
Integrated Computer Solutions
Dr. Roland Krause

Video: http://bit.ly/IVI-Media-Manager

http://bit.ly/IVI-Media-Manager

Motivation

● At ICS we have designed and built many In-Vehicle-
Infotainment systems (see e.g. this video)

● When asked to look into Media Management we found this
to be a vexing and complex problem

● The challenge for automotive IVI implementations is that
○ People’s media -- their music, videos, audiobooks, podcasts and

television -- exist in a multitude of forms and originate from many
disparate sources.

○ For example, some music files may reside at home in an iTunes library,
others may have been purchased from Amazon Music or Google Play.

○ Media may have then been downloaded to a computer, a USB drive or a
phone, or stored on a cloud server.

○ Management of digital rights adds yet another layer of complexity to the
situation -- one that can’t be ignored.

https://youtu.be/Y2x3v3UpssE

Requirements

● The job of finding and making available media to the
passengers of a car is that of the Media Manager

● First step: Recognizing a Device is brought into the car
● Next: Finding and Indexing Media on the Device
● Possibly: Enhancing Media Information to allow improved

search, filtering, etc..
● Definitely: Playing of Media using the car’s advanced

audio systems
● Controlling the flow of Media to e.g. different Speaker

Zones, Headphones, Videos to headrest screens etc..
○ When multiple occupants drive in the car each individual should be able

to enjoy their own audio and video selections.

○ Hence a media manager should be able to direct media to specific
passengers.

The Idea - Coding for the Unknown

Today’s media consumers behavior changes rapidly:
● Remember the “Walkman” - Enjoyed it for Decades
● CDs - Lasted maybe 10 years
● MP3s on CDs, USB Pendrives, Less than 5 years
● Cloud based music sharing, Amazon tbd.
● Streaming:
● Pandora, By all means not saying it’s dead but:
● Spotify, is the current Darling (< 2 years)
● What is next?

○ The cycles become shorter and shorter
○ Consumers change phones 2-3 years on average

● We must keep in mind that what we create might be
partially outdated by the time is is released - Ouch!

Architecture

Plugin Architecture

Media Manager Core Functionality
● Load Plugins:

○ Device Manager
○ Media Devices
○ Media Players
○ Services (Audio Manager, Media Enrichment)
○ Controllers (UI, RC, RVI)

● Organize Flow of Media Info Data from Device
to Player and Device to Controller

Media Devices

Device Manager Plugin Interface
/** DeviceManagerInterface is a Plugin Interface for DeviceManagers

* that detect MediaDevices which contain Media that can be indexed

* by a suitable MediaDevice.

**/

class DeviceManagerInterface : public QObject

{

 Q_OBJECT

public:

 explicit DeviceManagerInterface(QObject * parent=0) : QObject(parent) {}

 virtual ~DeviceManagerInterface() {}

signals:

 void deviceCreated(const QString mediaDeviceType, const QUrl mediaDevicePath) const;

 void deviceRemoved(const QString mediaDeviceType, const QUrl mediaDevicePath) const;

};

#define DeviceManagerInterface_iid "com.ics.media-manager.DeviceManagerInterface"

Q_DECLARE_INTERFACE(DeviceManagerInterface, DeviceManagerInterface_iid)

Device Manager Plugin Implementation
/** SimpleDeviceManager is a Plugin Interface for a Device Manager

* that watches system mounted devices such as USB Pendrives and SD Cards.

**/

class SimpleDeviceManager : public DeviceManagerInterface

{

 Q_OBJECT

 Q_PLUGIN_METADATA(IID "com.ics.media-manager.DeviceManagerInterface" FILE "SimpleDeviceManager.

json")

 Q_INTERFACES(DeviceManagerInterface)

public:

 SimpleDeviceManager(QObject *parent = 0);

protected slots:

 void deviceChanged();

private:

 QFileSystemWatcher * m_usbWatcher;

 QString m_usbWatchPath;

 QStringList m_devices;

};

Data Flow

Core Components

● MediaSource
○ Provide interfaces to devices.
○ Devices are physical media such as Phones, iPads, USB thumb drives,

Microsoft Media Players, DLNA, Bluetooth, cloud or any source that can
be indexed.

● MediaSource Playlists
○ Each source presents to the media manager one or more source

playlists.
○ The media manager takes these lists and add them to corresponding

MediaSessions.
○ For example, video playlists are offered to the session that interfaces to a

video player, whereas Bluetooth playlists are offered to a Bluetooth
Player which in turn controls a Bluetooth device through the AVRCP
protocol.

MediaSession and MediaSource

● MediaSession
○ Each MediaSession holds a playlist of tracks specific to a media type e.g.

mp3 files, video files or Bluetooth streams.
○ MediaSession interfaces a single instance of a media player for the

specific media type.
○ Contains a JSON Object consisting of multiple JSON Arrays,
○ One per MediaType present on the device.

● MediaPlaylist is a JSON Array
○ Each JSON Array contains indexing data
○ Indexing data are JSON Objects,

■ one for each media item
■ containing attributes of a single media item
■ e.g., file names, artists, cover art

and many other things of interest to the end user.

Class MediaSource
class MediaSource : public QObject

{

 Q_OBJECT

 Q_PROPERTY(QJsonObject mediaSourcePlaylist READ mediaSourcePlaylist WRITE setMediaSourcePlaylist

 NOTIFY mediaSourcePlaylistChanged)

 Q_PROPERTY(QUrl deviceUrl READ deviceUrl WRITE setDeviceUrl NOTIFY deviceUrlChanged)

public:

 explicit MediaSource(MediaDeviceInterface * device, const QUrl & deviceUrl, QObject * parent = 0);

 void updateMediaSourcePlaylist() ;

 QJsonObject mediaSourcePlaylist() const;

 bool hasMediaType(const QString & mediaTypeStr) const;

 const QJsonArray mediaArray(const QString & mediaTypeStr) const;

 const QString deviceUrlString() const;

 const QUrl deviceUrl() const;

signals:

 void mediaSourcePlaylistChanged(const MediaSource * mediaSource);

 void deviceUrlChanged(QUrl deviceUrl);

private slots:

 void setDeviceUrl(QUrl deviceUrl);

 void setMediaSourcePlaylist(QJsonObject mediaSourcePlaylist);

private:

 MediaDeviceInterface * m_device;

 QJsonObject m_mediaSourcePlaylist;

 QUrl m_deviceUrl;

};

DataStructure: MediaPlaylist

{
 "AudioFileMediaType": [
 {
 "Album": "Southernality",
 "Artist": "A Thousand Horses",
 "CompleteName": "/mm_test/audio/a.mp3",
 "Title": "(This Ain’t No) Drunk Dial",
 },
 {
 "Album": "Billboard Top 60 Country Songs",
 "Artist": "Big & Rich",
 "CompleteName": "/mm_test/audio/b.mp3",
 "Title": "Run Away with You",
 }
],
 "VideoFileMediaType": [
 {
 "CompleteName": "/mm_test/video/mad_max.mp4",
 "FileName": "mad_max",
 "Format": "MPEG-4",
 "InternetMediaType": "video/mp4",
 },
 {
 "CompleteName": "/mm_test/video/sup-vs-bat.mp4",
 "FileName": "sup-vs-bat",
 "Format": "MPEG-4",
 "InternetMediaType": "video/mp4",
 }
]
}

Class MediaSession
class MediaSession : public QObject

{

 Q_OBJECT

public:

 explicit MediaSession(MediaPlayerInterface * player, QObject *parent = 0);

 void appendMediaSourcePlaylist(const QString deviceUrl, const QJsonArray playlist);

 void removeMediaSourcePlaylist(const QString deviceUrl);

 const MediaPlayerInterface * player() const { return m_player;}

 const QJsonArray mediaSessionPlaylist() const ;

signals:

 void mediaSessionPlaylistChanged(QStringList mediaSessionPlaylist);

private:

 void rebuildMediaSessionPlaylist();

 MediaPlayerInterface * m_player;

 QMap<QString,QJsonArray> m_sourcePlaylists;

};

Core Components

● MediaPlayer
○ MediaPlayers control the output of media
○ Implement functionality of media reproduction e.g., play, pause, stop, play

index, play next, play previous etc.
○ Can also be controlled to direct output to specific channels through an

audio manager component.
● MediaManager

○ MediaManager maintains a set of session objects and a set of source
objects.

○ Interfaces with an audio manager for audio channels
○ Interfaces with a device manager for device notifications.
○ Provides a controller interface which allows for direct user interface (UI)

implementation using the toolkit of choice as well as remote control
through RVI or web interfaces.

Media Manager Core Functionality

● When a device is connected, e.g. a USB pen drive is
plugged in:
○ Media Manager receives a notification from the Device Manager plugin.
○ With the help of a suitable MediaDevice indexing results in a

MediaSource object - delivered to and received by the Media Manager.
○ Media Manager stores and accesses MediaSession objects

corresponding to MediaTypes contained in the MediaSource
○ Appends the playlists coming from the MediaSource object to the

MediaSession.
○ During this step, filtering and sorting can be applied.

● MediaSessions store sets of playlists (in JSON Arrays)
○ Identified with the MediaSource they came from
○ It is trivial to update playlists upon removal of a device at the cost of

rebuilding the playlist and transferring it to the MediaPlayer again.
○ Use of “implicitly shared” container classes is fundamental to a robust and

efficient implementation.

MediaManager Update Session
void MediaManager::updateMediaSession(const MediaSource * mediaSource)

{

 const QString deviceUrlStr=mediaSource->deviceUrlString();

 for (int mt=mmTypes::NoType+1;mt<mmTypes::EndType;++mt) {

 MediaType mediaType=(const MediaType)mt;

 QString mediaTypeStr=mmTypes::Media(mediaType);

 const QJsonArray playListArray=mediaSource->mediaArray(mediaTypeStr);

 if (playListArray.isEmpty()) {

 continue;

 }

 MediaSession * mediaSession=0;

 if (mediaSessions.contains(mediaType)) {

 mediaSession=mediaSessions[mediaType];

 }

 else {

 MediaPlayerInterface * player=0;

 if (mediaPlayerPlugins.contains(mediaType)) {

 player=mediaPlayerPlugins[mediaType];

 }

 else {

 qWarning() << Q_FUNC_INFO << "no plugin found for MediaType" << mediaType;

 continue;

 }

 mediaSession=new MediaSession(player, this);

 mediaSessions.insert(mediaType, mediaSession);

 }

 mediaSession->appendMediaSourcePlaylist(deviceUrlStr,playListArray);

 if (mediaSessions.count()==1)

 setActiveMediaSession(mediaType);

 else

 emit activeMediaSessionPlaylist(mediaSessions[activeMediaSessionType]->mediaSessionPlaylist());

 }

}

MediaSession: Rebuild Playlist

void MediaSession::rebuildMediaSessionPlaylist()

{

 QStringList playList;

 foreach (const QJsonArray jsa, m_sourcePlaylists) {

 foreach (QJsonValue jv, jsa) {

 QJsonObject jo=jv.toObject();

 const QString & f=jo["CompleteName"].toString();

 playList << QString("file:%1").arg(f);

 }

 }

 emit mediaSessionPlaylistChanged(playList);

 m_player->setMediaPlaylist(playList);

 qDebug() << Q_FUNC_INFO << playList;

}

Indexer - MediaInfo

● The problem of indexing media is two-fold:
○ Files must be found, identified and the results stored.
○ Media contained in files and streams must be

classified.
○ We are looking to answer questions like:

■ How long is this “mp3” file? Who sang this song?
Who directed this orchestra?

○ All of this information should be available to the user as
fast as the medium permits while preserving an always
responsive, modern user experience.

Indexer - MediaInfo

● Notable Open Source indexing solutions:
○ Gnome projects Tracker and KDE’s Nepomuk are

powerful and complex search and indexing solutions
○ appropriate for desktop solutions.
○ Light Media Scanner (LMS), and FFMpeg project’s

ffprobe are more suited for constrained environments
and use cases.

● Another widely used option is MediaInfo
○ Highly customizable,
○ can easily be integrated in C++ based applications,
○ has support for hundreds of media types and is a fast

and robust solution with a long standing track record.

https://wiki.gnome.org/Projects/Tracker
https://userbase.kde.org/Nepomuk
https://github.com/profusion/lightmediascanner
https://ffmpeg.org/ffprobe.html
https://github.com/MediaArea/MediaInfo

Indexer - MediaInfo

● While MediaInfo itself provides a command
line utility that can produce a wide variety of
output formats we will integrate MediaInfo as a
library into a Qt based application that will
output metadata information in JSON format.

FileSystemDevice uses MediaInfo
class IndexingWorker : public QObject

{

public:

 IndexingWorker(QObject * parent=0)

 : QObject(parent) {

 audioFilters << "*.mp3" << "*.ogg" << "*.wav";

 videoFilters << "*.mp4" << "*.mkv" << "*.m4v" << "*.avi" << "*.wmv" << "*.mov";

 }

 ~IndexingWorker(){}

 void startIndexing(const QUrl url);

 QJsonArray audioFiles() const {return m_audioFiles;}

 QJsonArray videoFiles() const {return m_videoFiles;}

private:

 void indexDirectory(const QString dirPath);

 void mediaInfo(const QStringList fileList);

private:

 QJsonArray m_audioFiles;

 QJsonArray m_videoFiles;

 QStringList audioFilters;

 QStringList videoFilters;

};

Using MediaInfo
void IndexingWorker::mediaInfo(const QStringList fileList)

{

 if (fileList.isEmpty()) return;

 QStringList generalParams;

 generalParams << "CompleteName" << "FolderName" << "FileName" << "FileExtension" << "Artist" << "Cover_Data"

 << "Format" << "InternetMediaType"

 << "Title" << "Season" << "Movie"

 << "Album" << "Album_More" << "Album/Performer";

 QString generalInform;

 generalInform="General;";

 foreach(QString s, generalParams) {

 generalInform += QString("\%%1\%|").arg(s);

 }

 generalInform+="\\n";

 MediaInfoLib::MediaInfoList MI;

 MI.Option(QSLWSTR("ParseSpeed"), QSLWSTR("0"));

 MI.Option(QSLWSTR("Language"), QSLWSTR("raw"));

 MI.Option(QSLWSTR("ReadByHuman"), QSLWSTR("0"));

 MI.Option(QSLWSTR("Legacy"), QSLWSTR("0"));

 int nfiles;

 foreach (QString file, fileList) {

 nfiles=MI.Open(file.toStdWString(), MediaInfoLib::FileOption_NoRecursive);

 }

 if (nfiles!=fileList.count()) {

 qWarning() << Q_FUNC_INFO << "some files could not be opened, have" << nfiles << "out of" << fileList.count();

 }

 MI.Option(QStringLiteral("Inform").toStdWString(), generalInform.toStdWString());

 QString informOptionExample=QString::fromStdWString(MI.Inform());

Retrieving Data from MediaInfo
 QStringList informResult=informOptionExample.split('\n',QString::SkipEmptyParts);

 QVariantMap resMap;

 foreach (QString res, informResult) {

 QStringList resList=res.split("|");

 Q_ASSERT((resList.count()-1)==generalParams.count());

 for (int i=0;i<resList.count()-1;++i) {

 resMap[generalParams[i]] = resList[i];

 }

 QJsonObject resObject=QJsonObject::fromVariantMap(resMap);

 QString mimeType=resMap["InternetMediaType"].toString();

 if (mimeType.startsWith("audio")) m_audioFiles.append(resObject);

 else if (mimeType.startsWith("video")) m_videoFiles.append(resObject);

 else {

 qWarning() << Q_FUNC_INFO << "mimetype for file"

 << resMap["CompleteName"]<< "not one of audio or video but"

 << resMap["InternetMediaType"];

 }

 }

MediaPlayers

● MediaPlayers do not provide UI control
elements!
○ They do

however have
visible elements

○ E.g. video surfaces
○ Control is through

a plugin interface

Media Players
class MediaPlayerInterface : public QObject

{

 Q_OBJECT

public:

 typedef mmTypes::PlayState PlayState;

 explicit MediaPlayerInterface(QObject * parent=0) : QObject(parent) {}

 virtual ~MediaPlayerInterface() {}

 virtual void setMediaPlaylist(const QStringList playList) = 0;

 virtual void addMediaPlaylist(const QStringList playList) = 0;

 virtual const QSet<QString> supportedFileSuffixes() const = 0;

 virtual PlayState playState() const = 0;

 virtual int currentTrackIndex() const = 0;

public slots:

 virtual void play() const = 0;

 virtual void pause() const = 0;

 virtual void stop() const = 0;

 virtual void next() const = 0;

 virtual void previous() const = 0;

 virtual void setCurrentTrack(int index) const = 0;

 virtual void setVideoRectangle(const QRect rect) const {Q_UNUSED(rect);}

signals:

 /** Must emit this signal so that the Controllers are notified

 * when the current state changes **/

 void playStateChanged(PlayState state) const;

 /** Must emit this signal so that the Controllers are notified

 * when the current track changes **/

 void currentTrackIndexChanged(int index);

};

Controllers

● Media Manager employs the concept of active
MediaSessions
○ Control the actual playback of media.
○ It calls the active sessions player with the standard

actions of playing
○ E.g. play, pause, next, previous, play by index etc..
○ The control of the Media Manager itself is through a

MediaManagerControllerInterface that is implemented
by a variety of “stateless” plugins.

○ E.g., a simple UI plugin allows for a graphical user
interface to be implemented while a “remote controller”
plugin allows mobile devices to control the Media
Manager and thus its playing functionality.

QtQuick - UI Controller

Integration Genivi Development Platform

JSON Rpc Controller

● TCP based JSON-RPC
● Utilizes QJsonRpc
● Implements MediaManagerControllerInterface
● Same Interface as UI based Controllers
● Stateless Controller Architecture guarantees

that all Controllers are in the same state
● Signal and Slot implementation allows to add

controllers at will without changing the
MediaManager code

Media Manager - App Demo

Part 1:
Part 2:

https://drive.google.com/open?id=0Bx4bOwcUqb8hcS1mUk9vbHN6RTA
https://drive.google.com/open?id=0Bx4bOwcUqb8hcS1mUk9vbHN6RTA
https://drive.google.com/open?id=0Bx4bOwcUqb8hN2ZKX2xBX2RucWc
https://drive.google.com/open?id=0Bx4bOwcUqb8hN2ZKX2xBX2RucWc

Next Steps

● Plugins and Indexers for Phones and Tablet
devices - this will require mobile apps

● Plugins for DLNA devices
● Plugins for Bluetooth device playback

○ BlueZ, AVRCP and A2DP protocols

Conclusion

● As the vision of autonomous driving changes
the role of the automobile itself:
○ Our Vision is to create software that allows the

Automobile to be an integration point for Media
○ Similar to the “Connected Home”
○ Central point where Media “comes together”

● Architecture of our components should not
withstand the developments of the future but
adopt to it.

● Visit us - Talk to us - Work with us!
● How can we help you?

