
Licensed under Creative Commons BY-SA 4.0

Developing User Experiences
on Genivi Demo Platform

Hands On Seminar - Genivi AMM April 2016

Visit us at http://www.ics.com

Produced by Integrated Computer Solutions
Material based on Qt 5.5.x
Copyright 2016, Integrated Computers Solutions, Inc.

This work is licensed under Creative Commons BY-SA 4.0

Integrated Computer Solutions, Inc.

1

http://www.ics.com
http://creativecommons.org/licenses/by-sa/4.0/

Licensed under Creative Commons BY-SA 4.0

Module: Board Bringup
● Introductions

○ VirtualBox Installation and ICS VirtualBox Image
● Board Unwrap

○ Connections, Peripherals, Power
○ Gentlemen, Connect your Devices

● Yocto Linux - The Boot Process
○ Raspberry Pi boot using firmware loader
○ Renesas Porter, u-Boot
○ options, setting mac addresses and configuration

Licensed under Creative Commons BY-SA 4.0

Step 1: Install VirtualBox
Step 2: Install the ExtensionPack by selecting
File->Preferences

Install the ICS Development Image

Licensed under Creative Commons BY-SA 4.0

Setup of Development Host

● Copy all files from the provided USB pen drive to your
desktop first

● Unzip the file ICS-Ubuntu-Qt-RPi.zip
● Add the virtual machine
● Click on Settings -> Network

and set Adapter 1 to
Bridged Adapter
Select your Ethernet Adapter and not your Wifi Adapter!

Licensed under Creative Commons BY-SA 4.0

Setup of Development Host (cont.)

● Next, enable a shared folder between your laptop and the
virtual machine

● Start the virtual machine
● Username: ics, password: ics

Licensed under Creative Commons BY-SA 4.0

Development Host - A First Look

Licensed under Creative Commons BY-SA 4.0

The ICS Development Image

● ICS created virtual machine image for VirtualBox
○ Supplied via USB pen drive.
○ VirtualBox installer for Windows, Linux and Mac hosts included

● Contains GDP-9 SDKs with cross-compiler and sysroot
○ RaspberryPi-2 and Renesas Porter targets

○ Contains a cross-compiled version of Qt 5 and Qt tool-chain (qmake,
moc, uic, etc..)

● Contains Qt Creator
● Default user “ics” has sudo w/o password,

Use with care!

Licensed under Creative Commons BY-SA 4.0

Module: Board Bringup
● Introductions

○ VBox-Installation and ICS VirtualBox Image
● Board Unwrap

○ Connections, Peripherals, Power
○ Gentlemen, Connect your Devices

● Raspbian Linux - The Boot Process
○ BOOTP and TFTP
○ U-Boot and disk based boot process
○ Micro-kernel, options, loading drivers

Licensed under Creative Commons BY-SA 4.0

Raspberry Pi 2 - Specifications

● Broadcom BCM2836 ARM7 quad core processor
powered single board computer running at 900 MHz

● 1 GB RAM
● 40 pin extended GPIO
● 4 x USB2 ports
● 4 pole stereo output and composite video port
● Full size HDMI
● CSI camera port for Raspberry Pi camera
● DSI display port for Raspberry Pi touch screen display
● Micro SD port for loading operating system and data
● Micro USB power source

Licensed under Creative Commons BY-SA 4.0

Raspberry Pi Touchscreen

● RGB 800×480 display @60fps
● 24-bit color
● FT5406 10 point capacitive touchscreen
● 70 degree viewing angle
● Metal-backed display with mounting holes for the Pi

Licensed under Creative Commons BY-SA 4.0

Demo - Booting with Yocto

Licensed under Creative Commons BY-SA 4.0

Renesas Porter Boot

Connect to the Porter board using a USB cable.
Open a terminal, type:

sudo minicom porter

Now you can observe and interrupt the system
during the boot process.
Login as root, password “root”
Type ifconfig
If the ip-address is anything but: 192.168.1.26
Type

ifconfig eth0 192.168.1.26

Licensed under Creative Commons BY-SA 4.0

First Contact

● When the target boots
○ We have configured the device to have a static ip-

address:
192.168.1.28 raspberrypi
192.168.1.26 porter

○ The development host also has static ip:
192.168.1.211

○ We aliased the ip to rpi and porter in /etc/hosts
● Connect to the target from the terminal in the

development machine;
○ ssh root@rpi
○ ssh root@porter
○ The password is: root

Licensed under Creative Commons BY-SA 4.0

Module: Board Bringup
● Introductions

○ VBox-Installation and ICS VirtualBox Image
● Board Unwrap

○ Connections, Peripherals, Power
○ Gentlemen, Connect your Devices

● Yocto Linux - The Boot Process
○ BOOTP and TFTP
○ U-Boot and disk based boot process
○ Kernel, options, loading drivers

Licensed under Creative Commons BY-SA 4.0

Boot Process - Raspberry Pi

Boots off the first partition of the SD card using
the GPU:
1. GPU loads start.elf, which includes the

firmware for the GPU.
2. GPU firmware then loads bootcode.bin, which

is the 2nd stage bootloader.
3. The second stage then loads loader.bin,

which is 3rd stage (moved into bootcode.bin
recently)

4. The third stage then loads kernel.img with the
options in cmdline.txt, and boots it.

Licensed under Creative Commons BY-SA 4.0

Boot Process - Das U-Boot

● Bootloader, similar in function to GRUB
● Supports most architectures, including ARM
● Can boot from local storage or network

(including network rootfs)
● Works with most UNIX derivatives, including

QNX
● Written in C and released under the GPL

Licensed under Creative Commons BY-SA 4.0

Boot Process - Das U-Boot

● Can be configured at boot via a feature rich
command line

● Configured using environment variables
○ Pre-set at compile time
○ Can be changed via command line or uEnv.txt file
○ Changes can be saved if storage is writable

● Must be cross-compiled for your specific
hardware.

● Can be installed via JTAG or custom board
tools. Also supports updating itself.

Licensed under Creative Commons BY-SA 4.0

● UDP based network protocol used to configure
network devices.

● Device broadcasts UDP BOOTP packet
● BOOTP server identifies device based on

ethernet (MAC) address and sends
configuration data
○ IP Address device should use
○ Address of boot server where initial kernel should be

downloaded via gateway, nameserver, and other
information

● Device downloads kernel and boots it
○ TFTP protocol

BOOTP

Licensed under Creative Commons BY-SA 4.0

Connecting to the Device

● For development and deployment we have to connect host
and target
○ SD Card process is very simple, slow and cumbersome
○ Serial TTY - this is a must have for many use cases
○ USB: If the device supports client mode it can be mounted.

● Network Connection:
○ Target: DHCP assigned or static ip address must be known to the host
○ Connect via ssh
○ Set up private-public key pair for effortless login

● NFS mount part or all of the target file-system
○ Mount the Raspberry Pi SD card to /mnt/rpi-rootfs
○ Must be executed before we can compile and run code on the device

Licensed under Creative Commons BY-SA 4.0

Module: Development for Device
● Developing Using a cross-compiler

○ Why you need it, Where to get it.
● SYSROOT

○ What is it, Why you need it, Where to put it.
● Qt Creator and Qt 5 on the ICS

Development Image.
○ Qt Creator Concepts: Kits, Devices, Toolchains,

Qt-versions
● Hello World with and without Qt Creator

Licensed under Creative Commons BY-SA 4.0

● A cross-compiler is a compiler capable of
creating executable code for a platform other
than the one on which the compiler is running.

● Cross-compiler tools are used to generate
executables for embedded system or multiple
platforms.

● Often used to compile for a platform where
compilation is not feasible.
○ Embedded computers where a device has extremely

limited resources.

Cross-Compilers

Licensed under Creative Commons BY-SA 4.0

Cross-Compilers

● Also use for bootstrapping to a new platform.
● For ARM the most popular and widely used

are from Linaro (www.linaro.org)
○ A not-for-profit engineering organization consolidating

and optimizing open source Linux software and tools
for the ARM architecture

○ Compilers based on gcc of course: Open Source

● Usually board supplier has a cross-compiler as
part of the BSP, SDK or tool-chain.
./rpi-tools/tools/arm-bcm2708/gcc-linaro-arm-linux-
gnueabihf-raspbian/bin/arm-linux-gnueabihf-gcc -v

● Cut and paste the above (into a single line)

Licensed under Creative Commons BY-SA 4.0

SYSROOT

● Sysroot is usually the "/" filesystem of your
target device

● When cross-compiling you will not include nor
link against libraries on the host system

● You might keep a version of sysroot on your
host file system

● Sometimes you NFS mount sysroot - we do!
● In any case you must specify where sysroot is

during compilation and linking
○ GCC has a -sysroot option that makes it easier to

specify cross-compile libraries and header locations.
Look it up!

Licensed under Creative Commons BY-SA 4.0

Development Framework
● C++ and QML/JS
● Cross-platform
● Write once,

deploy everywhere
● Comprehensive Class Library

○ Over 800 classes

○ Qt Quick, Qt Widgets, Data I/O, XML,
Canvas, OpenGL, Network, WebEngine,...

● Advanced development tools:
○ Rapid UI development
○ Internationalization
○ Documentation

What is Qt?

Licensed under Creative Commons BY-SA 4.0

Qt Creator – The IDE for Qt

● Integrated Development Environment
○ Written in Qt/C++
○ Free, Open Source, Highly Configurable

● Ideal for Qt Development
○ Editor, Project Management, Build System

Management, Debugging Front-End, Documentation
and much more

○ User Interface for Qt Tools from qmake to assistant
○ Code completion, Code navigation, Follow symbol,

Find usages

● Knows about Qt versions, Cross-Compilers,
Sysroot, Devices etc..

Licensed under Creative Commons BY-SA 4.0

Qt Creator – The IDE for Qt (cont.)

● Integrates with native compilers and tool-
chains:
○ GNU gcc, gdb, make,
○ Microsoft Visual Studio Compilers
○ Apple LLVM

● Integrates common third party build systems
○ CMake, Automake

● Integrates common source control systems
○ Git, Mercurial, SVN, CVS, Perforce

Licensed under Creative Commons BY-SA 4.0

Qt Creator: Add the Raspberry Pi Device

Licensed under Creative Commons BY-SA 4.0

Qt Creator: Add the Cross-Compiler

Licensed under Creative Commons BY-SA 4.0

Qt Creator: Add a Qt Version

Licensed under Creative Commons BY-SA 4.0

Qt Creator: Defining Kits

Licensed under Creative Commons BY-SA 4.0

Qt Creator: Shadow Builds

● Qt Creator builds projects outside source
○ Useful when building for different targets or Qt versions
○ Avoids polluting source directory with temporaries
○ side-effect: your executable runs from a different

location
○ Files accessed by relative path may not be found

● Workarounds
○ Use absolute paths or resources instead of relative

paths
○ Un-check “use shadow build” in build settings
○ Set “working directory” from Run Settings
○ Environment variables can be set there too

Licensed under Creative Commons BY-SA 4.0

Qt Creator: Project Settings

Licensed under Creative Commons BY-SA 4.0

Qt Creator: Locator

Licensed under Creative Commons BY-SA 4.0

Lab: Hello World with Qt Creator

Licensed under Creative Commons BY-SA 4.0

Module: Development for Device
● Qt 5 Architecture
● Qt Platform Abstraction
● Building Qt 5 for the target
● The Boot Process and How, When and

Why you load your application
● Debugging

Licensed under Creative Commons BY-SA 4.0

Qt 5 - Architecture

Licensed under Creative Commons BY-SA 4.0

Single Surface Architecture with Qt 5

For eglfs plugins (and minimalegl) and also for QNX using
screen:

● We are operating on a single surface. There is no real
compositor
○ Consequences for your software architecture!

○ Since there is neither Window System nor Compositor provided
Applications will operate in single window, single process mode.

● An alternative is to use a compositor that is able to
handle multiple surfaces. e.g. Wayland is a protocol for
a compositor to talk to its clients as well as a C library
implementation of that protocol.

● QtWayland is an implementation of that

Licensed under Creative Commons BY-SA 4.0

Debugging

● Pre-Historic debugging concepts:
○ printf, qDebug, console.log and other personal sharks

● Modern debugging concepts:
○ gdb is your friend (no really)

● Debugging on target
○ gdbserver started manually
○ With Qt Creator

● Debugging QML apps

Licensed under Creative Commons BY-SA 4.0

Debugging the Old Fashioned Way

There is nothing wrong with the "print statement"
printf(stdout,...), std::cout

Just don't try it to untangle multi-threaded code
and don't forget to flush.

Licensed under Creative Commons BY-SA 4.0

Debugging the Old Fashioned Way

● In Qt programs it is called qDebug:
qDebug() << "Debug Statement" << myObject;

● Takes care of serializing Qt types
● Inserts spaces between operands
● Appends end of line (CR)
● qWarning() and qError()
● In QML it's called console.log()

Licensed under Creative Commons BY-SA 4.0

gdb - the GNU Debugger

● Demo of gdb command line on the VM
● Demo of gdb within Qt Creator
● Remote debugging with gdb:

○ gdbserver started on the target
○ Listening on <comm>

gdbserver <comm> <program> [arg1[arg2[...argN]]]

○ <comm> can be device name (e.g. /dev/com1)
○ Or TCP hostname and port number

(e.g. localhost:110264)
○ Remote program can be stripped of dbg symbols

Licensed under Creative Commons BY-SA 4.0

gdb - the GNU Debugger

Remote debugging with gdb:
○ On host start gdb with program name
○ Listening on <comm>

gdb <program>
target remote <comm>

○ <comm> is the device name (e.g. target-ip:110264)
○ Local program needs to be unstripped copy of your

program, since GDB needs symbols and debugging
information

break, cont, next, ...

Licensed under Creative Commons BY-SA 4.0

Remote Debugging with Qt Creator

Need to make sure you have the correct
debugger executable from your tool-chain

Licensed under Creative Commons BY-SA 4.0

Basic Elements of Modern Qt Applications

● QtQuick:
○ QML, Elements, Rectangles and Images, Properties,

Bindings, Anchors, Rows and Columns, Objects
● QCore:

○ Strings, Containers
● QtQuick:

○ States, Transitions and Animations
● C++ QObjects

○ QObjects, Properties, Signals and Slots

Licensed under Creative Commons BY-SA 4.0

Rewinding the Lab

This will rewind the lab to an initial state:
cd ~/Desktop/gdp/amm-examples/amm-handson-lab
forward-to.sh 0

To get to the solution of part 1 for example:
forward-to.sh 1

To get to the end result of the lab exercise type:
forward-to.sh

Licensed under Creative Commons BY-SA 4.0

Hands-on Lab - Part 1

Begin by opening amm-handson-lab in QtCreator:

#include <QGuiApplication>
#include <QQuickView>

int main(int argc, char *argv[])
{
 QGuiApplication app(argc, argv);

 QQuickView mainView;
 mainView.setSource(QUrl("../amm-handson-lab/main.qml"));
 mainView.show();

 return app.exec();
}

Licensed under Creative Commons BY-SA 4.0

Hands-on Lab - Part 1

● We begin working in main.qml
● Create a Rectangle, Add Text

○ Let’s call this a “WorkSpace” assign the id: workSpace
● Create a second Rectangle underneath, Add Text
● Make the second Rectangle into a Button by adding a

MouseArea
● Implement:

○ onClicked: output to console
○ onPressed; change the main workspace text color to “white”
○ onReleased: revert the change to workspace text color back

● Add a “Board Kit”, Deploy! - Enjoy!

Licensed under Creative Commons BY-SA 4.0

Lab: Deployment Hints

Genivi Demo Platform uses Wayland and a custom Wayland
Shell as well as IVI Layer Management Extension
 setenv("QT_QPA_PLATFORM","wayland",1);

We like our applications to run “full screen” without Window
Decoration

setenv("QT_WAYLAND_DISABLE_WINDOWDECORATION","1",1);

In order for GDP IVI Layer Management to recognize our
layer we will “borrow” a well known “Surface ID”
#define LAB_SURFACE_ID 3

 mainView.setProperty("IVI-Surface-ID",LAB_SURFACE_ID);

This has to be done before the window is “shown”

Licensed under Creative Commons BY-SA 4.0

Running on Renesas Porter

Need to add the environement variable:
LD_PRELOAD /usr/lib/libEGL.so

Licensed under Creative Commons BY-SA 4.0

Lab: How to Deploy QML

In order to deploy extra files add this to .pro:

ExtraQml.files += main.qml

ExtraQml.path = /opt/${{TARGET}

INSTALLS += ExtraQml

And in main.cpp load the qml file with an absolute path.

This will become a lot easier when we use resource files.

Licensed under Creative Commons BY-SA 4.0

ICS GDP Image

● Has a few extra packages (QtMultiMedia, etc.)
● Has a LayerManagerControl script (lmc.sh)

that can be used to put non-registered
surfaces “on top”

● Use systemctl to stop qml-example before
deploying and running
 systemctl --user stop qml-example

● To permanently disable it:
mv \
/usr/lib/systemd/user/qml-example.service \
~/usr-lib-systemd-user

Licensed under Creative Commons BY-SA 4.0

What is QML?

Introduction to Qt Quick

● Describes the user interface
○ What items look like
○ How items behave

● UI specified as tree of QML structures with properties
○ Elements and identities
○ Properties and property binding

Declarative language for User Interface structure

52

Licensed under Creative Commons BY-SA 4.0

A Tree of QML Structures

Introduction to Qt Quick

53

Licensed under Creative Commons BY-SA 4.0

QML Types

Introduction to Qt Quick

● Item is the base type for Visible QML objects
○ Has a position, dimensions
○ Usually used to group other visual Items
○ Often used as the top-level Item
○ Rectangle, Text, TextInput, ...

● Non-visual structures also exist:
○ State, Transition, ...
○ ListModel, ListElement, Path, ...
○ Gradient, Timer, ...

● QQuickItem extends QObject and thus, has properties
○ QML Objects can be extended with custom properties from C++

or QML

54

Licensed under Creative Commons BY-SA 4.0

Properties

Introduction to Qt Quick

● Simple name-value definitions
○ width, height, color, ...
○ With default values
○ Each has a well-defined type
○ Separated by semicolons or line breaks

● Used for
○ Customizing their appearance
○ Changing their behavior

Objects are described by properties

55

Licensed under Creative Commons BY-SA 4.0

Property Examples

Introduction to Qt Quick

● Standard properties can be given values:
Text {

text: "Hello world"

height: 50

}

● Grouped properties keep related properties together
Text {

font.family: "Helvetica"

font.pixelSize : 24

}

56

Licensed under Creative Commons BY-SA 4.0

Identifying QML structures

The id defines an identity of a QML structure
● Lets other QML structures refer to it

○ For relative alignment and positioning
○ To access or modify an Item's properties
○ To re-use common structures (e.g., gradients, images)

● Used to create relationships between structures
● id is not a property

○ Not stored in the QObject with other properties
○ More like a "label"
○ A single Item can have different identities in other

files/scopes.
● parent is a special id referring to the relative

parent structure

Introduction to Qt Quick

57

Licensed under Creative Commons BY-SA 4.0

Attached and Custom Properties
● Attached properties are applied to QML structures

TextInput {
text: "Hello world"

KeyNavigation.tab : nextInput

}

• KeyNavigation.tab is not a standard property of TextInput
• Is a standard property that is attached to Items

● Custom properties can be added to any QML type
Rectangle {

property real mass: 100.0

}

Circle {

property real radius: 50.0

}

Introduction to Qt Quick

58

Licensed under Creative Commons BY-SA 4.0

Binding Properties
import QtQuick 2.0

Item {

width: 400; height: 200

Rectangle {

x: 100; y: 50
width: height * 2; height: 100

color: "lightblue"

}

}

● Properties can contain expressions
○ See above: width is twice the height

● Not just initial assignments
● Expressions are re-evaluated when needed

Introduction to Qt Quick

See Property Binding Documentation

Demo qml-intro/ex-concepts/expressions.qml

59

http://doc.qt.io/qt-5/qtqml-syntax-propertybinding.html
http://doc.qt.io/qt-5/qtqml-syntax-propertybinding.html

Licensed under Creative Commons BY-SA 4.0

import QtQuick 2.0

Item {

width: 300; height: 115

Text {

id: title

x: 50; y: 25
text: "Qt Quick"

font.family: "Helvetica"

font.pixelSize : 50

 }

Rectangle {
x: 50; y: 95; height: 5

width: title.width

color: "green"

}

}

Using Identities

Introduction to Qt Quick

60

Licensed under Creative Commons BY-SA 4.0

Using Identities

Text {

id: title

x: 50; y: 25
text: "Qt Quick"

font.family: "Helvetica"

font.pixelSize: 50

}

Rectangle {
x: 50; y: 95; height: 5

width: title.width

color: "green"

}

● Text item has the identity, title
● width of Rectangle bound to width of title
● Try using TextInput instead of Text

Introduction to Qt Quick

61

Licensed under Creative Commons BY-SA 4.0

Lab: Part 2

● Move the button into its own Component ”Button_1.qml”
○ Create a Component Button_1.qml, move the button code
○ Note that “naively” moving the code into a file does not give us the same

functionality
○ Name the button with an id to fix the size issues

● Create a second Button: button2, put buttons in a Row
○ Try to get the buttons evenly spaced.

● The button refers to workspaceText property directly
○ If the button is to be re-used, then this needs to be fixed
○ Introduce “signals” for pressed, released, clicked
○ Using these signals now have the left button set the text color “white” and

the right button set the text color “yellow”
● Add an image if the Genivi Logo to the workspace in the

top right corner
○ Deploy the application again: Where is the image?
○ Add a resource file, add the image as a resource and deploy again

Licensed under Creative Commons BY-SA 4.0

Module: Composing User Interfaces

● Nested Elements
● Graphical Types
● Text Items
● Anchor Layout

Composing User Interfaces
63/327

Licensed under Creative Commons BY-SA 4.0

import QtQuick 2.0
Rectangle {

width: 400; height: 400
color: "lightblue"

Rectangle {
x: 50; y: 50; width: 300; height: 300
color: "green"

Rectangle {
x: 200; y: 150; width: 50; height: 50
color: "white"

}

}

}

● Each Item is positioned relative to its
parents

Nested Elements

Composing User Interfaces

Demo qml-composing-uis/ex-elements/nested2.qml

64

Licensed under Creative Commons BY-SA 4.0

Module: Composing User Interfaces

● Nested Elements
● Graphical Types
● Text Items
● Anchor Layout

Composing User Interfaces
65/327

Licensed under Creative Commons BY-SA 4.0

Colors

● Specifying colors
○ Named colors (using SVG names): "red", "green",

"blue", …
○ HTML style color components: "#ff0000", "#008000",

"#0000ff", …
○ Built-in function: Qt.rgba(0,0.5,0,1)

● Changing items opacity:
○ Using the opacity property
○ Values from 0.0 (transparent) to 1.0 (opaque)

Composing User Interfaces

See QML basic Type: color Documentation

66

http://doc.qt.io/qt-5/qml-color.html
http://doc.qt.io/qt-5/qml-color.html

Licensed under Creative Commons BY-SA 4.0

import QtQuick 2.0

Item {

width: 300; height: 100

Rectangle {

x: 0; y: 0; width: 100; height: 100; color: "#ff0000"

}

Rectangle {
x: 100; y: 0; width: 100; height: 100

color: Qt.rgba(0, 0.75, 0, 1)

}

Rectangle {

x: 200; y: 0; width: 100; height: 100; color: "blue"

}

}

Colors

Composing User Interfaces

Demo qml-composing-uis/ex-elements/colors.qml

67

Licensed under Creative Commons BY-SA 4.0

Images

● Represented by the Image class
● Refer to image files with the source property

○ Using absolute URLs
○ Or relative to the QML file

● Can be transformed
○ Scaled, rotated
○ About an axis or central point

Composing User Interfaces

68

Licensed under Creative Commons BY-SA 4.0

import QtQuick 2.0

Rectangle {

width: 400; height: 400

color: "black"

Image {

x: 150; y: 150

source: "../images/rocket.png"

}

}

● source contains a relative path
● width and height are obtained from the

image file

Images

Composing User Interfaces

69

Licensed under Creative Commons BY-SA 4.0

import QtQuick 2.0

Rectangle {

width: 400; height: 400

color: "black"

Image {

x: 150; y: 150
source: "../images/rocket.png"

scale: 2.0

}
}

● Set the scale property
● By default, the center of the item remains in the same place

Image Scaling

Composing User Interfaces

70

Licensed under Creative Commons BY-SA 4.0

import QtQuick 2.0

Rectangle {

width: 200; height: 200

color: "black"

Image {

x: 50; y: 35
source: "../images/rocket.png" rotation: 45.0

}

}

● Set the rotate property
● By default, the center of the item remains in the same place

Image Rotation

Composing User Interfaces

Demo qml-composing-uis/ex-elements/image-rotation.qml

71

Licensed under Creative Commons BY-SA 4.0

Image Rotation

import QtQuick 2.0

Rectangle {

width: 200; height: 200

color: "black"

Image {

x: 50; y: 35
source: "../images/rocket.png"

rotation: 45.0

transformOrigin : Item.Top

}

}

● Set the transformOrigin property
● Now the image rotates about the top of the item

Composing User Interfaces

72

Licensed under Creative Commons BY-SA 4.0

Lab: Part 3

Begin with the solution to Part 2
● Create a Component: WorkspaceContent

○ It should contain an Image that fills it out
○ Create a property alias for the image source!

● Swap the current content of the workspace (but not the
workspace itself) for this component, load image
“genivi_screenshot.png”
○ Create two additional WorkSpaceContent elements with images:

“gdp_block_diagram.png” and “mm-screen.png”
● Observe that only the third one is now visible:

○ Set content1 visible instead
○ Two other ways to determine what is visible on the screen:

Opacity, Position, try them both
● Replace your own button box with the one from file

buttonBox_qml.txt

Licensed under Creative Commons BY-SA 4.0

Property Aliases

// AliasLineEdit.qml Rectangle {

...

TextInput {

id: text_input

...

text: "Enter text..."

...

}

property alias text: text_input.text

}

● Custom text property aliases text_input.
text

● Setting the custom property
○ Changes the TextInput's text

● Custom property acts like a proxy

Qt Quick Structures

74

Demo qml-modules-components/ex-modules-components/alias-property/AliasLineEdit.qml

Licensed under Creative Commons BY-SA 4.0

Lab: Part 4

Create 3 States such as:
 State {
 name: "content1Active"
 PropertyChanges {
 target: content1; visible:true
 }
 },

Set the default state to be content1Active
Change the current state of the root object when a button is
clicked such as:
 onButtonClicked: {root.state = "content2Active"}

Test this with changes to opacity and x position instead of
visbility

Licensed under Creative Commons BY-SA 4.0

Lab: Part 5

● When changing the opacity - what happens when a new
state is set?
○ The affected other properties return to their default values

● Implement a simple Animation on opacity:
In WorkspaceContent:

 Behavior on opacity {
 PropertyAnimation {
 duration: 1000
 }
 }

This can also be accomplished with a Transition and
corresponding PropertyAnimation

Licensed under Creative Commons BY-SA 4.0

Lab: Part 5 continued

Note that even though the WorkspaceContent is moved out of
the Workspace it is still active.
● Need to set “visible” to false.

○ How can we accomplish this?
● The solution is to run a ScriptAction at the beginning and

end of the Animation:
 Behavior on opacity {
 SequentialAnimation {
 ScriptAction {
 script: {
 if (opacity===0.0) visible=true;
 }
 }
 PropertyAnimation {
 duration: 1000
 }

// ...

Module: States and Transitions

States and Transitions

● States
● State Conditions
● Transitions

78/327

States

States manage named items
● Represented by the State class
● Each item can define a set of states

○ With the states property
○ Current state is set with the state property

● Properties are set when a state is entered
● Can also

○ Modify anchors
○ Change the parents of items
○ Run scripts

States and Transitions
79/327

See QML States Documentation

http://doc.qt.io/qt-5/qtquick-statesanimations-states.html
http://doc.qt.io/qt-5/qtquick-statesanimations-states.html

States Example
import QtQuick 2.0

Rectangle {

width: 150; height: 250

Rectangle {

id: stop_light

x: 25; y: 15; width: 100; height: 100

}

Rectangle {

id: go_light

x: 25; y: 135; width: 100; height: 100

}

...

● Prepare each item with an id
● Set up properties not modified by states

States and Transitions
80/327

Defining States
states: [State {

name: "stop"
PropertyChanges { target: stop_light; color: "red" }

PropertyChanges { target: go_light; color: "black" }

},
State { name: "go"

PropertyChanges { target: stop_light; color: "black" }

PropertyChanges { target: go_light; color: "green" }

}

]

● Define states with names: "stop" and "go"
● Set up properties for each state with PropertyChanges

○ Defining differences from the default values

States and Transitions
81/327

Demo qml-states-transitions/ex-states/states.qml

Setting the State
Define an initial state:
state: "stop"

Use a MouseArea to switch between states:
MouseArea {

anchors.fill: parent
onClicked: parent.state == "stop" ? parent.state =

"go" : parent.state = "stop"

}

● Reacts to a click on the user interface
○ Toggles the parent's state property
○ Between "stop" and "go" states

States and Transitions
82/327

Changing Properties
States change properties with the PropertyChanges class:

State {

name: "go"
PropertyChanges { target: stop_light; color: "black" }

PropertyChanges { target: go_light; color: "green" }

}

● Acts on a target structure named using the target property
○ The target refers to an id

● Applies the other property definitions to the target structure
○ One PropertyChanges class can redefine multiple properties

● Property definitions are evaluated when the state is entered
● PropertyChanges describes new property values for an item

○ New values are assigned to items when the state is entered
○ Properties left unspecified are assigned their default values

States and Transitions
83/327

Licensed under Creative Commons BY-SA 4.0

Lab: Part 6

Next we want to add a C++ backend that will get notified by
events on the UI and also will update the UI with data.

Create a class MainController, with two properties for the UI
state and the value of a “Slider”
class MainController : public QObject
{
 Q_OBJECT
public:
 Q_PROPERTY(QString uiState READ uiState

WRITE setUiState NOTIFY uiStateChanged)
 Q_PROPERTY(int sliderValue READ sliderValue

WRITE setSliderValue NOTIFY sliderValueChanged)

Licensed under Creative Commons BY-SA 4.0

Lab: Part 6 continued

To export the “Properties” of a QObject into the Context of a
QtQuick Presentation

 MainController * mc = new MainController;
 QQuickView mainView;
 QQmlEngine * engine = mainView.engine();
 QQmlContext * ctxt = engine->rootContext();
 ctxt->setContextProperty("controller",mc);
 mainView.setSource(QUrl(QStringLiteral("qrc:/main.qml")));

We grab the view’s engine root context and set a context
property named “controller”. In our MainComponent.qml:

 state: controller.uiState
 onStateChanged: controller.uiState=state

Licensed under Creative Commons BY-SA 4.0

Qt's C++ Object Model - QObject

● QObject is the heart of Qt's object model
● Include these features:

○ Memory management
○ Object properties
○ Introspection
○ Signals and Slots
○ Event handling

● QObject has no visual representation

86

Licensed under Creative Commons BY-SA 4.0

Object Trees

● QObjects organize themselves in object trees
○ Based on parent-child relationship

● QObject(QObject *parent = 0)
○ Parent adds object to list of children
○ Parent owns children

● Construction/Destruction
○ Trees can be constructed in any order
○ Trees can be destroyed in any order

■ If object has a parent: object is first removed from the parent
■ If object has children: deletes each child first
■ No object is deleted twice

Note: Parent-child relationship is NOT inheritance

87

Q_OBJECT - flag for MOC

● Meta Object Compiler (MOC)
● Q_OBJECT

○ Enhances QObject with QMetaObject information
○ Required for Q_PROPERTY, QObject::metaObject(), qobject_cast, etc.
○ Required for signals, slots, and QMetaObject::invokeMethod()

● moc creates generates the QMetaObject code for each
Q_OBJECT

moc -o moc_myclass.cpp myclass.h
c++ -c myclass.cpp; c++ -c moc_myclass.cpp
c++ -o myapp moc_myclass.o myclass.o

● Makefiles generated by qmake take care of making the
Q_OBJECT-marked classes automatically for you.

88

Properties

● Qt Quick example
import QtQuick 2.0
Rectangle {

width: 400; height: 400
color: "lightblue"

}

● Generic property access:
QObject* root = view->rootObject();
if (root != NULL) {

QString color = root->property("color").toString();
int width = root->property("width").toInt();

}

89

Properties

● Q_PROPERTY is a macro:
Q_PROPERTY(type name READ getFunction

[WRITE setFunction] [RESET resetFunction]
[NOTIFY notifySignal] [DESIGNABLE bool]
[SCRIPTABLE bool] [STORED bool])

● Property access methods:
QVariant property(const char* name) const;
void setProperty(const char* name,const QVariant& value);

● If setProperty() is used to set a property name that has not
been declared as a Q_PROPERTY
○ Stored as a dynamic property in QObject not in QMetaObject
○ Hence not accessible from Qt Quick

● Note:
○ Q_OBJECT macro is required for Q_PROPERTY to work

90

Providing Properties from QObject

class Customer : public QObject
{

Q_OBJECT
Q_PROPERTY(QString custId READ getId WRITE setId NOTIFY

idChanged);

public:
QString getId() const;
void setId(const QString& id);

signals:
void idChanged();

...
};

91

Licensed under Creative Commons BY-SA 4.0

Lab: Part 7

To simulate “Automotive Hardware Layers” changing values,
let’s fire a QTimer in main.cpp and connect a signal to change
the state of the UI.

QTimer timer;
 timer.setInterval(5000);
 QObject::connect (&timer,&QTimer::timeout,mc,

&MainController::nextUiState);
 timer.start();

As a final exercise:
Add a Slider (Slider.qml) to one of the three workspaces.
Connect the slider’s valueChanged signal to the
MainController setSliderValue() slot.

Licensed under Creative Commons BY-SA 4.0

Conclusion

Thanks for Drinking from the Firehose!

Join us at www.ics.com and come to one of our trainings!

http://www.ics.com

