
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2016

An Application Manager

on a GENIVI Platform
2016-04-27 | 11:00

Johan Thelin

System Architect // EG HMI

Pelagicore

https://creativecommons.org/licenses/by-sa/4.0/

5/2/2016 PELAGICORE CC BY-SA 4.02

• An application centric platform based
on Qt Automotive Suite running on a
GENIVI platform

• We will look at code for the various
parts as well as concepts and
overviews

Introduction

5/2/2016 PELAGICORE CC BY-SA 4.03

Why Applications?

• Life-cycle – innovation in consumer electronics move too fast for IVI, features need
to be added during the life-cycle of a program

• Validation – partitioning the system into independent applications and a smaller
platform reduces the validation work and variant configuration complexity

• Consumer Expectations – the customers are used to apps

5/2/2016 PELAGICORE CC BY-SA 4.04

Why QtAS

• Based on Qt, a mature toolkit used in multiple verticals
– Internationalization
– Support for left-to-right and right-to-left
– Easy to implement UIs with a very varied appearance – full design freedom
– Dynamic loading of UI parts – possible to control memory consumption
– A clear model for building reusable components
– Much, much, more

• QtAS is adapted and extended for IVI – Qt for an automotive architecture

• Takes Qt from a toolkit to a platform

5/2/2016 PELAGICORE CC BY-SA 4.05

Neptune

• Will be shown during the showcase
tonight

• Demonstrates a Qt Automotive Suite-
based, application centric platform

• Converged head-unit and
instrument cluster

5/2/2016 PELAGICORE CC BY-SA 4.06

Quick Poll

• Who is familiar with C++?

• Who is familiar with Qt using C++?

• Who is familiar with QML?

5/2/2016 PELAGICORE CC BY-SA 4.07

Qt in one slide

• C++ framework for cross platform application development
– Windows, OS X, Unix/Linux, Android, iOS, embedded Linux, others

• Has been around for more than 20 years

• Dual licensed, open source and commercial

• The base for numerous successful open source projects
– KDE, VLC, Subsurface, Wireshark, more

5/2/2016 PELAGICORE CC BY-SA 4.08

• QObject

• Signals / slots

• Properties

• Invokables

• Enums

• This is C++

• And introspectable at run-time

class MyClass : public QObject {

Q_OBJECT

Q_PROPERTY(QString text READ text WRITE setText NOTIFY textChanged)

Q_ENUM(MyEnum)

public:

MyClass(QObject *parent=0);

Q_INVOKABLE void pickAName();

QString name() const;

enum MyEnum { Foo, Bar, Baz };

public slots:

void setName(const QString &name);

signals:

void nameChanged(QString name);

// ...

};

5/2/2016 PELAGICORE CC BY-SA 4.09

Connections

• QObject instances become loosely coupled building blocks

connect(sender, &SenderType::signalName, destination, &DestinationType::slotName);

• Old style syntax

connect(sender, SIGNAL(signalName()), destination, SLOT(slotName()));

5/2/2016 PELAGICORE CC BY-SA 4.010

QML

• Qt Meta Language

• Builds on the C++ introspection and Qt concepts
– Signals, slots, properties, invokables

• Adds Javascript and a declarative approach

• Super easy to extend using C++

5/2/2016 PELAGICORE CC BY-SA 4.011

import QtQuick 2.5

Rectangle {

width: 360

height: 360

Text {

anchors.centerIn: parent

text: "Hello World"

}

MouseArea {

anchors.fill: parent

onClicked: {

Qt.quit();

}

}

}

• Instantiation

• Bindings

• Events

5/2/2016 PELAGICORE CC BY-SA 4.012

Item Models

• The QAbstractItemModel is a base class and interface for large collections of data
– QAbstractListModel is a simplified API for lists

• Dynamic updates
– Rows added/removed/moved, columns added/removed/moved, data changed, and so on

• Dynamic population
– canFetchMore / fetchMore

• Handled from QML using the view – delegate – model setup

5/2/2016 PELAGICORE CC BY-SA 4.013

ListView {

anchors.fill: parent

model: myModel

delegate: myDelegate

}

Component {

id: myDelegate

GreenBox {

width: 40

height: 40

text: index

}

}

• View

• Model

• Delegate

5/2/2016 PELAGICORE CC BY-SA 4.014

More item models

• Views
– Repeater
– ListView
– GridView
– PathView

• Models
– ListModel
– XmlListModel
– QSqlTableModel
– QAbstractItemModel, which is the generic interface

5/2/2016 PELAGICORE CC BY-SA 4.015

More on QML

• Visual elements maps directly into an OpenGL scenegraph – great performance

• Easy to use access to low-level OpenGL features – shaders, particles

• Keeps a synchronized timeline allowing advanced animations

• Easy to extend OpenGL scenegraph to integrate other toolkits
– The Foundry, Kanzi, NVIDIA UI Composer

• Builds on Qt C++ – easy to extend with more C++ code
– Handle complexity and performance

5/2/2016 PELAGICORE CC BY-SA 4.016

Learn More

About Qt and C++ www.qmlbook.org

5/2/2016 PELAGICORE CC BY-SA 4.017

The Beginning

Power Bootloader Kernel systemd
Application

Manager
System UI

5/2/2016 PELAGICORE CC BY-SA 4.018

Application Manager

Wayland window compositor
• Wayland protocol compliant

• Token based display authorization for registered apps

• Implement in QML with full Qt animation support

Security and Lifecycle Management
• Application isolation via Linux Containers

• Package installation, updates and removal using self

contained bundles

App launcher
• Central point for starting and stopping internal and 3rd

party apps

• Managing out-of-memory situations

• Quick launch for all Qt based apps

User input management
• Central virtual keyboard component

• Transparently used by all apps

• Integrated with Wayland compositor

Application Manager

5/2/2016 PELAGICORE CC BY-SA 4.019

Application Manager and System UI

• Application Manager provides the mechanisms, System UI the
behavior

• Application Manager is the QML run-time environment in which
the System UI is executed. Exposes the following APIs:
– ApplicationManager, for launching, stopping and controlling applications
– ApplicationInstaller, for installing, updating and removing applications
– WindowManager, for implementing a Wayland compositor
– NotificationManager, for implementing org.freedesktop.Notification

System UI

Application Manager

5/2/2016 PELAGICORE CC BY-SA 4.020

F.A.Q.

• Wayland is a protocol, Weston is a reference application

• Application Manager replaces Weston

• The System UI runs in the Application Manager process

• The System UI controls the compositor behavior

• The System UI is pure QML
– Can be extended with C++, but does not have to

5/2/2016 PELAGICORE CC BY-SA 4.021

import QtQuick 2.0

import io.qt.ApplicationManager 1.0

ListView {

id: appList

model: ApplicationManager

delegate: Text {

text: name + "(" + id + ")"

MouseArea {

anchors.fill: parent

onClick: ApplicationManager.startApplication(id)

}

}

}

5/2/2016 PELAGICORE CC BY-SA 4.022

Privileges and Processes

sandboxedunprivilegedrootunprivileged

Application Manager

Installation

Helper

(root)

Runtime / Sandbox

setup

(root)

Runtime native Native App

Runtime HTML HTML App

Runtime QML QML App

5/2/2016 PELAGICORE CC BY-SA 4.023

Back to the Example

• The application is being launched by Application Manager…

5/2/2016 PELAGICORE CC BY-SA 4.024

An Application and its Surroundings

Application

Qt IVIQt

UI
Components

System UI

Application Manager

5/2/2016 PELAGICORE CC BY-SA 4.025 5/2/2016 AGILE UX DEVELOPMENT – CONFIDENTIAL25

UI Components

• Application base-class

• Common elements

– buttons, labels, sliders, lists…

• Common views
– Supporting driver side, bidi…

• Common transitions
– Animations, fade-in, fade-out…

• Combines graphics and behaviour

5/2/2016 PELAGICORE CC BY-SA 4.026

// Divider.qml

import QtQuick 2.1

import QtQuick.Layouts 1.0

import controls 1.0

import utils 1.0

UIElement {

id: root

hspan: 12

Image {

anchors.horizontalCenter: parent.horizontalCenter

anchors.bottom: parent.bottom

source: Style.gfx2("timeline")

}

}

Item

UIElement

Button

Label

Switch

Slider

5/2/2016 PELAGICORE CC BY-SA 4.027

Compositing

• UI Components are combined onto a
Wayland surface

• Application Manager picks it up and
the System UI composes it into a
screen

• Surfaces can be tagged using
Wayland, i.e. I’m a popup, to allow
the compositor to proper layout
surfaces.

Application

Input Management

Notification infrastructure

Assembled views

5/2/2016 PELAGICORE CC BY-SA 4.028

import QtQuick 2.0

import io.qt.ApplicationManager 1.0

// simple solution for a full-screen setup

Item {

id: fullscreenView

MouseArea {

// without this area, clicks would go "through" the surfaces

id: filterMouseEventsForWindowContainer

anchors.fill: parent

enabled: false

}

Item {

id: windowContainer

anchors.fill: parent

state: "closed"

function surfaceItemReadyHandler(index, item) {

filterMouseEventsForWindowContainer.enabled = true

windowContainer.state = ""

windowContainer.windowItem = item

windowContainer.windowItemIndex = index

}

function surfaceItemClosingHandler(index, item) {

if (item === windowContainer.windowItem) {

// start close animation

windowContainer.state = "closed"

} else {

// immediately close anything which is not
handled by this container

WindowManager.releaseSurfaceItem(index,
item)

}

}

function surfaceItemLostHandler(index, item) {

if (windowContainer.windowItem === item) {

windowContainer.windowItemIndex = -1

windowContainer.windowItem = placeHolder

}

}

Component.onCompleted: {

WindowManager.surfaceItemReady.connect(surfaceIte
mReadyHandler)

WindowManager.surfaceItemClosing.connect(surfaceIte
mClosingHandler)

WindowManager.surfaceItemLost.connect(surfaceItemL
ostHandler)

}

property int windowItemIndex: -1

property Item windowItem: placeHolder

onWindowItemChanged: {

windowItem.parent = windowContainer // reset parent in any
case

}

Item {

id: placeHolder;

}

// a different syntax for 'anchors.fill: parent' due to the volatile
nature of windowItem

Binding { target: windowContainer.windowItem; property: "x";
value: windowContainer.x }

Binding { target: windowContainer.windowItem; property: "y";
value: windowContainer.y }

Binding { target: windowContainer.windowItem; property:
"width"; value: windowContainer.width }

Binding { target: windowContainer.windowItem; property:
"height"; value: windowContainer.height }

transitions: [

Transition {

to: "closed"

SequentialAnimation {

alwaysRunToEnd: true

One compositor, including
transition animations on

a single slide.

Sorry about the readability…

// your closing animation goes here

// ...

ScriptAction {

script: {

windowContainer.windowItem.visible = false;

WindowManager.releaseSurfaceItem(windowContainer.windowItemI
ndex, windowContainer.windowItem);

filterMouseEventsForWindowContainer.enabled =
false;

}

}

}

},

Transition {

from: "closed"

SequentialAnimation {

alwaysRunToEnd: true

// your opening animation goes here

// ...

}

}

]

}

}

5/2/2016 PELAGICORE CC BY-SA 4.029

// Connect to signals

Component.onCompleted: {

WindowManager.surfaceItemReady.connect(surfaceItemReadyHandler)

WindowManager.surfaceItemClosing.connect(surfaceItemClosingHandler)

WindowManager.surfaceItemLost.connect(surfaceItemLostHandler)

}

// Handle new surfaces (place in container)

function surfaceItemReadyHandler(index, item) {

filterMouseEventsForWindowContainer.enabled = true

windowContainer.state = ""

windowContainer.windowItem = item

windowContainer.windowItemIndex = index

}

// Find App instance in ApplicationManager from surface

var appIdForWindow = WindowManager.get(winIndex).applicationId

5/2/2016 PELAGICORE CC BY-SA 4.030

Application Manager and System UI

• The System UI is a QML script executed inside the
Application Manager

• Application Manager provides mechanisms, the System UI
implements the OEM specific behavior

• The System UI is built from UI Components and custom
parts, just like any other app in the system

System UI

Application Manager

5/2/2016 PELAGICORE CC BY-SA 4.031

// Client side, i.e. App

ApplicationManagerWindow {

Component.onCompleted: { setWindowProperty(“winType", “main") }

}

// Server side, i.e. System UI

Connections {

target: WindowManager

onSurfaceItemReady: {

if (WindowManager.surfaceWindowProperty(item, “winType") === “main") { /* it's a “main" */ }

if (WindowManager.get(index).id === "com.pelagicore.nav") { /* coming from the nav application */ }

}

// Another approach is to use the window title as tag

5/2/2016 PELAGICORE CC BY-SA 4.032

System UI

• Typically integrates
– Virtual keyboard and handwriting areas
– Notifications
– Popups
– Launcher
– Central settings

• Coordinates with other sub-systems
– NSM
– LUC preservation / restoration
– and more…

5/2/2016 PELAGICORE CC BY-SA 4.033

Application Processes

• Application Manager supports in-process apps and out-of-process apps

• In process apps are great for
– Startup
– Development
– Hardware where Wayland support is missing

• Out of process apps are great for
– Fully decoupled
– Can easily be containerised

• Application Manager supports mixed mode setups

5/2/2016 PELAGICORE CC BY-SA 4.034

Back to our App

• The application uses a number of interfaces

• Qt

• Qt IVI

• Anything else… no technical limitations

Application

Qt IVIQt

5/2/2016 PELAGICORE CC BY-SA 4.035

QtGeniviExtras

• Uses Qt interfaces for common platform services

• A part of the QtIVI module

• Current
– Qt Categorized Logging integrated on top of DLT

• On the road-map
– QSettings + support integrated on top of PCL
– NSM integration

5/2/2016 PELAGICORE CC BY-SA 4.036

Qt IVI

• Extensible Qt APIs
– A pattern for how to extend Qt with new interfaces
– Base classes to add structure
– Reference implementation of APIs based on W3C scope

• Separation of Frontend and Backend

• Multiple backends for various use-cases
– Different sub-systems
– Simulation
– Unit-tests

Core

Feature

Backend

App

5/2/2016 PELAGICORE CC BY-SA 4.037

Qt IVI - Frontends

• APIs for app development

• Bindable QML interfaces, easy to use C++ interfaces

• Common development experience regardless of backend
– Same error messages
– Same query language for searches
– Agnostic to backend implementation

• In process code, e.g. shared object

• IPC, e.g. d-bus, socket, CommonAPI C++

• Networking, e.g. TCP/IP, CAN, MOST

5/2/2016 PELAGICORE CC BY-SA 4.038

Qt IVI - Backends

• Implements an interface defined by the frontend according to guidelines
– Asynchronous
– Stateless
– Etc

• All backends share a set of key unit tests
– Sequence order
– Out of range handling

• We use the compiler and unit tests to ensure that the behavior is the same for all

5/2/2016 PELAGICORE CC BY-SA 4.039

Qt IVI - Bindable Interfaces, Optimistic UIs

• Having a bindable interface is something the QML like, no app logic needed to
connect to a backend when it becomes available, just wait for the available
property to go true

• The bindable interface, i.e. the frontend, supports optimistic Uis, i.e. safe defaults
– Not always what you want, but great when used correctly

5/2/2016 PELAGICORE CC BY-SA 4.040

ClimateControl { // Interface

id: climateControl

discoveryMode: ClimateControl.AutoDiscovery

}

CheckBox { // Usage

text: "Air Recirculation"

checked: climateControl.airRecirculation.value

enabled: climateControl.airRecirculation.available

onClicked: {

climateControl.airRecirculation.value = checked

}

}

5/2/2016 PELAGICORE CC BY-SA 4.041

Typical Platform APIs

• The APIs provided to apps in an IVI system are always extended

• Everyone adds something unique

Embedded Linux GENIVI OEM

5/2/2016 PELAGICORE CC BY-SA 4.042

Qt IVI and Franca IDL

• We can code generate wrapper QObjects from Franca IDL
– The result is usually not very nice from QML – the Qt feeling is missing

• We need to map high level concepts
– QAbstractItemModel – large lists
– Naming – how can we agree or map names correctly
– Can we use Franca IDL to define default values
– Probably more in Qt and in other toolkits as well

• Defining guidelines will make the GENIVI APIs extendible

• Let’s talk in the Application Framework Working Session on Thursday!

Legend

NOTE:

The block diagram describes only

subsystems and functional blocks

within them, but a full design may

break these down further into detailed

software components.

Therefore the color coding can only

describe an approximation, i.e. what

the majority of content in this box may

become.

There will be individual exceptions

where it is not feasible or desired for

a particular software component.

Initial Bootloader

Native
Applications

Managed
Applications

Persistence

SQLite,
Custom
storage

Persistence
Client Lib

Pers.
Health
Monitor

Pers.
Admin

Lifecycle

Node
Health
Monitor

Node
State Mgr

Node
Resource

Mgr

Node
Startup

Controller

User Mgmt

User
Identification

User Data
Migration

User
Switch

SW Management

Module
Loader

SW Loading
Mgr

Package
Mgr

SOTA
Client

Housekeeping

Coding /
System
Config.

Error/Event
Logging(DLT)

Exception
Handling

Statistics

Security
Infrastructure

Anomaly
Detection

HSM

MAC

Encryption,
Signatures

Diagnostics

DTCs

Remote Diagnostics

Automotive
Diagnostics

UDS

Device Mgmt

Advanced
Handover
Support

uevent /
udev

Audio Mgmt

Pulse Audio

Audio
Manager

IPC

Message
Broker/Routers

DBUS CommonAPI
Runtime

Networks

Teth-
ering

EAVB

Wifi

SOME-IP Vehicle Bus Proxy
(CAN, FlexRay)

NFC INC ICC

Audio/Video Processing

Codecs

EC/NR

SRC

Alsa

Gstreamer

Video
Inputs

(i.e. V4L)

Graphics Support

IVI Compositor
(Wayland Protocol)

Layer
Manage-
ment

OpenGL
(EGL)

Camera
Functions

Rear View
Camera

Guidance /
Overlay

CE Device
Integration

MirrorLink

Smart
Device
Link

Android
Auto

CarPlayTM

Telephony

Telephony
Stack

(eg.Ofono)

Internet Functions

Cloud Based
Services

DUMM Web
Browser

Media Sources

Internet
Radio

Commercial
Streaming

MTP

USB Mass
Storage

Bluetooth
Stream

AUX DLNA iAP

Media Framework

Indexer

Playback
Control

Music
Identi-
fication

Browser

Radio & Tuners

Terres-
trial TV

AM/FM

SDARS

DAB/DRM Broadcast
Data services

HD Radio TMC/VICS

Network Mgmt

Firewall
Rule
Mgmt

ConnMan Traffic
Shaping

Navigation/LBS

Positioni
ng

Navigation
Core

Map
Viewer

POI Mgr

Traffic
Info

Map Data
Service

Vehicle Interface

Seat
Heating

Vehicle
Settings

Climate
Control

Vehicle
Interface

API(Eg.AMB)

Bluetooth

Media
Playback

Mess-
aging

Hands-
free

Phone
Book

Bluetooth
Stack

(eg.Bluez)

Tethering

Speech

Speech
Input
(ASR)

Speech
Output
(TTS)

Speech
Dialog

Speech to
Text

Dictation

PIM

Internet
Account
Sync

Shared
Address Book

Calendar

Internet
Account
Manager

Device
Sync

HMI Support

Pop-
Up
Mgr

I18N & L10N Graphical
Framework

Buttons Hand-
writing

Generic libraries (libc, etc.) Low-level system libraries (libusb etc.)

Business Logic / Platform Adaptions (optional, dep. on circumstance)

Application Manager Web App Runtime Java App Runtime Prog. framework/abstraction (Qt and others)

System User Interface

“Apps“, e.g. Commercial Music Services Weather Social

Networks...

E.g. Vehicle Functions Climate (HVAC) Navigation Radio ...

Drivers, BSP, Linux Kernel

Abstract Component
(Interfaces defined)

Placeholder Component
(Requirements)

Specific Component
(Implementation)

Goal Architecture v0.9

Not specified

5/2/2016 PELAGICORE CC BY-SA 4.044

Access Control

Application
Manager
Installer

Application
Manager
Runtime

Bundle

App

Manifest
Signed Installed Executed

in limited
environment

5/2/2016 PELAGICORE CC BY-SA 4.045

Application Manifest

• Based on YAML
– Readable
– Easy to write
– Can be commented

• Contains
– Meta data for launcher
– Info about access rights – Capabilities
– Extendable

formatVersion: 1

formatType: am-application

id: 'com.pelagicore.movies'

icon: 'icon.png'

code: 'Movies.qml'

runtime: 'qml'

name:

en: 'Movies'

de: 'Filme'

categories: ['app']

built-in: yes

capabilities: ['video', 'sound', 'storage', 'network']

5/2/2016 PELAGICORE CC BY-SA 4.046

Application Bundles

• Signed
– Trusted source independent of distribution mechanism

• No dependencies
– No dependency hell
– No app-to-app security issues
– The only version compatibility to handle is app vs platform

• No installation scripts
– No tricky security situations – app is extracted into a single read-only directory

5/2/2016 PELAGICORE CC BY-SA 4.047

System Access Limitation

• Application Manager executes applications in different execution environments depending on
the level of trust, e.g.
– Native applications may run uncontained as an ordinary user
– Some applications may run inside an UID jail
– Some applications may run inside a container-based sandbox

• Pelagicontain, based on LXC and platform gateways

– More mechanisms through plugins

• Application Manager can use these systems in parallel, e.g.
– Tuner and Phone are not contained, runs at user privilege level
– Webbrowser runs inside a sandbox, cannot see anything but the strictly needed
– Spotify runs inside a UID jail, can do less, but still sees large parts of the system

5/2/2016 PELAGICORE CC BY-SA 4.048 5/2/2016 AGILE UX DEVELOPMENT – CONFIDENTIAL48

Application SDK

• Qt Creator based – supports
Windows/OSX/Linux

• Integrated with your System UI and UI
Components

• QtAS.QmlLive – enables quick round-trip
to target hardware

• Qt IVI Simulator – enables evaluation on
desktop against simulated service APIs

• Reference UI – provides a starting point

5/2/2016 PELAGICORE CC BY-SA 4.049

QmlLive

• Rapid UI prototyping tool

• Designer friendly

• A server / client automatic
reloader tool
– Makes it possible for

designers to test out designs
on the actual target

5/2/2016 PELAGICORE CC BY-SA 4.050

Summary

• Qt Automotive Suite – http://www.qt.io

• QmlLive – https://github.com/Pelagicore/qmllive

• QmlBook – http://qmlbook.org

• Pelagicore Labs – http://labs.pelagicore.com

http://www.qt.io/
https://github.com/Pelagicore/qmllive
https://github.com/Pelagicore/qmllive
http://qmlbook.org/
http://labs.pelagicore.com/

5/2/2016 PELAGICORE CC BY-SA 4.051

5/2/2016 PELAGICORE CC BY-SA 4.052CC BY-SA 4.0

