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• An application centric platform based 
on Qt Automotive Suite running on a 
GENIVI platform

• We will look at code for the various 
parts as well as concepts and 
overviews

Introduction
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Why Applications?

• Life-cycle – innovation in consumer electronics move too fast for IVI, features need 
to be added during the life-cycle of a program

• Validation – partitioning the system into independent applications and a smaller 
platform reduces the validation work and variant configuration complexity

• Consumer Expectations – the customers are used to apps
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Why QtAS

• Based on Qt, a mature toolkit used in multiple verticals
– Internationalization
– Support for left-to-right and right-to-left
– Easy to implement UIs with a very varied appearance – full design freedom
– Dynamic loading of UI parts – possible to control memory consumption
– A clear model for building reusable components
– Much, much, more

• QtAS is adapted and extended for IVI – Qt for an automotive architecture

• Takes Qt from a toolkit to a platform



5/2/2016 PELAGICORE CC BY-SA 4.05

Neptune

• Will be shown during the showcase 
tonight

• Demonstrates a Qt Automotive Suite-
based, application centric platform

• Converged head-unit and 
instrument cluster
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Quick Poll

• Who is familiar with C++?

• Who is familiar with Qt using C++?

• Who is familiar with QML?
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Qt in one slide

• C++ framework for cross platform application development
– Windows, OS X, Unix/Linux, Android, iOS, embedded Linux, others

• Has been around for more than 20 years

• Dual licensed, open source and commercial

• The base for numerous successful open source projects
– KDE, VLC, Subsurface, Wireshark, more
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• QObject

• Signals / slots

• Properties

• Invokables

• Enums

• This is C++

• And introspectable at run-time

class MyClass : public QObject {

Q_OBJECT

Q_PROPERTY(QString text READ text WRITE setText NOTIFY textChanged)

Q_ENUM(MyEnum)

public:

MyClass(QObject *parent=0);

Q_INVOKABLE void pickAName();

QString name() const;

enum MyEnum { Foo, Bar, Baz };

public slots:

void setName(const QString &name);

signals:

void nameChanged(QString name);

// ...

};
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Connections

• QObject instances become loosely coupled building blocks

connect(sender, &SenderType::signalName, destination, &DestinationType::slotName);

• Old style syntax

connect(sender, SIGNAL(signalName()), destination, SLOT(slotName()));
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QML

• Qt Meta Language

• Builds on the C++ introspection and Qt concepts
– Signals, slots, properties, invokables

• Adds Javascript and a declarative approach

• Super easy to extend using C++
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import QtQuick 2.5

Rectangle {

width: 360

height: 360

Text {

anchors.centerIn: parent

text: "Hello World"

}

MouseArea {

anchors.fill: parent

onClicked: {

Qt.quit();

}

}

}

• Instantiation

• Bindings

• Events
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Item Models

• The QAbstractItemModel is a base class and interface for large collections of data
– QAbstractListModel is a simplified API for lists

• Dynamic updates
– Rows added/removed/moved, columns added/removed/moved, data changed, and so on

• Dynamic population
– canFetchMore / fetchMore

• Handled from QML using the view – delegate – model setup
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ListView {

anchors.fill: parent

model: myModel

delegate: myDelegate

}

Component {

id: myDelegate

GreenBox {

width: 40

height: 40

text: index

}

}

• View

• Model

• Delegate
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More item models

• Views
– Repeater
– ListView
– GridView
– PathView

• Models
– ListModel
– XmlListModel
– QSqlTableModel
– QAbstractItemModel, which is the generic interface
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More on QML

• Visual elements maps directly into an OpenGL scenegraph – great performance

• Easy to use access to low-level OpenGL features – shaders, particles

• Keeps a synchronized timeline allowing advanced animations

• Easy to extend OpenGL scenegraph to integrate other toolkits
– The Foundry, Kanzi, NVIDIA UI Composer

• Builds on Qt C++ – easy to extend with more C++ code
– Handle complexity and performance
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Learn More

About Qt and C++ www.qmlbook.org
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The Beginning

Power Bootloader Kernel systemd
Application 

Manager
System UI



5/2/2016 PELAGICORE CC BY-SA 4.018

Application Manager

Wayland window compositor
• Wayland protocol compliant

• Token based display authorization for registered apps

• Implement in QML with full Qt animation support

Security and Lifecycle Management
• Application isolation via Linux Containers

• Package installation, updates and removal using self 

contained bundles

App launcher
• Central point for starting and stopping internal and 3rd 

party apps

• Managing out-of-memory situations

• Quick launch for all Qt based apps

User input management
• Central virtual keyboard component

• Transparently used by all apps

• Integrated with Wayland compositor

Application Manager
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Application Manager and System UI

• Application Manager provides the mechanisms, System UI the 
behavior

• Application Manager is the QML run-time environment in which 
the System UI is executed. Exposes the following APIs:
– ApplicationManager, for launching, stopping and controlling applications
– ApplicationInstaller, for installing, updating and removing applications
– WindowManager, for implementing a Wayland compositor
– NotificationManager, for implementing org.freedesktop.Notification

System UI

Application Manager
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F.A.Q.

• Wayland is a protocol, Weston is a reference application

• Application Manager replaces Weston

• The System UI runs in the Application Manager process

• The System UI controls the compositor behavior

• The System UI is pure QML
– Can be extended with C++, but does not have to
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import QtQuick 2.0

import io.qt.ApplicationManager 1.0

ListView {

id: appList

model: ApplicationManager

delegate: Text {

text: name + "(" + id + ")"

MouseArea {

anchors.fill: parent

onClick: ApplicationManager.startApplication(id)

}

}

}
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Privileges and Processes

sandboxedunprivilegedrootunprivileged

Application Manager

Installation

Helper

(root)

Runtime / Sandbox 

setup

(root)

Runtime native Native App

Runtime HTML HTML App

Runtime QML QML App
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Back to the Example

• The application is being launched by Application Manager…
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An Application and its Surroundings

Application

Qt IVIQt

UI 
Components

System UI

Application Manager
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UI Components

• Application base-class

• Common elements

– buttons, labels, sliders, lists…

• Common views
– Supporting driver side, bidi…

• Common transitions
– Animations, fade-in, fade-out…

• Combines graphics and behaviour
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// Divider.qml

import QtQuick 2.1

import QtQuick.Layouts 1.0

import controls 1.0

import utils 1.0

UIElement {

id: root

hspan: 12

Image {

anchors.horizontalCenter: parent.horizontalCenter

anchors.bottom: parent.bottom

source: Style.gfx2("timeline")

}

}

Item

UIElement

Button

Label

Switch

Slider
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Compositing

• UI Components are combined onto a 
Wayland surface

• Application Manager picks it up and 
the System UI composes it into a 
screen

• Surfaces can be tagged using 
Wayland, i.e. I’m a popup, to allow 
the compositor to proper layout 
surfaces.

Application

Input Management

Notification infrastructure

Assembled views
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import QtQuick 2.0

import io.qt.ApplicationManager 1.0

// simple solution for a full-screen setup

Item {

id: fullscreenView

MouseArea {

// without this area, clicks would go "through" the surfaces

id: filterMouseEventsForWindowContainer

anchors.fill: parent

enabled: false

}

Item {

id: windowContainer

anchors.fill: parent

state: "closed"

function surfaceItemReadyHandler(index, item) {

filterMouseEventsForWindowContainer.enabled = true

windowContainer.state = ""

windowContainer.windowItem = item

windowContainer.windowItemIndex = index

}

function surfaceItemClosingHandler(index, item) {

if (item === windowContainer.windowItem) {

// start close animation

windowContainer.state = "closed"

} else {

// immediately close anything which is not 
handled by this container

WindowManager.releaseSurfaceItem(index, 
item)

}

}

function surfaceItemLostHandler(index, item) {

if (windowContainer.windowItem === item) {

windowContainer.windowItemIndex = -1

windowContainer.windowItem = placeHolder

}

}

Component.onCompleted: {

WindowManager.surfaceItemReady.connect(surfaceIte
mReadyHandler)

WindowManager.surfaceItemClosing.connect(surfaceIte
mClosingHandler)

WindowManager.surfaceItemLost.connect(surfaceItemL
ostHandler)

}

property int windowItemIndex: -1

property Item windowItem: placeHolder

onWindowItemChanged: {

windowItem.parent = windowContainer // reset parent in any 
case

}

Item {

id: placeHolder;

}

// a different syntax for 'anchors.fill: parent' due to the volatile 
nature of windowItem

Binding { target: windowContainer.windowItem; property: "x"; 
value: windowContainer.x }

Binding { target: windowContainer.windowItem; property: "y"; 
value: windowContainer.y }

Binding { target: windowContainer.windowItem; property: 
"width"; value: windowContainer.width }

Binding { target: windowContainer.windowItem; property: 
"height"; value: windowContainer.height }

transitions: [

Transition {

to: "closed"

SequentialAnimation {

alwaysRunToEnd: true

One compositor, including
transition animations on 

a single slide.

Sorry about the readability…

// your closing animation goes here

// ...

ScriptAction {

script: {

windowContainer.windowItem.visible = false;

WindowManager.releaseSurfaceItem(windowContainer.windowItemI
ndex, windowContainer.windowItem);

filterMouseEventsForWindowContainer.enabled = 
false;

}

}

}

},

Transition {

from: "closed"

SequentialAnimation {

alwaysRunToEnd: true

// your opening animation goes here

// ...

}

}

]

}

}
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// Connect to signals 

Component.onCompleted: {

WindowManager.surfaceItemReady.connect(surfaceItemReadyHandler)

WindowManager.surfaceItemClosing.connect(surfaceItemClosingHandler)

WindowManager.surfaceItemLost.connect(surfaceItemLostHandler)

}

// Handle new surfaces (place in container)

function surfaceItemReadyHandler(index, item) {

filterMouseEventsForWindowContainer.enabled = true

windowContainer.state = ""

windowContainer.windowItem = item

windowContainer.windowItemIndex = index

}

// Find App instance in ApplicationManager from surface

var appIdForWindow = WindowManager.get(winIndex).applicationId
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Application Manager and System UI

• The System UI is a QML script executed inside the 
Application Manager

• Application Manager provides mechanisms, the System UI 
implements the OEM specific behavior

• The System UI is built from UI Components and custom 
parts, just like any other app in the system

System UI

Application Manager
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// Client side, i.e. App

ApplicationManagerWindow {

Component.onCompleted: { setWindowProperty(“winType", “main") }

}

// Server side, i.e. System UI

Connections {

target: WindowManager

onSurfaceItemReady: {

if (WindowManager.surfaceWindowProperty(item, “winType") === “main") { /* it's a “main" */ }

if (WindowManager.get(index).id === "com.pelagicore.nav") { /* coming from the nav application */ }

}

// Another approach is to use the window title as tag
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System UI

• Typically integrates
– Virtual keyboard and handwriting areas
– Notifications
– Popups
– Launcher
– Central settings

• Coordinates with other sub-systems
– NSM
– LUC preservation / restoration
– and more…
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Application Processes

• Application Manager supports in-process apps and out-of-process apps

• In process apps are great for
– Startup
– Development
– Hardware where Wayland support is missing

• Out of process apps are great for
– Fully decoupled
– Can easily be containerised

• Application Manager supports mixed mode setups
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Back to our App

• The application uses a number of interfaces

• Qt

• Qt IVI

• Anything else… no technical limitations

Application

Qt IVIQt
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QtGeniviExtras

• Uses Qt interfaces for common platform services

• A part of the QtIVI module

• Current
– Qt Categorized Logging integrated on top of DLT

• On the road-map
– QSettings + support integrated on top of PCL
– NSM integration
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Qt IVI

• Extensible Qt APIs
– A pattern for how to extend Qt with new interfaces
– Base classes to add structure
– Reference implementation of APIs based on W3C scope

• Separation of Frontend and Backend

• Multiple backends for various use-cases
– Different sub-systems
– Simulation
– Unit-tests

Core

Feature

Backend

App
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Qt IVI - Frontends

• APIs for app development

• Bindable QML interfaces, easy to use C++ interfaces

• Common development experience regardless of backend
– Same error messages
– Same query language for searches
– Agnostic to backend implementation

• In process code, e.g. shared object

• IPC, e.g. d-bus, socket, CommonAPI C++

• Networking, e.g. TCP/IP, CAN, MOST
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Qt IVI - Backends

• Implements an interface defined by the frontend according to guidelines
– Asynchronous
– Stateless
– Etc

• All backends share a set of key unit tests
– Sequence order
– Out of range handling

• We use the compiler and unit tests to ensure that the behavior is the same for all
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Qt IVI - Bindable Interfaces, Optimistic UIs

• Having a bindable interface is something the QML like, no app logic needed to 
connect to a backend when it becomes available, just wait for the available 
property to go true

• The bindable interface, i.e. the frontend, supports optimistic Uis, i.e. safe defaults
– Not always what you want, but great when used correctly
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ClimateControl { // Interface

id: climateControl

discoveryMode: ClimateControl.AutoDiscovery

}

CheckBox { // Usage

text: "Air Recirculation"

checked: climateControl.airRecirculation.value

enabled: climateControl.airRecirculation.available

onClicked: {

climateControl.airRecirculation.value = checked

}

}
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Typical Platform APIs

• The APIs provided to apps in an IVI system are always extended

• Everyone adds something unique

Embedded Linux GENIVI OEM
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Qt IVI and Franca IDL

• We can code generate wrapper QObjects from Franca IDL
– The result is usually not very nice from QML – the Qt feeling is missing

• We need to map high level concepts
– QAbstractItemModel – large lists
– Naming – how can we agree or map names correctly
– Can we use Franca IDL to define default values
– Probably more in Qt and in other toolkits as well

• Defining guidelines will make the GENIVI APIs extendible

• Let’s talk in the Application Framework Working Session on Thursday!
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Access Control

Application 
Manager
Installer

Application 
Manager 
Runtime

Bundle

App

Manifest
Signed Installed Executed 

in limited 
environment
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Application Manifest

• Based on YAML
– Readable
– Easy to write
– Can be commented

• Contains
– Meta data for launcher
– Info about access rights – Capabilities
– Extendable

formatVersion: 1

formatType: am-application

---

id:      'com.pelagicore.movies'

icon:    'icon.png'

code:    'Movies.qml'

runtime: 'qml'

name:

en: 'Movies'

de: 'Filme'

categories: [ 'app' ]

built-in: yes

capabilities: ['video', 'sound', 'storage', 'network' ]
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Application Bundles

• Signed
– Trusted source independent of distribution mechanism

• No dependencies
– No dependency hell
– No app-to-app security issues
– The only version compatibility to handle is app vs platform

• No installation scripts
– No tricky security situations – app is extracted into a single read-only directory
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System Access Limitation

• Application Manager executes applications in different execution environments depending on 
the level of trust, e.g.
– Native applications may run uncontained as an ordinary user
– Some applications may run inside an UID jail
– Some applications may run inside a container-based sandbox

• Pelagicontain, based on LXC and platform gateways

– More mechanisms through plugins

• Application Manager can use these systems in parallel, e.g.
– Tuner and Phone are not contained, runs at user privilege level
– Webbrowser runs inside a sandbox, cannot see anything but the strictly needed
– Spotify runs inside a UID jail, can do less, but still sees large parts of the system
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Application SDK

• Qt Creator based – supports 
Windows/OSX/Linux

• Integrated with your System UI and UI 
Components

• QtAS.QmlLive – enables quick round-trip 
to target hardware

• Qt IVI Simulator – enables evaluation on 
desktop against simulated service APIs

• Reference UI – provides a starting point
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QmlLive

• Rapid UI prototyping tool

• Designer friendly

• A server / client automatic 
reloader tool
– Makes it possible for 

designers to test out designs 
on the actual target
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Summary

• Qt Automotive Suite – http://www.qt.io

• QmlLive – https://github.com/Pelagicore/qmllive

• QmlBook – http://qmlbook.org

• Pelagicore Labs – http://labs.pelagicore.com

http://www.qt.io/
https://github.com/Pelagicore/qmllive
https://github.com/Pelagicore/qmllive
http://qmlbook.org/
http://labs.pelagicore.com/
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