
TSD

Towards Complete Embedded
System Modeling and Generation
Dr.-Ing. Klaus Uhl
Dr.-Ing. Kay-Ulrich Scholl
Intel Corporation, GENIVI Charter Member

GENIVI 14th All Member Meeting, Paris, April, 28th, 2016

TSD2

Overview

• Component modeling and code generation

• Intel demo system

The present

• System modeling and code generation

• Data streaming

The future

TSD

Component Modeling and Code Generation

3

TSD

Motivation for a component generator

4

Most components share common
patterns of code

 Configuration parameter processing

 IPC initialization

 Interface instantiation

 Consolidate information from multiple
interfaces

 etc.

Manually maintaining this code is
tedious and error-prone

Code generation helps to

 Find bugs in the generated code faster
because the same code is used in many
components

 Fix bugs simultaneously in many
components by just updating the
generator

 Roll out implementation improvements
or adpations to API changes
simultaneously to many components by
just updating the generator

TSD

Intel Component Generator Features

5

 Component startup and shutdown
handling

 Trigger other generators depending on
the component definition

 Configuration parameter handling

 Communication interface instantiation
and initialization

 Multiple channels

 Multiple IPC mechanisms

 Event and worker thread initialization

 Forwarding of calls from multiple
interfaces to a single handler class

 DLT application and context registration

 Link to GENIVI lifecycle

TSD

package calculator.example.server

import calculator.example.* from "Calculator.fidl"

module CalculatorServer {

dlt context use parent;

communication channel mainChannel;

provides interface Calculator calculator

on mainChannel;

}

component CalculatorServerApp {

dlt app id ICES "Calculator Example Server“;

dlt context _CSC "Calculator Server Context“;

contains CalculatorServer calculatorServer

communication channel MainBus {

type UFIPC;

maps to calculatorServer.mainChannel;

}

event thread mainThread {

processes MainBus;

}

use genivi_lifecycle;

}

6

Example

TSD

package calculator.example.server

import calculator.example.* from "Calculator.fidl"

module CalculatorServer {

dlt context use parent;

communication channel mainChannel;

provides interface Calculator calculator

on mainChannel;

}

component CalculatorServerApp {

dlt app id ICES "Calculator Example Server“;

dlt context _CSC "Calculator Server Context“;

contains CalculatorServer calculatorServer;

communication channel MainBus {

type Dbus;

maps to calculatorServer.mainChannel;

}

event thread mainThread {

processes MainBus;

}

use genivi_lifecycle;

}

package calculator.example.server

import calculator.example.* from "Calculator.fidl"

module CalculatorServer {

dlt context use parent;

communication channel mainChannel;

provides interface Calculator calculator

on mainChannel;

}

component CalculatorServerApp {

dlt app id ICES "Calculator Example Server“;

dlt context _CSC "Calculator Server Context“;

contains CalculatorServer calculatorServer

communication channel MainBus {

type UFIPC;

maps to calculatorServer.mainChannel;

}

event thread mainThread {

processes MainBus;

}

use genivi_lifecycle;

}

7

 Change only the type of a
communication channel

Example

TSD

package calculator.example.server

import calculator.example.* from "Calculator.fidl"

module CalculatorServer {

dlt context use parent;

communication channel mainChannel;

provides interface Calculator calculator

on mainChannel;

}

component CalculatorServerApp {

dlt app id ICES "Calculator Example Server“;

dlt context _CSC "Calculator Server Context“;

contains CalculatorServer calculatorServer;

communication channel MainBus {

type Dbus;

maps to calculatorServer.mainChannel;

}

event thread mainThread {

processes MainBus;

}

use genivi_lifecycle;

}

8

 Change only the type of a
communication channel

 Component generator
instructs the build system to

 Generate different proxy and
stub adapters

 Link against a different IPC
binding runtime library

Example

TSD

IPC Runtime
Libraries

Common API
Runtime Library

ICDL Workflow

9

Common
API

Generator

IPC Runtime
Libraries

IPC
Bindings

IPC
Binding

Generators

Component
Logic

Common API

Compiler/
Linker SW Component

Common API
Runtime Library

Component
Startup/Shutdown

Interface
Initialization

GENIVI Lifecycle
Integration

Libraries
required by the

component logic

uses

Intel
Component
Generator

references

Franca IDL

Intel CDL

triggers

Reduce the amount of manually maintained code

State
Machine

Generator

State Machine
Implementation

State Machine
Model extends

State Machine
Integration Model

generated code

Manually written code

Generator

TSD

Intel Demo System

10

TSD

System Architecture

11

 Multiple UI runtimes possible
(GUI, Cluster, Speech, etc.)

 Inter-process
communication API defined
by Franca IDLs

 API syntax is UI runtime
specific

Presentation
Layer

Cluster GUI
External

Application

Middleware
Layer

System Logic
Layer Controller

A

IVI GUI

...

... XAudio Media Phone

Controller
B

Controller
X

...

A B BC

TSD

C
o

n
tro

lle
r

Component Logic

State Machine

Common API proxy

Common API Stub

S
e

rv
ice

Component Logic

Common API Stub

State Machine

H
M

I
Q

M
L

Code generation on all layers

12

Interface
Definition

State Chart
Model

Component
Definition

Interface
Definition

State Chart
Model

Component
Definition

Visualization

QML Objects

Common API Proxy

Common API to Qt

Model

generated code

Manually written code

Generator

Common API
Generator

Component
Generator

State Chart
Generator

Common API
Generator

Component
Generator

State Chart
Generator

Common API
Qt Generator

Common API
Generator

Common API
Generator

TSD

System Modeling and Code Generation

13

TSD

System architect can quickly
re-configure, re-build and re-
deploy a complete system

14

...
Test and

Validation
Support

Hardware Dependent
Resource Consumption

Implementation Variants

Actual Operating Systems

Actual Hardware Resources

...

Test and Verification
Requirements

Safety Requirements

Scheduling Constraints

Abstract System
Structure

Generators

Generator
Code

Generator

Deployment
Abstract model

System Model

Vision – Code Generation

IPC
Binding

Component
Configurations

Component
Implementation

Interface
Implementation

Scheduling
Configurations

Security
ConfigurationsSafety

Configurations

Maintained by Developer

Generated

TSD15

...

Hardware Dependent
Resource Consumption

Implementation Variants

Actual Operating Systems

Actual Hardware Resources

...

Test and Verification
Requirements

Safety Requirements

Scheduling Constraints

Abstract System
Structure

Model
Analysis

Tool
Model

Analysis
Tool

Model
Analysis

Tool

Deployment
Abstract Model

System Model

Vision – Model Analysis

Missing
Constraints

Code
Generation
Properties

V-Model
Traceability

Check model completeness

Optimize
Scheduling

Analyse
Communication

Patterns

Analyse
Resource

Consumption

Evaluate Trade Studies

TSD

Facilitate Technology Reuse

16

 Link system model entities to models that are defined in
other languages

 Extend the system model to subsume the external models

 Re-use existing code generators

 Export external models from system model on the fly during
code generation if possible

 Use import/export only if needed

 Only implement new code generators if no usable
alternative exists

System Model

Intermediate
Model

Existing Code
Generator

Generated Code

Model
Transformation

TSD

System Modeling and Generation Approach

17

SysML

Franca Profile ICDL Profile Systemd Profile
Data Streaming

Profile
UML

Scheduling
Profile

ICDL
Connector

YAMAICA-EA

Franca IDL
Component
Definition

Systemd
Service File

Systemd
Generator

Data Streaming
API Generator
or Connector

RTOS
Scheduling
Generator

Data Streaming
Code

RTOS Scheduling
Configuration

TSD

C
o

n
tro

lle
r

Component Logic

State Machine

Common API proxy

Common API Stub

S
e

rv
ice

Component Logic

Common API Stub

State Machine

H
M

I

Q
M

L

Intel Demo System Example

18

Interface
Definition

State Chart
Model

Component
Definition

Interface
Definition

State Chart
Model

Component
Definition

Visualization

QML Objects

Common API Proxy

Common API to Qt

Model

Generated model

Generated code

Manually written code

Generator

Common API
Generator

Component
Generator

State Chart
Generator

Common API
Generator

Component
Generator

State Chart
Generator

Common API
Qt Generator

Common API
Generator

Common API
Generator

System
Model

Generator /
Transformation

Generator /
Transformation

Generator /
Transformation

Service
File

Container
Config

Service
File

Container
Config

Service
File

Container
Config

TSD

Data Streaming

19

TSD

Data Streaming

20

• Data synchronization

• input queuing

• processing trigger

Far more complex than command & control

• Algorithm command & control

• Scheduling

• Real-time constraints

• High frequency algo might process multiple steps
at once

Sensor
A

Sensor
B

Sensor
C

Algo
Proc: on A and B
Out: every proc

C&C

A

B

Decoder
Proc: on A

Out: sporadic

C&C

A

Algo
Proc: on B, queue A

Out: every proc

C&C

A

B

TSD21

Differences to CommonAPI

Franca/CommonAPI Data Streaming API

Client/server communication model
• Attributes
• Remote function calls with return value
• Events with subscription

Publish/subscribe communication model
• No attributes required
• No remote function calls required

Only one IPC mechanism per interface
supported

Multiple IPC mechanisms per interface
required

Mostly low-frequency transfer of small
data chunks

High-frequency mass data streaming

Scheduling policy definition left to the IPC
binding implementation

Scheduling policy definition API required

TSD

Challenge 1: Optimized data driven scheduling

22

Sensor
A

Sensor
B

Activity
Proc: on B, min jitter

Out: every proc

C&C

A

B

Sensor
A

Sensor
B

Activity
Proc: on A

Out: every proc

C&C

A

B

Sensor
A

Sensor
B

Activity
Proc: on B, min jitter,

queue<2> on A
Out: every proc

C&C

A

B

Processing Trigger

Queued

Dropped

TSD

Challenge 2: Efficient multi-binding support

23

 Activities / algorithms can be
implemented using different
technologies, e.g.

 C++ on CPU for decision steps

 OpenVX graph on CPU, GPU, image
processing accelerator or a mix of these
for massively parallel image processing

 Custom accelerator code for highly
optimized accelerator usage

 Streaming data from a single producer
has to be forwarded to multiple
consumers inside the same process
using different transport technologies

Activity

Activity
CPU, C++

Activity
OpenVX

Activity
Custom

Accelerator

Reduce copy operations to the technical limit (zero-copy if possible)

Intel Confidential — Do Not Forward

