Presentation ## **Connected Cars: Perspectives to 2025** **IHS Automotive Technology** April 27, 2016 ihs.com Egil Juliussen, Ph.D. Director Research & Principal Analyst Egil.Juliussen@IHS.com IHS AUTOMOTIVE driven by POLK ## **Connected Cars: Perspectives to 2025** - Auto Sales and Motorization - Infotainment: Growing Platform Importance - Connected Cars: Opportunities & Threats - Self-driving Cars vs. Driverless Cars: Revolution - Summary Perspectives Egil Juliussen, Ph.D. Director Research & Principal Analyst ### **Auto Sales by Region** **SOURCE: IHS Automotive** ### Motorization: Autos In-Use per 1,000 People ## **Connected Cars: Perspectives to 2025** - Auto Sales and Motorization - ► Infotainment: Growing Platform Importance - Connected Cars: Opportunities & Threats - Self-driving Cars vs. Driverless Cars: Revolution - Summary Perspectives Egil Juliussen, Ph.D. Director Research & Principal Analyst ### **Semiconductor Chip Advances: Auto Impact** ### **Capabilities** Chip advances will have tremendous auto impact even if annual chip improvements slow down! #### **2030 Auto Impact** - Moore's Law: 1024X - DRAM: 256 Gbit - NAND: 16 Tbit - MCU Speed: 36X #### **2035 Auto Impact** - Moore's Law: 81924X - DRAM: 2 Tbit - NAND: 256 Tbit - MCU Speed: 108X #### 2025 Auto Impact - Moore's Law: 128X - DRAM: 64 Gbit - NAND: 2 Tbit - MCU Speed: 12X #### **2020 Auto Impact** - Moore's Law: 16X - DRAM: 8 Gbit - NAND: 256 Gbit - MCU Speed: 3.5X #### **2015 Auto Impact** - Moore's Law: 1X - DRAM: 512 Mbit - NAND: 16 Gbit - MCU Speed: 1X ### Take-away: Automotive System on Chips (SoC) will have amazing capabilities in a decade or two. Future software will take full advantage of such capabilities! SOURCE: IHS Automotive ### **Auto Industry and Software Impact** ### Every company has a structure similar to phases shown below: #### Create - Product idea - Technology R&D - Product design - Product testing #### Make - Factory control - Parts management - Supplier mgmt. - Inventory mgmt. #### Market - Product marketing - Product sales - Distribution channels - Delivery logistics #### **Product Use** - Payment systems - Customer support - Warranty & repair - Repeat customers ### Software and apps impact all phases of most product #### Create - Very expensive - Long development - Difficult testing - Never bug-free ### **Make** - No SW BoM cost - Some royalty costs - Mfg.=SW loading - Loading flexibility ### **Market** - SW=features - Features sell cars - SW is upgradable - Upgradable features ### Car Use - Bug-fixing needed - SW maintenance - Connected car growth - OTA SW updates ### Take-away: Lower software development cost is key: - Re-usable software platforms are needed to lower development costs - Over-the-air software updates needed for bug fixes & cyber-security BoM=Bill of Material; SW=Software; OTA=Over-the-Air ### Infotainment: Connected Car vs. Head-Unit MP=Mobile Phone; SP=Smartphone; VRM=Vehicle Relationship Management; SDC=Self-Driving Car; DLC=Driverless Car; OTA=Over-the-Air; C-S=Cyber-Security ## **Infotainment Apps: Big Picture** #### IVI Apps Integrated SP Apps Smartphone IVI Apps Downloaded apps • Built-in apps Apps integration Apps & • Driver chosen OEM chosen • OEM chosen Content Travel & LBS Music apps Current Standards **Platforms** Apple CarPlay • Navi-LBS apps • Eco apps Android Android Auto Telematics apps • iPhone Social network apps • Entertainment apps Search apps Baidu CarLife • Win Phone 10 Ford AppLink-SDL • CRM apps Car-centric apps • Remote diagnostics MirrorLink OBDII-based apps OBDII-based apps SofTec • UBI apps • SP remote control Others IVI HMI Software Platform Auto OEM specific IVI Software Platform • OS Kernel & Middleware Other Linux Microsoft Hardware Abstraction Layer? • Equivalent to BIOS in PCs IVI Hardware Platform • Atom, ARM, MIPS, others? • Input, Output & Control SOURCE: IHS Automotive ### **Head-Unit System Trends** SOURCE: IHS Automotive Infotainment Portal ### **Smartphone Apps Integration: Status** | | CarPlay | Android Auto | MirrorLink | AppLink-SDL | |----------------------------|--|--|---|--------------------| | OEMs
Brands | 16 OEMs
24 Brands | 16 OEMs
42 Brands | 6 OEMs
12 Brands | 2 OEMs
3 Brands | | Key OEMs with Availability | BMW, Daimler,
FCA, GM,
Honda, Hyundai,
Mazda,
Mitsubishi,
Nissan, PSA,
Renault, Subaru,
Suzuki,
Volkswagen,
Volvo | BMW, Daimler,
FCA, GM,
Honda, Hyundai,
Mazda,
Mitsubishi,
Nissan, PSA,
Renault, Subaru,
Suzuki,
Volkswagen,
Volvo | Daimler
GM
Honda
PSA
Toyota
Volkswagen | Ford
Toyota | | Car Models | 116 | 122 | 66 | 28 | | SP OS | iOS | Android | Android, Symbian | iOS, Android | | Apps | 30 | 55 | 12 | 12+ | SDL=Smart Device Link; SP=Smartphone; OS=Operating System ## **Smartphone Apps Integration: Enabled Autos** Others not included: Baidu CarLife; Abalta Weblink, Airbiquity Choreo, Nuance Dragon Drive Link, SofTec, UIEvolution Cloud Connect, VNC ## **Connected Cars: Perspectives to 2025** - Auto Sales and Motorization - Infotainment: Growing Platform Importance - Connected Cars: Opportunities & Threats - Self-driving Cars vs. Driverless Cars: Revolution - Summary Perspectives Egil Juliussen, Ph.D. Director Research & Principal Analyst ## **Connected Car Technologies Overview** **SOURCE: IHS Automotive** ### Connected Car Trends: U.S. & EU | | U.S. Trends | EU Trends | |--------------------------|--|--| | Embedded
Telematics | Leading technologyRemote diagnostic most valuableLTE deployment going fast | Waiting for eCall to fire upMostly for high-end autoseCall main app initially | | Smartphone
Telematics | Ford success, followed by othersWill leverage phone projection | Limited success so farSuccess via phone projection | | Embedded & Smartphone | Growing rapidlyLong-term winner | Emerging in most countriesLong-term winner | | Phone
Projection | Very important in next 5 yearsCarPlay & Android Auto to leadQs: MirrorLink? AppLink-SDL? | Very important in next 5 yearsCarPlay & AA to leadQs: MirroLink? SofTec? | | OTA SW
Update | Emerging for telematicsInfotainment OTA is nextCore ECU OTA emerging | Emerging for telematicsMostly luxury brandsMay lag U.S. by 2-4 years | | Cyber
Security | Finally getting attentionOEMs scrambling to catch upLaws & regulation on the way | Strong R&D, little deploymentOrderly deployment comingLaws & regulation expected | AA=Android Auto; OTA=Over-the-Air ### Connected Car Trends: U.S. & A-P | | U.S. Trends | AP Trends | |--------------------------|--|---| | Embedded
Telematics | Leading tech approachRemote diagnostic most valuableLTE deployment coming fast | Leading approach in ChinaWeak in most other regionsLTE emerging first in China | | Smartphone
Telematics | Ford success, followed by othersWill leverage phone projection | Leading approach in JapanFuture growth in China | | Embedded
& SP | ▶ Growing rapidly▶ Long-term winner | ► Grows with Smartphone Long-term winner in most areas | | Phone
Projection | Very important in next 5 yearsCarPlay & Android Auto to leadQs: MirrorLink? AppLink-SDL? | CP & AA important in Jp & KrCarLife important in ChinaChina Qs: Local AA? ML? SDL? | | OTA SW
Update | Emerging for telematicsInfotainment OTA is nextCore ECU OTA emerging | OTA to be important in Jp & KrCn: GM, BMW etc. to leadAP may lag U.S. by 3-5 years | | Cyber
Security | Finally getting attentionOEMs scrambling to catch upLaws & regulation on the way | Getting attention in Jp & KrNeed attention in Cn & InLaws & regulation expected | ### **Connected Car Trends** SOURCE: IHS Automotive Infotainment Portal ### **Connected Car Attach Rate** Includes connected car services via embedded modem, Smartphone & both ### LTE Share: Embedded Telematics Sales GM's USA deployment of LTE will kick-start market: GM volume will lower auto-grade LTE chip price ### **Who Benefits from Connected Cars?** | Segment | Benefit Areas | |----------------------|--| | OEMs | Cost savings: Remote diagnostics & Remote software upgradesNew revenue from future functional software upgrades | | Suppliers | Revenue from communication & HMI hardwareRevenue from connected car software: middleware & apps | | TSPs | Revenue from safety & car-centric services: Base service Revenue from infotainment-centric services: New opportunities | | MNOs | Revenue from growing amount of data to and from the carRevenue from being a TSP and/or content provider | | Content
Providers | Many entertainment categories: music & audio as leaders Many information categories: LBS-relates as leader Many new categories emerging | | Car Data Consumption | ► Mostly TSP-centric data, traffic info & insurance-centric data ► Many new categories emerging: OBDII data, V2X & others | | Driver & Passengers | Cost savings similar to OEMs, higher resale value w/RD history Connected car apps value: cost savings, safety & convenience Access to vast infotainment content portfolios | HMI=Human Machine Interface; TSP=Telematics Service Provider; MNO=Mobile Network Operator ## **Automotive Software Mega-Trends** SP=Smartphone; CE=Consumer Electronics; HSM=Hardware Security Module; SW=Software; OTA=Over The Air ### **Auto Software Complexity Path** #### "Embedded Controllers" - Simple SW control program - Fixed middleware - Fixed function app or apps - BoM cost minimization - LoC* counted in thousands 10X-100X Complexity #### "Apps Computers" - Complex operating system - Computer middleware - Industry-specific middleware - Multiple changeable apps - LoC* counted in millions IVI H-U 2005 IVI H-U 2015 IVI H-U 2020 ADAS ECUs 2015 Complex ECUs 2015 ADAS L2 & L3 2020 SDC L4 & L5 2025 Domain ECUs 2020 Complex ECUs 2000 Simple Simple Simple ECUs 2015 Software Complexity **ECUs** ### **Infotainment OS Trends** ## **OTA Software Update Evolution** ## **OTA Software Update Advantages** | | Key Information | Other Information | |----------------------|--|--| | Cost
Savings | Dealer cost is \$70-100 per software update eventLower notification costs | ►OTA could save 50% ►IT investment delays ROI ►Electronic notification | | Time
Savings | Quicker preparation timeLess notification time | No dealer appointmentNo mailing expected | | Recall
Completion | ►70% dealer recall completion
►OTA should do much better | ► Many unsafe cars on road
► OTA completion? 90%+ | | Future
Business | ► Value of functional updates► A portion will pay for this | Mostly aftermarket nowFuture OEM revenue stream | ### İHS ## **OTA Software Update Segments** | | What Is Updated | OEM Deployment | |--------------------------|---|---| | Infotainment
Apps | Head-unit appsTelematics apps | Toyota, ChryslerChrysler brands, Infiniti | | Infotainment
Software | Telematics softwareHead-unit softwareIncluding operating system | BMW, GM, M-B, FordMercedes-BenzEmerging now | | Core Auto
ECUs | Powertrain ECU softwareChassis ECU softwareConvenience ECU software | ▶ Public: Tesla* since 2012▶ Emerging: 2017+▶ Required: 2020+ | | Navigation
Map | Map softwarePOI databaseAutonomous Driving Map | ► Japan OEMs in Japan;
BMW, Audi, Tesla & others
► Future AD Map required | *Tesla added hardware for L2-L3 autonomy in model D in November 2014, but software & apps where downloaded in October 2015 Adds new level of future proofing! ### **Over-the-Air Software Update Forecast** **SOURCE: IHS Automotive** ## Auto Cyber-Security: Complacency → Action ### **Age of Cyber-Security** - Check current systems - Weakness identification - Any apps & content - Best practice → standards - Every RFQ with cyber-security - Product portfolio growth - OEM-T1 expertise acquisition ### **Proof of Concept Stage** - White-hat hackers - Skills & expertise needed - Wired connection hacking - Wireless hacking events ### **Complacency Stage** - No need for security - No actual breaches - Too expensive - Will not happen to us ### Mass Deployment - First for connected cars - New system architecture - Next for control ECUs - New innovative products - Combined with OTA 2010 2015 2020 2025 ## **Connected Cars: Perspectives to 2025** - Auto Sales and Motorization - Infotainment: Growing Platform Importance - Connected Cars: Opportunities & Threats - Self-driving Cars vs. Driverless Cars: Revolution - Summary Perspectives Egil Juliussen, Ph.D. Director Research & Principal Analyst ### **Current State of the Art & Announced Plans** IHS Level 4: Fully autonomous with driver controls IHS Level 5: Fully autonomous without driver controls © 2016 IHS **SOURCE: IHS Automotive** ## 2 Autonomous Driving Strategies | Focus: | Level 4 Vehicles | Level 5 Vehicles | |--------------------|--|--| | Autonomy
Levels | Self-driving car mode► Human driving mode | Driverless car mode onlyNo driving controls | | Business
Models | ► Traditional car ownership
► Car-as-a-Product (CaaP) | Car-as-a-Service (CaaS)Some car ownership | | Proponents | Mercedes-BenzOther luxury brandsVolume OEMs | ▶ Google, Uber, Lyft, Didi, Ola▶ Fleet operators (taxi etc.)▶ Some OEMs (Ford, GM) | | Advantages | ▶ Fewer accidents▶ Time, space & privacy*▶ Evolution from ADAS | Fewer accidentsMobility to anyoneMobility to anything | | Implications | ▶ Driver license for HDC▶ Some degree of CaaS? | No driver license neededCaaS for nearly all people | | Summary | ► Cars to make drivers better | ► Cars are better than drivers | ^{*} Mercedes-Benz SDC positioning ## **Google SDC & DLC Success** | | Key Information | Comments | |-------------------------------|--|--| | Highway
Testing-L4 | ► L4 Cars since 2009
► L4: Now driving assertively | ► Driven 880K+ miles
► Inch forward at 4-way stops | | L4 City
Testing | ► L4: Mostly in Mt. View, CA
► L4: Started in Austin, TX | ► Driven 620K+ miles
► July 2015 (12 cars in Dec) | | L5 Pod
Testing | Initially restricted area testsJune start in Mt. View (L4 mode) | ►In Google's restricted areas ►Sep 2015 start in Austin, TX | | Restricted Testing | ► NASA Moffett Field (1,000 acres) ► Castle AF Base, Merced, CA | ►60 year lease: Google projects ►L4 & L5 tests on 100 acres | | Vehicles
(Mar 31,
2016) | 23 Lexus RX450h SUVs 33 Pod cars (L5 or L4 mode) Total self-driving miles: 1.5M SDC simulation & modeling | Mt. View-15; Austin-7; Kirkland-1 Mt. View-24; Austin-7; Kirkland-2 Self-driving miles/week: 12-15K 3M miles/day; test new SW | | Next
Steps | Seattle-area & Detroit-area testsCooperative driving situationsLower crashes by other drivers | Rain, snow & bad weather4-way stops is first stepSDC external info? What else? | ## **Google SDC-DLC Software** | | Key Information | Comments | |---------------------|---|---| | Estimated
Status | Better than nearly all drivers—at least in fair weather driving Fewer emergencies Know common driver weaknesses | Faster reaction time, never tired, never distracted, superior object tracking capabilities From 1.5M miles in SDC mode | | Next
Focus | Finding and learning the once in a million events | Google has active projects to identify such events | | Key
Problems | Other drivers' negative reactionOther cars run into SDC-DLCsComputer ethics? | SDC-DLC follow all laws!SDC driving style too differentDifferent views on its impact | | Next
Steps | Cooperative driving situationsLower crashes by other driversBad weather testing & learning | 4-way stops is first stepSDC external info? What else?Solutions in due time | ### **Key Question:** How much better than the best drivers will DLC software need to be for deployment? ## **Mobility Implications** | | Key Information | Other Information | |-----------------------------------|--|--| | Car
Sharing | Smartphone apps centricDLC lowers operating costDLC fleets for car-sharing | Convenience & availabilityNo driver costsLikely first SDC deployment | | Car
Ownership | Fewer cars/household when
SDCs are fully availableHigher miles per car year | ► USA currently: 2.1 cars/HH► USA projected: 1.2 w/SDCs*► Quicker replacement rate | | Car-as-a-
Service
Potential | Worldwide population People with driver license People w/o driver license Urban population Seniors (65+ years old) Youth (Under 18 years old) | 2015: 7.32B → 2035: 8.74B 2015: 1.13B → 2035: 1.9B 2015: 6.2B → 2035: 6.8B 2015: 4.1B → 2035: 5.7B 2015: 604M → 2035: 1.12B 2015: 2.26B → 2035: 2.36B | | Mass
Transit | ►SDC for last mile service►SDV for new mass transit►SDV as mass transit | To fill mass transit gapsLess cost than mass transitCurrent system competition | ## **Autonomous Driving Evolution** **SOURCE: IHS Automotive Autonomous Driving Portal** ## **Connected Cars: Perspectives to 2025** - Auto Sales and Motorization - Infotainment: Growing Platform Importance - Connected Cars: Opportunities & Threats - Self-driving Cars vs. Driverless Cars: Revolution - Summary Perspectives Egil Juliussen, Ph.D. Director Research & Principal Analyst ### **New Auto Industry Competition** OS=Operating System; MW=Middleware; OTA=Over-the-Air; ICE=Internal Combustion Engine; SW=Software; SDC=Self-Driving Car; DLC=Driverless Car; CaaS=Car-as-a-Service; AA=Android Auto; ML=MirrorLink ### İHS ### Connected Car by 2020+ ### **Connected Car Revolution** ### **Capabilities** Connected cars are the halfway point on a journey from simple and rare telematics use, to self-driving cars with required, multiple and constant connections over secure wireless links #### **LTE Connected** - 4G LTE: Mbps - Multiple connections - Apps & cloud content - Connections: Common #### **Connected SDC-DLC** - 5G: Gbps - Secure connections - Any apps & content - Connections: Required - Car-as-a-Service ### **Telematics** - 1G Analog - Speed: Kbps - Safety-Security - Available: Rare Connected cars create new challenges: cyber-security 2000 2015 2030 Kbps-Mbps-Gbps=Kilo-Mega-Giga bits per second; SDC=Self-Driving Car; DLC=Driverless Car ### **Software-Defined Car Evolution** The car is the most complex product in volume production! Connected Car Remote SW Upgrades Software security Self-Driving Car Software-defined car Car-as-a-Service AUTOSAR Remote Diagnostics Software APIs Digital Car Era Platform architecture Re-usable software Tesla is first SW-defined car ECUs Analog-Digital Car Era Digital control system growth Analog Car Era Analog control systems **Next 20 Year HW Improvements** MCU performance: 400 times Memory chip: 32,000 times 1995 2005 2015 2025 2035 **SOURCE: IHS Automotive** # **Questions?** Egil Juliussen, Ph.D. Research Director, Principal Analyst, IHS Automotive Technology April 27, 2016 egil.juliussen@ihs.com