
Lifecycle Parallel Shutdown
27/04/2016 15.00
Lifecycle Parallel Shutdown
27/04/2016 15.00

David Yates
Software Architect/Lifecycle Topic Lead

Continental Automotive

David Yates
Software Architect/Lifecycle Topic Lead

Continental Automotive

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)
GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2016
1

25-Apr-16

Overview of the problem

• The Node State Manager (NSM) currently only performs a sequential

p

e ode State a age (S) cu e t y o y pe o s a seque t a
shutdown

• Clients can specify a timeout value for their max shutdown time
• Experience shows that all clients will over estimate the time they need and if

multiple clients then require their full timeout value it can lead to a really long
shutdown timeshutdown time

• In worst cases the long shutdown can be overridden in a product where the
“Entertainment” node is monitored and controlled by an Automotive/Vehicle
Controller node that simply turns the power off if shutdown takes too long

• This can lead to a loss of data as clients are never informed and cached
persistency data is never writtenpersistency data is never written

2GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
Copyright © GENIVI Alliance 201625-Apr-16

Current shutdown preparation in startup
phasephase

kernel
Runlevel replacement
GENIVI extensions

Before systemd

Mandatory targets

initrd
Start NSM via systemd

AMandatory targets
(Base System & Early Features)

focussed target
BASE_RUNNING
(during NSC init) at

e
erat

e
er

B
C

focussed.target
(last user context)

unfocussed target(s)

LUC_RUNNING

N
od

e
S

ta
M

an
ag

e
N

od
e

S
ta

M
an

ag
e

unfocussed.target(s)

lazy.targetFULLY_

FULLY_RUNNING

NN

J

_
OPERATIONAL

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
Copyright © GENIVI Alliance 2016 325-Apr-16

Current shutdown execution

Consumer J

app1.service

Consumer I

Consumer H

Consumer G

Node Startup
Controller systemd

Writing LUC

Node State
Manager

Consumer F

Consumer E

Consumer D

Consumer C

systemd app2.service
Writing LUC

Node Startup
Controller

Consumer C

Consumer B

Consumer A systemd Shutdown.target
(flash file systems)

Node Startup
Controller

Enables:
1. Shutdown activities are trigger able without unloading the components.
2 Legacy components can be shut down in their traditional way2. Legacy components can be shut down in their traditional way.
3. Full flexibility on where to integrate systemd based shutdown units.

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
Copyright © GENIVI Alliance 2016 425-Apr-16

New requirements and way of working

• Reduce the time required to shutdown the system

q y g

educe t e t e equ ed to s utdo t e syste
• Remove the possibility for one or more misbehaving clients to block the

system shutdown
• Remove the situation where critical persistent components never get the

chance to flush data from the current lifecycle
• and provide a way to do this without affecting backwards compatibility• and provide a way to do this without affecting backwards compatibility
• Provide more flexibility for a product/platform integrator to define and alter

the behavior during the shutdowng

5GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
Copyright © GENIVI Alliance 201625-Apr-16

Support for older clients/platforms

As mentioned previously, it is mandatory that older clients should work with the new NSM, and also that

pp p

existing platform configurations should work as they do currently. We handle this by :

• leaving the existing interface as is and adding a new one
• adding a new configuration file which can be used to define how the NSM should handle the registrations
• introducing a concept of “groups” that can be staged
• all registration calls to the NSM using the older interface will by default be added in the “Default” group• all registration calls to the NSM using the older interface will by default be added in the Default group
which is always handled sequentially (order defined by the order of registration)

NOTE: It is intended that the “Default” group is additionally used for Core Infrastructure components (i.e.
Persistency and Lifecycle) in the system that normally have dependencies on themPersistency and Lifecycle) in the system that normally have dependencies on them

6GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
Copyright © GENIVI Alliance 201625-Apr-16

New shutdown preparation in startup phasep p p p

kernel
Runlevel replacement
GENIVI extensions

Before systemd

Mandatory targets

initrd
Start NSM via systemd

N d St tMandatory targets
(Base System & Early Features)

focussed target

AB

C

Node State
ManagerDefault

Persistencefocussed.target
(last user context)

unfocussed target(s)

Persistence

Middleware
unfocussed.target(s)

lazy.target J

Applications

7GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
Copyright © GENIVI Alliance 201625-Apr-16

New shutdown processp

Consumer J

NsmNodeState_ShuttingDown

Consumer I

Consumer H

Consumer B

Applications
Middleware &

Applications called
in parallel

Product
defined
group

timeout

Consumer F

Consumer KS
ta

te
na

ge
r

MiddlewareProduct
defined total

node

Product
defined
group

timeout

Consumer D

Consumer CN
od

e
M

an

Default Default called
sequentially

shutdown
timeout

Product
defined
group

timeout

Consumer G

Consumer A
Persistence

Consumer E

Persistence
called

sequentially

Product
defined
group

timeout

8

sequentially

NsmNodeState_Shutdown

timeout

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
Copyright © GENIVI Alliance 201625-Apr-16

Interface change

To maintain backwards compatibility companies that have already implemented NSM Clients, a new
interface org genivi NodeStateManager Shutdown has been added to the Node State Manager and all old

g

interface org.genivi.NodeStateManager.Shutdown has been added to the Node State Manager and all old
interfaces remain unchanged.

The new interface will provide new methods and signals as defined in the following slidesThe new interface will provide new methods and signals as defined in the following slides.

The benefit of the new interfaces are:
– removal of DBUS specific parameters (Bus Name & Obj Name)
– support for sequential and parallel shutdown methods

9GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
Copyright © GENIVI Alliance 201625-Apr-16

Interface change cont..g
<method name="RegisterShutdownClient">

<arg name=“GroupName" type="s" direction="in" />
<arg name="ShutdownMode" type="u" direction="in" />

<method name="RegisterShutdownClient">
<arg name=“GroupName" type="s" direction="in" />
<arg name="ShutdownMode" type="u" direction="in" />

Here it is shown that the DBUS Bus and Object name are no
longer needed.<arg name="ShutdownMode" type="u" direction="in" />

<arg name="TimeoutMs" type="u" direction="in" />
<arg name=“ClientId" type=“s" direction=“out" />
<arg name="ErrorCode" type="i" direction="out" />

</method>

<arg name="ShutdownMode" type="u" direction="in" />
<arg name="TimeoutMs" type="u" direction="in" />

<arg name=“ClientId" type=“s" direction=“out" />
<arg name="ErrorCode" type="i" direction="out" />

</method>

longer needed.
The GroupName defines the group that the client wants to be a
member of
The ClientId is a unique id allocated by the NSM to the registering
client<method name="UnRegisterShutdownClient">

<arg name=“ClientId" type=“s" direction=“out" />
<arg name="ShutdownMode" type="u" direction="in" />
<arg name="ErrorCode" type="i" direction="out" />

</method>

<method name="UnRegisterShutdownClient">
<arg name=“ClientId" type=“s" direction=“out" />
<arg name="ShutdownMode" type="u" direction="in" />
<arg name="ErrorCode" type="i" direction="out" />

</method>

client

The DBUS Bus and Object name are no longer required as the
the ClientId is a unique id allocated by the NSM during the

i t ti</method>
<method name="LifecycleRequestComplete">

<arg name=" ClientId " type=“s" direction="in" />
<arg name="Status" type="i" direction="in" />
<arg name="ErrorCode" type="i" direction="out" />

</method>
<method name="LifecycleRequestComplete">

<arg name=" ClientId " type=“s" direction="in" />
<arg name="Status" type="i" direction="in" />
<arg name="ErrorCode" type="i" direction="out" />

registration

The ClientId is the unique id allocated by the NSM during the
registration above

</method>

<signal name=“LifecycleRequest">
<arg name=“ClientPath" type="s" />
<arg name="Request" type="u" direction="in" />

</method>

<signal name=“LifecycleRequest">
<arg name=“ClientPath" type="s" />
<arg name="Request" type="u" direction="in" />

registration above

The parameter “ClientPath” is a path string that indicates the
request is valid for a Group (parallel) or a specific client (seq).
The “Request” will be one of the existing

S S O ()

10

arg name Request type u direction in /
</signal>

arg name Request type u direction in /
</signal> NSM_SHUTDOWNTYPE_XXX types (i.e. shutdown, runup).

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
Copyright © GENIVI Alliance 201625-Apr-16

Interface change cont…

A client will register for the signal using the “ClientPath” which is created from their GroupName and unique ClientId (out
parameter from the RegisterShutdownClientGroup method call).

g

p g p)

For instance if the “ClientPath” is “/Middleware/123456” then the NSM could signal
/ -> Complete node (unlikely to be used)/ Complete node (unlikely to be used)
/Middleware -> Group specific (Parallel)
/Middleware/123456 -> Client Specific (Sequential)

and the client would receive the signal in all 3 cases

As signals have no return value every client that has received such a signal has to call the LifecycleRequestCompleteAs signals have no return value, every client that has received such a signal has to call the LifecycleRequestComplete
method within a certain timeout to notify their completion of the request.

NOTE: For backwards compatibility any clients registering with the old interface will still be notified using the old method p y y g g g
and not the new signal.

11GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
Copyright © GENIVI Alliance 201625-Apr-16

Configuration file

In the example configuration file shown on the right, it can be seen that 4 groups have
b d fi d d h h i ’ fi i

g

[Applications]
ShutdownTimeout=25000
[Applications]
ShutdownTimeout=25000

been defined and each has it’s own configuration:

• the total group time can be defined so that if a component in one group fails, it does
not block the complete shutdown Rather the next group will be started

FastShutdownTimeout=3000
Order=parallel
Before=Default

[Middleware]
S

FastShutdownTimeout=3000
Order=parallel
Before=Default

[Middleware]
Snot block the complete shutdown. Rather the next group will be started

• each group can define whether to be handled in parallel or sequentially
• there is always a “Default” group which will be used by default when the old
registration interface is used

ShutdownTimeout=25000
FastShutdownTimeout=3000
Order=parallel
Before=Default

[Default]

ShutdownTimeout=25000
FastShutdownTimeout=3000
Order=parallel
Before=Default

[Default]registration interface is used
• an optional tag is allowed called MaxClientTimeout which allows the system designer
to define the max. timeout allowed for components in a certain group. When included
the NSM will override the requested value passed by the client in the interface (debug
output will be provided in this use case)

[Default]
ShutdownTimeout=25000
FastShutdownTimeout=3000
MaxClientTimeout=5000
Order=sequential
Before=Persistence

[Default]
ShutdownTimeout=25000
FastShutdownTimeout=3000
MaxClientTimeout=5000
Order=sequential
Before=Persistenceoutput will be provided in this use case)

• the shutdown order of the groups is defined by the dependency tags Before and After.
In the example here it is shown that the parallel groups Applications and Middleware will
actually themselves be done in parallel

[Persistence]
ShutdownTimeout=25000
FastShutdownTimeout=3000
Order=sequential
Aft D f lt

[Persistence]
ShutdownTimeout=25000
FastShutdownTimeout=3000
Order=sequential
Aft D f lt

12

After=DefaultAfter=Default

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
Copyright © GENIVI Alliance 201625-Apr-16

Advantages of new approach

The advantages seen with the proposed change, based on real product development, are the ability to :

g pp

• perform parallel shutdown actions to reduce the time needed for the shutdown phase
• reduce the risk of one misbehaving component from blocking all components in the system from getting areduce the risk of one misbehaving component from blocking all components in the system from getting a
shutdown notification and hence increase chances that customer data from that lifecycle is not lost
• have a higher granularity of timeouts via being able to skip a group that is timing out and move on to the
next group in the list, hence increasing the chances of a successful shutdown before a hard power off is g p g p
performed
• better handle failing/recovering components during normal run-time
• removal of DBUS specific parameters in the interfacep p

13GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
Copyright © GENIVI Alliance 201625-Apr-16

