: Security

 ISO/TR 20078-4 Road Vehicles – Extended Vehicle (ExVe) web services – Part 4: Control

http://www.iso.org/

Common Vehicle Information Model (CVIM)

Overview

The AutoMat project is focused on Big Data and how to enable an open ecosystem driven by vehicle data. The
project provides an end-to-end framework starting from data capturing in the vehicle to data consumption by
third parties through marketplaces.

Scope

CVIM is focusing on enabling Automotive Big Data Marketplaces for Innovative Cross-sectorial Vehicle Data
Services.

Data harmonization is seen as a key factor for enabling AutoMat; therefore, CVIM was developed to form a
common understanding of data and information formats.

Out of Scope

 Signal vocabulary

 Data type specification/restriction

 CVIM also does not define any minimum datasets that an OEM should deliver

Licensing

Specification documents have been released under the Creative Commons Attribution 4.0 license (CC BY 4.0),
https://creativecommons.org/licenses/by/4.0/.

Android Automotive Vehicle Interface (Vehicle HAL)

Overview

It is important to consider the complete solution for vehicle data exchange. It starts where data is produced (i.e.,
typically the in-car software and electrical architecture). The cloud connectivity standards should therefore
adapt to existing technology used in the vehicle electrical architectures, as well as to influence those technology
choices for the same purpose effect (i.e., to achieve more commonality).

GENIVI runs other projects that deal with this “big picture” thinking and some of them relate to the Cloud and
Connected Services. This relationship includes minimizing differences among execution environments, and
reducing efforts to connect the standards for cloud data exchange as discussed here, with the actual in-car
technical systems that also consume or produce such data. A typical OEM vehicle electrical architecture runs a
number of different operating systems and platforms that need to cooperate with data and need to use common
solutions where possible. Android Automotive is an increasingly popular choice for the Infotainment system and
less considered in other types of ECUs.

Android Automotive Current Approach

The current versions of Android publish a Vehicle Hardware Abstraction Layer (Vehicle HAL, VHAL) concept
that intends to expose certain vehicle-specific functions and properties to the Android system and application.

One primary feature is the list of vehicle properties that are required to be implemented. They are defined as
static list of properties, with unique numerical IDs.

https://creativecommons.org/licenses/by/4.0/

Example from source code:

public static final int INVALID = 0;
public static final int INFO_VIN = 286261504;
public static final int INFO_MAKE = 286261505;
public static final int INFO_MODEL_YEAR = 289407235;
public static final int INFO_FUEL_CAPACITY = 291504388;
…

public static final int PERF_ODOMETER = 291504644;
public static final int PERF_VEHICLE_SPEED = 291504647;
public static final int ENGINE_OIL_LEVEL = 289407747;
etc.

There are also particular services for particular car subsystems. E.g. HVAC car-
lib/src/android/car/hardware/hvac/CarHvacManager.java with its own properties:

public static final int ID_ZONED_SEAT_TEMP = 0x1540050b;
public static final int ID_ZONED_AC_ON = 0x15200505;

GENIVI AA-SIG

The Android Automotive Special Interest Group (AA-SIG) in GENIVI is an example of a project that deals with
improving and aligning the technologies used in the in-car systems. It discusses extensions that enable access
to a very wide set of vehicle data, ideally described by the same standards as the cloud-connection, while
working to align this with Android certification requirements and maintained compatibility with existing Android
methods.

Scope

Android Automotive Current Approach

The scope of the standard Vehicle Properties in Android is varied across a few different areas but seems to be
primarily a selection of only the most commonly used or needed data properties for typical in-car Android
applications. As expected, it is also changing between versions – i.e., adapted over time but still focused on
what the Android system needs. Naturally, since this is what is required of every VHAL implementation, the data
exchange can be assumed to also be designed for the needs of Google-specific apps and automotive related
Google services.

GENIVI AA-SIG

The AA-SIG work currently focuses on the definition of technical solutions for connecting a VSS-based data
description to application usage in Android for Automotive.

This includes solutions that expose data to the same official Vehicle Properties as defined by Android, using
libraries/servers that provide and translate data that arrived into the system in according to VSS data definition /
data type and unit. At the least, basing the implementation of the VHAL, which every product must perform, on a
data standard below it and providing software design for the solution would facilitate the implementation of
Compatibility Test Suite (CTS) compliant HALs among many vendors. While everything below the HAL is by
design considered a unique implementation and not part of the Android common source code (this is the typical
usage of an abstraction layer) creating standards in how to achieve it could even enable sharing implementation
among vendors.

In the bigger picture, this work can provide solutions that provides the entire VSS defined data model to Android
applications (as a major extension to what Android Vehicle Properties define today), just as this level of data
connectivity may be available in other systems/platforms and in cloud-connectivity scenarios.

Licensing

Android Automotive Current Approach

The information about VHAL is part of the Android project and provided there, in source code and
documentation. The Android Open-Source Project (AOSP) code is under a variety of open-source licenses,
whereas development of new functionality and future versions tend to be discussed between Google and
partners only, and this is the same for the automotive functionality. Rather than risking an incorrect summary of
the licenses here, we refer you to the corresponding web sites (e.g., https://source.android.com).

GENIVI AA-SIG

For the AA-SIG facilitated by GENIVI, the discussions occur in a public GENIVI project, open for any potential
Android Automotive adopters to join. The results are documented in slides and minutes on public Wiki pages.
The proposed designs and solutions may be supported by code development, which would then likely be
licensed using GENIVI default open-source license choice (MPLv2). The results are also expected to affect
mainline Android development later on -- development that is usually done by Google (taking into account input
received from car companies) and then released into the Android Open-Source Project (AOSP) when a new
release of Android is published. Adjustments of the software license may then occur, if required.

Data Models and Characteristics

Vehicle Signal Specification (VSS)

Data Representation

Like many other data model descriptions, the hierarchical organization tree-format is the basis of the VSS.
In addition to this, companies have researched data ontologies, which are descriptions and organization of data
that add additional metadata, including in particular the relationships between parts. There are many potential
relationships but one example is a description of data and a description of the source (sensors) of that data.

These aspects cannot be encoded in the original tree because of being different in different cars, because of the
one-to-many or many-to-one relationships, or because it can change over time. The information is however
efficiently added as additions to the tree-like structure of VSS. This is very interesting work that leads to the type
of more complete data relationships that are necessary for the future's efficient data handling.

The only well-known data ontology work to us is an extension of VSS. While the work has been ongoing for a
while, it has recently been referred to by name: VSSo.

VSS, like many others, organize data. In VSS there are no limits placed on the depth of the tree hierarchy.
Recent extensions deal with the possibility to define instances of nodes efficiently, since the duplication of
identical but distinct data items is quite common (think for example about an identical sensor at each wheel).

A recently discussed proposal named VSS Layers is designed to enable augmenting or overriding metadata to
cover a wide variety of categorization of data items. See metadata and policies chapter for more details.

Technologies

The source format is written in the markup language YAML, which is a popular plain-text format that is both
machine-readable (with many processing software choices available) and considered the most human-readable
of similar formats (i.e., compared to XML, JSON, etc.).

This makes it a perfect source format for such a specification. The usage of YAML invites future extensions,
which add additional metadata to each data definition. The VSS project continues as an open source project

that encourages additions and change requests. Its licensing also makes the future open towards any
derivations, renamed databases, or similar outlook, possible while keeping the investment already put into VSS.

SENSORIS

Data Representation

Data Message Content

Data messages: Contain vehicle sensor data. Data messages communicated from one vehicle of a vehicle fleet
to its vehicle cloud contain sensor data from the one vehicle.

Identifiers: Several identifiers are used in a SENSORIS message that affect privacy. They allow for
identification of a submitter, session, message, vehicle fleet, vehicle, and driver. All identifiers are optional
and are a powerful and fine-grained control instrument for ensuring privacy aspects in SENSORIS session_id,
message_id, last_message_of_session, vehicle_fleet_id, vehicle_id, driver_id.

Identifiers and Referencing

The second set of identifiers is used for cross-referencing events within a message. The event identifier
uniquely identifies an event within a message and is only required if a reference to the event is needed beyond
chronological time stamp relation. Event identifiers are of type integer and begin with value 0 and are
incremented by 1. The event relation protobuf message type enables binary relations between events within a
single data message.The event group protobuf message type enables smart grouping of events based on the
same relative spatial reference system. Some event protobuf message types contain an object identifier, which
enables referencing between individual events over time.

Message Encoding

SENSORIS job request, job status, and data messages are communicated between the three actor roles
vehicle fleet, vehicle cloud, and service cloud. The SENSORIS messages have to be encoded for over-the-air
and over-the-wire communication channels, i.e., they have to be serialized by the sender prior to communication
and then have to be deserialized by the receiver. Encoding shall support evolution of the data format, that is,
adding new data types or fields shall be backward compatible so that the new data format can be read by both
new code and code generated for previous versions of the data format.

Technologies

For SENSORIS version 3 of the Google protobuf library is used which adds a streamlined approach for
proprietary extensions. The communication from a vehicle of a vehicle fleet to its vehicle cloud is used as an
example, On the vehicle, the obtained sensor data is filled into the C++ data access classes. The class
instances are then serialized into a byte array by the also auto-generated C++ encoder. The serialized data is
transferred over-the-air to the vehicle cloud. There the auto-generated Java decoder deserializes the byte array
into Java class instances having the same schema and sensor data as the C++ class instances on the
vehicle. The protobuf Any5 message type fulfills the requirement for proprietary extensions.

Extended Vehicle (ExVe) ISO Standard

Data Representation

The ExVe ISO standard does not introduce a data model. In this aspect, any data model analyzed in this
document would fit as a data model in the implementation of an ExVe compatible web service. No ExVe
compatible interface that has been introduced to the market today uses any standardized data model.

Technologies

The standard does, however, define requirements on the web service interface that is provided to third parties. It
has to be RESTful and use the JSON or XML schema. Furthermore, the standard includes requirements on
several aspects: URI definition, error handling, naming and interaction patterns. All of these are aimed to make
the implementation for third parties similar no matter what OEM web service is being consumed.

Common Vehicle Information Model (CVIM)

Data Representation

CVIM holds a specification for three different layers that each have a JSON representation:

 Signal: Primitive data structures within the vehicle that contain information, such as vehicle odometer
reading, speed or VIN. Can be interpreted of data typically sent through the CAN-bus.

 Measurement Channel: This layer describes how many signals was measured and in which frequency.
It also can include GPS coordinates as meta information. A measurement channel encapsulates many
signals.

 Data Package: The data package is an overall container that encapsulates many measurement
channels. It contains important meta information such as timestamps, data ownership, CVIM version
and a cryptographic signature generated by the vehicle when putting together the package.

Measurement channels can output time series, histograms, geo-histograms.

Technologies

Those messages are defined in JSON-schema and made for JSON data, with several formats:

 (u)int8/16/32/64

 Double

 Date(-time)

 Uuid

 Email

 Version

Android Automotive Vehicle Interface (Vehicle HAL)

Data Representation

Android Automotive Current Approach

There are currently 80-100 Vehicle Properties that are defined as part of the Android API whereas hundreds or
thousands of signals are expected to be feasible in a full VSS tree. The discussions in the Android Automotive
SIG deal with how VSS defined signals can be mapped to those properties.

GENIVI AA-SIG

Group consensus has evolved to use the VSS is the primary database for vehicle signals in the discussion of
how to access vehicle data from Android systems in the vehicle (including how to also support the standard
Android Automotive defined vehicle properties from a common implementation).

Therefore, please refer to the chapter on VSS for Data Representation details.

Technologies

Android Automotive Current Approach

Android is a very code-driven project and the technology used are typically to simply define the programming
API, or in this case the available Vehicle Properties in the source itself, and to complement this with
documentation as needed. There seems to be no particular separate text or database model defining the
vehicle properties - they are simply provided as part of the Android API, in source and docs.

It is however possible that some of the standard Android development such methods and tooling, such as the
Android IDL (AIDL) are involved to some extent when defining these vehicle centric APIs.

GENIVI AA-SIG

Technologies include a mix of those defined for VSS (refer to the chapter) and those defined in the standard
Android software architecture. (For more details, see Tools and related implementations).

Contents

Vehicle Signal Specification (VSS)

Specification

The VSS is both a concrete database and a set of standards and tools for how to write and extend the
database. Thus, looking at content only does not give the full picture. However, the current VSS (open to
modification by change requests) has already encoded a number of typical data items in a proposed tree
structure. The top level includes:

 ADAS

 Body

 Car

 Drivetrain

 OBD

 Vehicle

 Cabin

 Chassis

 Media

 Private

This in turn includes sub-trees for examples like:

 Cabin, Infotainment, InteriorLights,

 SingleDoor, SingleHVACStation, SingleShade, ...

 ExteriorLights, ExteriorMirror...

 Chassis, Wheel ...

 BatteryManagement, ElectricMotor, Enginea, FuelCell, FuelSystem, Transmission, etc.

Each data item in the VSS includes:

 Name

 Purpose

 Data Type

 Unit

 and other related metadata*

*VSS Layers is intended to cover data categorization (of many different kinds), access-control rules, local laws,
and other metadata.

Tools and Related Implementations

There are tools to convert the VSS source format (YAML) into other formats as needed, such as JSON, CSV
(spreadsheet file), These are available in the tools directory in the VSS source code repository

 Tools directory of the VSS repository [VSS repository]

 W3C protocol “Generation 2” implementation (Melco and Geotab and Volvo ...)

 W3C protocol (VISS, version 1) implementation, with recent addition of experimental REST interface, in
Eclipse KUKSA project. Ref: [Email: “New REST API support in w3c-visserver-api“]
(https://lists.w3.org/Archives/Public/public-automotive/2019Nov/0019.html).

SENSORIS

Specification

In the first public version 1.0.0 of the SENSORIS Specification, the following categories are defined.
Category envelope is the mandatory first field of each category. It follows the google.protobuf.Any format,
with type url and value in bytes:

Field Type Description

Envelope EventGroup.Envelope Envelope.

localization_category sensoris.protobuf.categories.localization.LocalizationCategory
Localization
category.

object_detection_category sensoris.protobuf.categories.objectdetection.ObjectDetectionCategory
Object
detection
category.

weather_category sensoris.protobuf.categories.weather.WeatherCategory
Weather
category.

https://github.com/GENIVI/vehicle_signal_specification/tree/master/tools
https://github.com/GENIVI/vehicle_signal_specification/tree/master/tools

driving_behavior_category sensoris.protobuf.categories.drivingbehavior.DrivingBehaviorCategory
Driving
behavior
category.

intersection_attribution_cate
gory

sensoris.protobuf.categories.intersectionattribution.IntersectionAttributio
nCategory

Intersection
attribution
category.

road_attribution_category sensoris.protobuf.categories.roadattribution.RoadAttributionCategory
Road
attribution
category.

traffic_regulation_category sensoris.protobuf.categories.trafficregulation.TrafficRegulationCategory
Traffic
regulation
category.

traffic_events_category sensoris.protobuf.categories.trafficevents.TrafficEventsCategory
Traffic events
category.

traffic_maneuver_category sensoris.protobuf.categories.trafficmaneuver.TrafficManeuverCategory
Traffic
maneuver
category.

brake_category sensoris.protobuf.categories.brake.BrakeCategory
Brake
category.

powertrain_category sensoris.protobuf.categories.powertrain.PowertrainCategory
Powertrain
category.

map_category sensoris.protobuf.categories.map.MapCategory
Map
category.

e.g., Localization category has:

Field Type Description

envelope sensoris.protobuf.types.base.CategoryEnvelope Envelope.

vehicle_position_and_orientation repeated VehiclePositionAndOrientation Vehicle position and rotation.

vehicle_odometry repeated VehicleOdometry Vehicle odometry.

vehicle_speed repeated VehicleSpeed Vehicle speed.

vehicle_acceleration repeated VehicleAcceleration Vehicle acceleration.

vehicle_rotation_rate repeated VehicleRotationRate Vehicle rotation rate.

Tools and Related Implementations

The Here SDK named Open Location Platform (OLP) covers ways to access information related to SENSORIS
defined information.

 Here OLP includes the neutral server concept:

 Access to vehicle sensor data - the Marketplace can now act as a secure, neutral, GDPR-compliant hub
for data consumers to gain access to vehicle data from participating automotive manufacturers

 Consent management - ensures privacy for owners and drivers of vehicles, by allowing them to grant
and revoke consent for specific third-parties to access data generated by their vehicles

 ISO 20078 "ExVe" compliant interface - simplifies platform integration for data providers and consumers

https://developer.here.com/blog/open-location-platform-2.8-release
https://www.iso.org/standard/66978.html

Extended Vehicle (ExVe) ISO Standard

Specification

The contents consist purely of specification documents. These include detailed descriptions along with visual
diagrams and logical workflow diagrams of how an ExVe web service should be defined. This also covers the
system design on an architectural level, meaning how certain logic should be decoupled in different components
to ensure a secure implementation of the authorization process, resources and data access.

Tools and Related Implementations

No tooling is provided to support the implementation of the specification and no source code or references are
provided to support the implementation of the specification. The offering of tools and implementation is left to the
market (e.g., Here OLP above)

Common Vehicle Information Model (CVIM)

Specification

The specification consists in several documents defining: the CVIM open specification, a cyber security
framework, a business model approach and prototype reports.

Tools and Related Implementations

A code repository for CVIM developers is provided on GitHub https://github.com/automat-project/SDK that
implements the specification in the Swagger (OpenAPI) format. Together with OpenAPI/Swagger tools, it’s
possible to use this repository to generate both server and client side code for a REST interface. In order to test
the API requests a marketplace reference implementation (also delivered within the AutoMat project) should be
used.

The SDK structure follows the OpenAPI/Swagger format, which is widely used for REST interface descriptions.

Android Automotive Vehicle Interface (Vehicle HAL)

Specification

Android Automotive Current Approach

Vehicle data is defined as part of the Vehicle Hardware Abstraction Layer defined in recent Android versions.
The Vehicle Properties are documented in the public documentation for Android.

GENIVI AA-SIG

Discussion of improved data access methods in Android is currently a work in progress. There is therefore no
formal specification, but the ideas are presented in public slide-decks and minutes from the AA-SIG meetings.

https://automat-project.eu/content/open-cvim-specification
https://github.com/automat-project/SDK
https://source.android.com/devices/automotive/properties

Tools and Related Implementations

Android Automotive Current Approach

There is no known tooling to implement the Vehicle HAL itself, i.e., to implement the mapping between the car
electrical platform and automotive signal buses to the vehicle properties inside Android.

Application developers get access to the properties through existing and documented APIs so it needs no
additional tooling than the normal way to do Android application development.

Extensions to Vehicle properties need to be described in the HIDL interface description language so that
existing tooling can be used to make this part of the vehicle HAL.

GENIVI AA-SIG

Refer to the VSS chapter for references to general VSS-related tooling.

Overall, the AA-SIG takes a “big-picture” approach and also discusses the diversity of operating systems and
finding standards that match the whole car system while also being appropriate solutions for the Android-based
systems. Because of this, a large set of existing and potentially new technologies are discussed in the areas of
bindings to existing data exchange protocols in the car and beyond (SOME/IP and W3C-web protocols, and
others), and how to balance a data-model based programming with traditional APIs often defined in Franca IDL.
From this wide perspective, various code generation tools and bindings that exist (Common-API C++) are
discussed, and potentially new ways to automatically create the bindings of such common car interfaces into the
standard Android development methods that includes AIDL/HIDL descriptions of interfaces, to support the
application development that uses Java and generally fit into the Android standard software architecture:

Examples:

 VSS to Franca observable Attributes translator (exists, proof of concept)

 Franca IDL to AUTOSAR-XML (The [FARACON] tool)
 -> (Together these in theory makes up VSS -> AUTOSAR-XML, which enables SOME/IP access)

 Direct VSS to observable properties in AUTOSAR-XML translation instead (future possibility)

 Discussion about how various remote ECU services can be mapped into Android Service layer, in other
words how to produce a familiar Android Application development API, including access control tied to
the standard Android permissions system.

Stakeholders

Vehicle Signal Specification (VSS)

Participants

The VSS is being increasingly used as the basis for a number of data-oriented collaboration projects. Since the
first version of the associated W3C web protocols, a.k.a. the VISS (v1) specification and continuing with ongoing
“Generation 2” work, the VSS is the primary vehicle data representation format, as well as the intended list of
standard signals for a compliant implementation.

Participation in implementing the resulting W3C protocol standards could be one way to measure, although it
does not always translate to active participation in growing the VSS itself, it suggests a future desire to do so.

While not all implementations might be known, the official list of implementation of the first version of web
protocol is provided in W3C wiki infrastructure at VISS implementations

https://www.w3.org/auto/wg/wiki/VISS_implementations

Another initiative that is currently in its build phase and led from the W3C automotive business group is the
intention to collect historical data measurements from a few OEMs, anonymize the data where needed, describe
it using VSS definitions of those data items, and make the data set available on a joint server for open research
into methods of querying and using the data in interesting ways.

The Android Automotive Special Interest Group (AA-SIG) in the GENIVI Alliance simultaneously discusses how
to bring a full set of vehicle data into Android implementations. However, in doing so the group must also take
on the discussion about how to achieve standards based on VSS in the entire vehicle network. Android is but
one implementation technology, primarily for IVI, whereas the majority of other ECUs in the system also need to
exchange data. Participants include Tier 1 suppliers, technology vendors and at least two major car OEMs.

Current Status

VSS is a mature but developing standard available on a GENIVI public code repository
https://github.com/genivi/vehicle_signal_specification.

Roadmap

Like many open and collaborative projects, the roadmap is influenced by what companies decide to do with it
and in this several spin-off projects have been started.

 Vehicle Data Ontology work has been shown and is the basis for a doctoral thesis and there is
continued interest for this direction. This work is presented in the Abstracting and Interacting with
Vehicles in the Web of Things paper. The collection of VSS described sample data into a server to try
out data based applications and graph query technologies, as discussed by the W3C business group

 Additional implementations of VISS (a.k.a. v1) and Generation 2 of W3C-specified protocols

 The build-out of the flexible VSS Layers proposal, which has the potential to define access control lists,
technical “contracts” between systems, policies for which data is privacy-sensitive and more.

The VSS project itself intends to continue to promote an open-licensed and common single data definition
standard including agreement on the standard signals that shall be expected on all platforms, and the potential
for adopters to extend the database to cover future yet unknown needs.

 Continued collaboration with W3C web-protocols

 Promotion across the entire in-vehicle and cloud

SENSORIS

Participants

SENSORIS is a membership and business-driven innovation platform. Managed by ERTICO – ITS Europe.
SENSORIS represents a group of 28 key players from the global vehicle industry, map and data providers,
sensors manufacturers and telecom operators. There are 4 WGs each led by HERE, Elekrobit, Daimler and
Continental.

The complete list of member companies can be found at https://sensor-is.org/members/.

Current Status

SENSORIS has released version 1.0.0 of the specification that is available at https://sensor-is.org/wp-
content/uploads/sites/21/2019/07/sensoris-specification-v1.0.0-public-1.zip.

Roadmap

Expect updates to the Specification.

https://github.com/genivi/vehicle_signal_specification
https://fr.slideshare.net/BenjaminKlotz2
https://fr.slideshare.net/BenjaminKlotz2
https://sensor-is.org/members/
https://sensor-is.org/wp-content/uploads/sites/21/2019/07/sensoris-specification-v1.0.0-public-1.zip
https://sensor-is.org/wp-content/uploads/sites/21/2019/07/sensoris-specification-v1.0.0-public-1.zip

Extended Vehicle (ExVe) ISO Standard

Participants

The standardization has been driven by OEMs through the European Automobile Manufacturers Association
(ACEA) and the German Association of the Automotive Industry (VDA).

Current Status

The first version of the standardization was published as an ISO standard in Q1 2019.

Roadmap

The first OEMs who have launched Extended Vehicle compatible interfaces are BMW and Mercedes-Benz.

Common Vehicle Information Model (CVIM)

Participants

AutoMat Project - Consortium members:

 Volkswagen AG (VW, Coordinator), Germany

 Renault SAS (RSA), France

 Centro Ricerche Fiat SCPA (CRF), Italy

 Institut für angewandte Systemtechnik Bremen GmbH (ATB), Germany

 ERPC European Research Programme Consulting Gmbh (ERPC), Germany

 Technische Universität Dortmund (TUDO), Germany

 ATOS Spain SA (ATOS), Spain

 Institut Mines-Telecom (IMT), France

 Trialog (TRIALOG), France

 Here Global B.V (HERE), Netherlands,

 Meteologix AG (METEOLX), Switzerland

Current Status

The project is finished and has delivered final results.

Roadmap

The project has been discontinued.

Android Automotive Vehicle Interface (Vehicle HAL)

Participants

Several car OEMs have announced their intention to put Android Automotive in production within the next years.
OEM adopters provide input individually in conversations with Google, which presumably affects development of
future versions, including the Vehicle HAL and Vehicle Properties.

Current Status

According to Android Release 10.0.

Roadmap

Expecting additional growth and changes. There is no public roadmap. As noted, we expect Android adopters
discuss future changes with the Android development team at Google.

Metadata and Policies

This section describes the metadata used and their openness as described in the 5-star open data.

Metadata can be available (pdf documentation), structured, on open formats. It can additionally use ad hoc
semantics (e.g., a fixed list of properties), reuse standard semantics (e.g. format properties, units) or be fully
linked (e.g., reuse URIs as identifiers between connected entities).

Vehicle Signal Specification (VSS)

Non-formal metadata is within VSS with a given set of properties (i.e., label, comment, min, max, etc.) that are
provided in various open formats. VSS comes with an extension mechanism to create or update branches,
signals or attributes.

There are policies in VSS in regard to its units: they should follow automotive standards if there is a wide
consensus on a unit. Otherwise, the default usage is to use SI-units. Most of the generic preferred units are
explicitly defined in the documentation.

The VSS Layers concept is proposed to allow multiple separate similarly formatted files to encode different
aspects of the data in a particular usage. This makes it possible to keep metadata that changes over time, or
are different in particular systems, or varying in the markets where the product is sold.

VSS Layers could cover:

 Data categories

 Access-control rules

 Laws governing usage of certain data

 Data criticality for safety or other concerns

 Precision, Quality, Reliability and other qualitative attributes

It is likely that the extensions that VSS Layers enable also bring additional policies for the usage of those
extensions, both some that are agreed in the standard/collaborative specification and some that are local within
companies.

SENSORIS

SENSORIS uses different serialization open formats for its data, but the current release only has its metadata in
protobuf. Units are standard are explicitly defined (e.g., deg_c for Celsius degrees)

There is a policy for extensions (new properties of signals).

Extended Vehicle (ExVe) ISO Standard

This specification does not define a data model.

The specification has requirement to data formats (JSON, XML Schema), uses URIs and some best practices
that candidate data models should follow.

https://5stardata.info/
http://genivi.github.io/vehicle_signal_specification/rule_set/
http://genivi.github.io/vehicle_signal_specification/rule_set/

Common Vehicle Information Model (CVIM)

The signal specification includes metadata entries related to signals themselves:

 Name

 Comment

 Type (numeric, enumeration, information)

 Unit

 Min

 Max

 Items

Signals additionally include metadata entries related to signal usage:

 Rate

 Resolution

Measurement data comes in packages through data channels. The packages are provided in JSON (open
format). Non-formal metadata is supposed to be provided in JSON too but so far only examples are available in
the pdf documentation. Data package metadata is composed of a fixed list of properties.
There are no policies to create new properties or standard units.

Android Automotive Vehicle Interface (Vehicle HAL)

As a source code centered project, Android puts less emphasis on the formality of each set of metadata and
mostly describes what is possible to do from the programming perspective. The vehicle properties however
have some structure defined, as shown in the documentation. Properties can be tied to a zone so that they can
be addressed as instances (e.g., left and right instance of the same concept). Properties also have a defined
computational data type (string, integer, float and so on) and as general documentation of course the
significance (corresponding physical unit) of the provided value is also described, such as if speed is defined in
km/h or miles/h.

Comparison of Metadata and Policies

A summary of metadata specifications and policies for the previously described initiative is presented below.

Specification Structure Semantics Policies

Vehicle Signal
Specification
(VSS)

Open structured source
format (YAML) with
transformations to other
formats.

Non-formal fixed set of
properties

Reuse SI and automotive unit
standards

Extensions are separate from
standard/required data items

SENSORIS
Open structured format
(protobuf)

Non-formal fixed set of
properties

Extensions

ExVe Available documentation (pdf)
Requirements on candidate
data models

CVIM Available documentation (pdf)
Non-formal fixed set of
properties

Android
Automotive
Vehicle HAL

Flat list of properties. Web
documentation of API for
VHAL. Implementation in
open source code

Non-formal explanation in
document web page

Organic growth, defined by
Google based on input from
Android adopters

Summarizing Table

The table below compares data models according to four key criteria. CVIM data model is excluded because the
hosting project is discontinued.

Criterion Stakeholders Motivation and
problem space

Data model Metadata

VSS/VISS

GENIVI and W3C,
contributions from
JLR, Kuksa, BMW,
Volvo, Geotab...

Develop service
specifications for
exposing vehicle
data and other
information around
vehicle centric
functions.
Not define or
mandate
implementation
details including
vehicle, network or
sensor protocols

Vehicle Signal
Specification (VSS)
as the per default
model
Alternative data
models possible

Vehicle Signal
Specification (VSS):
Extension
mechanism
Modeling best
practices for signals
and attributes

SENSORIS

ADAS, service
providers, OEMs,
navigation suppliers,
telecoms...

Enable broad
access, delivery and
processing of
vehicle sensor data
Enable easy
exchange of vehicle
sensor data between
all players
Enable enriched
location-based
services
Drive global growth
in this field

Data messages in
categories (which
you can create)
Identifies of
submitter, session,
message, vehicle
fleet, vehicle, and
driver
Developed in
Google Protobuf
library

Units explicitly
defined (e.g.,
“deg_c” for Celsius
degrees)
Policy for category
extension to be
compatible

ExVe

ISO, European
OEMs contributing

Increasing demand
from 3rd parties to
access vehicle data
and functionality
OEMs already
equipped vehicles
with telematics units
and IT-infrastructure
to handle
connectivity
Need to define a
design and
requirements to
ensure that security,
safety and data
privacy (best
practices, common
methods)

For 3rd parties to
implement
RESTful with JSON
or XML schema with
requirements on
several aspects:
URI definition,
error handling,
Naming,
interaction pattern

Policies:
requirements for 3rd
parties on data
modeling good
practices (e.g., URI
use)

Android Automotive
VHAL

Several car OEMs
have announced
their intention to put

To provide the data
needs for Google
Automotive

Independent and
Android-specific
definition of data, as

Only basic type and
explanation.
(Un)availability flag

Android Automotive
in production within
the next few years.

Services, and for
third-party car-
specific apps in
Android Automotive
based Infotainment
systems.

part of the specified
Vehicle HAL

for each item.

A small selection of
Zones can define
their own instances
that can be
addressed in
interaction.
 E.g., Zone Wheels
-> address Right or
Left Wheel or both.

Coarse-grained
connection to app-
permission system.

Conclusions

In this document, we explored five projects in regard to a set of analysis criteria: motivation and problem space,
data model and data characteristics, contents of the specification, stakeholders, metadata and policies.

We found commonalities among these projects that lead to decisions of either joining efforts on common needs
or drawing the line between specification that have different scopes. For instance, we see no need for
competition between the VSS model and other projects’ data models in that these initiatives have modular data
models (ExVe, SENSORIS, CVIM) or are still under development and have a need for a data model (Android
HAL).

We see additionally that a shared data model across the industry, exemplified by VSS, would be appropriate for
aftermarket because of common standards so that innovative applications can be developed.

The contributing members and stakeholders of the projects presented in this document show that there is a
global interest in common specifications.

In the GENIVI Cloud and Connected Services project, and other projects, we are working with the assumption
that the VSS is the common data model. However, the work done in the architectural design track of the project
is done in a way that is not strictly tied to a single data model.

References

 [5-star open data] https://5stardata.info/

 [Abstracting and Interacting with Vehicles in the Web of Things] https://fr.slideshare.net/BenjaminKlotz2

 [Android Automotive Vehicle Properties] https://source.android.com/devices/automotive/properties

 [Common Vehicle Model Specification] https://automat-project.eu/content/open-cvim-specification

 [FARACON] Franca-to-AUTOSAR-XML translation https://github.com/GENIVI/franca_ara_tools

 [HERE OpenLocation Platform] https://developer.here.com/blog/open-location-platform-2.8-release

 [SENSORIS specification] https://sensor-is.org/wp-content/uploads/sites/21/2019/07/sensoris-specification-

v1.0.0-public-1.zip

 [ISO 20078 Road vehicles — Extended vehicle (ExVe) web services]

https://www.iso.org/standard/66978.html

 [Vehicle Properties in Android Automotive] https://source.android.com/devices/automotive/properties

 [W3C VISS implementations] https://www.w3.org/auto/wg/wiki/VISS_implementations

https://5stardata.info/
https://fr.slideshare.net/BenjaminKlotz2
https://source.android.com/devices/automotive/properties
https://automat-project.eu/content/open-cvim-specification
https://github.com/GENIVI/franca_ara_tools
https://developer.here.com/blog/open-location-platform-2.8-release
https://sensor-is.org/wp-content/uploads/sites/21/2019/07/sensoris-specification-v1.0.0-public-1.zip
https://sensor-is.org/wp-content/uploads/sites/21/2019/07/sensoris-specification-v1.0.0-public-1.zip
https://www.iso.org/standard/66978.html
https://source.android.com/devices/automotive/properties
https://www.w3.org/auto/wg/wiki/VISS_implementations

Authors

 Kevin Valdek, High Mobility

 Benjamin Klotz, Eurecom

 Narasimha Swamy Gururaja, Bosch

 Gunnar Andersson, GENIVI

 Participants of the GENIVI Cloud and Connected Services project

