Integrated E
Computer: I‘ s
Solutions]

The Making of an
Automotive IVI Media Manager

i &
Integrated Computer Solutions
Dr. Roland Krause

Video: http://bit.ly/IVI-Media-Manager

©2015 Integrated Computer Solutions, Inc. All Rights Reserved

http://bit.ly/IVI-Media-Manager

S
Motivation

e At ICS we have designed and built many In-Vehicle-
Infotainment systems (see e.g. this video)

e \When asked to look into Media Management we found this
to be a vexing and complex problem
e The challenge for automotive IVl implementations is that

o People’s media -- their music, videos, audiobooks, podcasts and

television -- exist in a multitude of forms and originate from many
disparate sources.

o For example, some music files may reside at home in an iTunes library,
others may have been purchased from Amazon Music or Google Play.

o Media may have then been downloaded to a computer, a USB drive or a
phone, or stored on a cloud server.

o Management of digital rights adds yet another layer of complexity to the
situation -- one that can’t be ignored.

https://youtu.be/Y2x3v3UpssE

..
Requirements

e The job of finding and making available media to the
passengers of a car is that of the Media Manager

e First step: Recognizing a Device is brought into the car
e Next: Finding and Indexing Media on the Device

e Possibly: Enhancing Media Information to allow improved
search, filtering, etc..

e Definitely: Playing of Media using the car’s advanced
audio systems

e Controlling the flow of Media to e.g. different Speaker
Zones, Headphones, Videos to headrest screens efc..

o When multiple occupants drive in the car each individual should be able
to enjoy their own audio and video selections.

o Hence a media manager should be able to direct media to specific
passengers.

©2015 Integrated Computer Solutions, Inc. All Rights Reserved

The Idea - Coding for the Unknown

Today’s media consumers behavior changes rapidly:

Remember the “Walkman” - Enjoyed it for Decades
CDs - Lasted maybe 10 years

MP3s on CDs, USB Pendrives, Less than 5 years
Cloud based music sharing, Amazon tbd.
Streaming:

Pandora, By all means not saying it's dead but:
Spotify, is the current Darling (< 2 years)

What is next?

o The cycles become shorter and shorter
o Consumers change phones 2-3 years on average

e \We must keep in mind that what we create might be
partially outdated by the time is is released - Ouch!

©2015 Integrated Computer Solutions, Inc. All Rights Reserved

S
Architecture

> ...
Plugin Architecture

Media Manager Core Functionality

e | oad Plugins:
o Device Manager
Media Devices
Media Players
Services (Audio Manager, Media Enrichment)
o Controllers (Ul, RC, RVI)

e Organize Flow of Media Info Data from Device
to Player and Device to Controller

o O O

©2015 Integrated Computer Solutions, Inc. All Rights Reserved

Media Devices

Device Manager | MediaDevice

©2015 Integrated Computer Solutions, Inc. All Rights Reserved

Device Manager Plugin Interface

/** DeviceManagerInterface is a Plugin Interface for DeviceManagers
* that detect MediaDevices which contain Media that can be indexed
* by a suitable MediaDevice.
**/
class DeviceManagerInterface : public QObject
{
Q_OBJECT
public:
explicit DeviceManagerInterface(QObject * parent=0) : QObject(parent) {}
virtual ~DeviceManagerInterface() {}
signals:
void deviceCreated(const QString mediaDeviceType, const QUrl mediaDevicePath) const;
void deviceRemoved(const QString mediaDeviceType, const QUrl mediaDevicePath) const;

}s

#define DeviceManagerInterface_iid "com.ics.media-manager.DeviceManagerInterface"
Q_DECLARE_INTERFACE (DeviceManagerInterface, DeviceManagerInterface_iid)

> ...
Device Manager Plugin Implementation

/** SimpleDeviceManager is a Plugin Interface for a Device Manager

* that watches system mounted devices such as USB Pendrives and SD Cards.
**/

class SimpleDeviceManager : public DeviceManagerInterface

{

Q_OBJECT

Q_PLUGIN_METADATA(IID "com.ics.media-manager.DeviceManagerInterface” FILE "SimpleDeviceManager.
json")

Q_INTERFACES(DeviceManagerInterface)
public:

SimpleDeviceManager(QObject *parent = 9);

protected slots:
void deviceChanged();

private:
QFileSystemWatcher * m_usbWatcher;
QString m_usbWatchPath;
QStringList m_devices;

}s

N\
Data Flow

MediaDevice
USB Pendrive

MediaDevice
iPad

MEDIA
MANAGER

> ...
Core Components

e MediaSource
o Provide interfaces to devices.

o Devices are physical media such as Phones, iPads, USB thumb drives,

Microsoft Media Players, DLNA, Bluetooth, cloud or any source that can
be indexed.

e MediaSource Playlists

o Each source presents to the media manager one or more source
playlists.

o The media manager takes these lists and add them to corresponding
MediaSessions.

o For example, video playlists are offered to the session that interfaces to a
video player, whereas Bluetooth playlists are offered to a Bluetooth

Player which in turn controls a Bluetooth device through the AVRCP
protocol.

S
MediaSession and MediaSource

e MediaSession
o Each MediaSession holds a playlist of tracks specific to a media type e.g.
mp3 files, video files or Bluetooth streams.

o MediaSession interfaces a single instance of a media player for the
specific media type.

o Contains a JSON Object consisting of multiple JSON Arrays,
One per MediaType present on the device.

° MedlaPIayllst is a JSON Array
o Each JSON Array contains indexing data
o Indexing data are JSON Obijects,
m one for each media item
m containing attributes of a single media item

m e.g., file names, artists, cover art
and many other things of interest to the end user.

S
Class MediaSource

class MediaSource : public QObject
{
Q_OBJECT
Q_PROPERTY(QJsonObject mediaSourcePlaylist READ mediaSourcePlaylist WRITE setMediaSourcePlaylist
NOTIFY mediaSourcePlaylistChanged)
Q_PROPERTY(QUrl deviceUrl READ deviceUrl WRITE setDeviceUrl NOTIFY deviceUrlChanged)
public:
explicit MediaSource(MediaDevicelInterface * device, const QUrl & deviceUrl, QObject * parent = 0);
void updateMediaSourcePlaylist() ;
QJsonObject mediaSourcePlaylist() const;
bool hasMediaType(const QString & mediaTypeStr) const;
const QJsonArray mediaArray(const QString & mediaTypeStr) const;
const QString deviceUrlString() const;
const QUrl deviceUrl() const;
signals:
void mediaSourcePlaylistChanged(const MediaSource * mediaSource);
void deviceUrlChanged(QUrl deviceUrl);
private slots:
void setDeviceUrl(QUrl deviceUrl);
void setMediaSourcePlaylist(QJsonObject mediaSourcePlaylist);
private:
MediaDeviceInterface * m_device;
QJsonObject m_mediaSourcePlaylist;
QUrl m_deviceUrl;

}s

DataStructure: MediaPlaylist

{
"AudioFileMediaType": [
{
"Album": "Southernality",
"Artist": "A Thousand Horses",
"CompleteName": "/mm_test/audio/a.mp3",
"Title": "(This Ain’t No) Drunk Dial",
}s
{
"Album": "Billboard Top 60 Country Songs",
"Artist": "Big & Rich",
"CompleteName": "/mm_test/audio/b.mp3",
"Title": "Run Away with You",
}
1,
"VideoFileMediaType": [
{
"CompleteName": "/mm_test/video/mad_max.mp4",
"FileName": "mad_max",
"Format": "MPEG-4",
"InternetMediaType": "video/mp4",
}s
{
"CompleteName": "/mm_test/video/sup-vs-bat.mp4",
"FileName": "sup-vs-bat",
"Format": "MPEG-4",
"InternetMediaType": "video/mp4",
}
1
}

Class MediaSession

class MediaSession : public QObject

{
Q_OBJECT
public:
explicit MediaSession(MediaPlayerInterface * player, QObject *parent = 0);
void appendMediaSourcePlaylist(const QString deviceUrl, const QJsonArray playlist);
void removeMediaSourcePlaylist(const QString deviceuUrl);
const MediaPlayerInterface * player() const { return m_player;}
const QJsonArray mediaSessionPlaylist() const ;
signals:
void mediaSessionPlaylistChanged(QStringList mediaSessionPlaylist);
private:
void rebuildMediaSessionPlaylist();
MediaPlayerInterface * m_player;
QMap<QString,QJsonArray> m_sourcePlaylists;
}s

> ...
Core Components

° MedlaPIayer

MediaPlayers control the output of media

Implement functionality of media reproduction e.g., play, pause, stop, play
index, play next, play previous etc.

Can also be controlled to direct output to specific channels through an
audio manager component.

e MediaManager

O

MediaManager maintains a set of session objects and a set of source

objects.
Interfaces with an audio manager for audio channels
Interfaces with a device manager for device notifications.

Provides a controller interface which allows for direct user interface (Ul)

implementation using the toolkit of choice as well as remote control
through RVI or web interfaces.

Media Manager Core Functionality

e \When a device is connected, e.g. a USB pen drive is
plugged In:

Media Manager receives a notification from the Device Manager plugin.

o With the help of a suitable MediaDevice indexing results in a
MediaSource object - delivered to and received by the Media Manager.

o Media Manager stores and accesses MediaSession objects
corresponding to MediaTypes contained in the MediaSource

o Appends the playlists coming from the MediaSource object to the
MediaSession.
o During this step, filtering and sorting can be applied.

e MediaSessions store sets of playlists (in JSON Arrays)
o ldentified with the MediaSource they came from

o ltis trivial to update playlists upon removal of a device at the cost of
rebuilding the playlist and transferring it to the MediaPlayer again.

o Use of “implicitly shared” container classes is fundamental to a robust and
efficient implementation.

MediaManager Update Session

void MediaManager::updateMediaSession(const MediaSource * mediaSource)
{
const QString deviceUrlStr=mediaSource->deviceUrlString();
for (int mt=mmTypes::NoType+1l;mt<mmTypes::EndType;++mt) {
MediaType mediaType=(const MediaType)mt;
QString mediaTypeStr=mmTypes::Media(mediaType);
const QJsonArray playListArray=mediaSource->mediaArray(mediaTypeStr);
if (playListArray.isEmpty()) {
continue;
}
MediaSession * mediaSession=0;
if (mediaSessions.contains(mediaType)) {
mediaSession=mediaSessions[mediaType];
}
else {
MediaPlayerInterface * player=0;
if (mediaPlayerPlugins.contains(mediaType)) {
player=mediaPlayerPlugins[mediaType];
}
else {
gWarning() << Q_FUNC_INFO << "no plugin found for MediaType" << mediaType;
continue;
}
mediaSession=new MediaSession(player, this);
mediaSessions.insert(mediaType, mediaSession);
}
mediaSession->appendMediaSourcePlaylist(deviceUrlStr,playListArray);
if (mediaSessions.count()==1)
setActiveMediaSession(mediaType);
else
emit activeMediaSessionPlaylist(mediaSessions[activeMediaSessionType]->mediaSessionPlaylist());

}

MediaSession: Rebuild Playlist

void MediaSession::rebuildMediaSessionPlaylist()
{
QStringList playlList;
foreach (const QJsonArray jsa, m_sourcePlaylists) {
foreach (QJsonValue jv, jsa) {
QJsonObject jo=jv.toObject();
const QString & f=jo["CompleteName"].toString();
playList << QString("file:%1").arg(f);

}
emit mediaSessionPlaylistChanged(playList);

m_player->setMediaPlaylist(playList);
gDebug() << Q_FUNC_INFO << playlist;

N\
Indexer - Medialnfo

e The problem of indexing media is two-fold:
o Files must be found, identified and the results stored.
o Media contained in files and streams must be

classified.
o We are looking to answer questions like:

m How long is this “mp3” file? Who sang this song?
Who directed this orchestra?

o All of this information should be available to the user as

fast as the medium permits while preserving an always
responsive, modern user experience.

©2015 Integrated Computer Solutions, Inc. All Rights Reserved

N\
Indexer - Medialnfo

e Notable Open Source indexing solutions:

o Gnome projects Tracker and KDE's Nepomuk are
powerful and complex search and indexing solutions

o appropriate for desktop solutions.

o Light Media Scanner (LMS), and FFMpeg project’s

ffprobe are more suited for constrained environments
and use cases.

e Another widely used option is Medialnfo

o Highly customizable,
o can easily be integrated in C++ based applications,

o has support for hundreds of media types and is a fast
and robust solution with a long standing track record.

©2015 Integrated Computer Solutions, Inc. All Rights Reserved

https://wiki.gnome.org/Projects/Tracker
https://userbase.kde.org/Nepomuk
https://github.com/profusion/lightmediascanner
https://ffmpeg.org/ffprobe.html
https://github.com/MediaArea/MediaInfo

Indexer - Medialnfo

e \While Medialnfo itself provides a command
line utility that can produce a wide variety of
output formats we will integrate Medialnfo as a
library into a Qt based application that will
output metadata information in JSON format.

I e
FileSystemDevice uses Medialnfo

class IndexingWorker : public QObject
{
public:
IndexingWorker(QObject * parent=0)
: QObject(parent) {
audioFilters << "*.mp3" << "*.ogg" << "*.wav";
videoFilters << "*.mp4" << "*.mkv" << "¥.m4v" << "*,avi" << "¥*.wmv" << "*.mov";

}
~IndexingWorker(){}

void startIndexing(const QUrl url);

QJsonArray audioFiles() const {return m_audioFiles;}

QJsonArray videoFiles() const {return m_videoFiles;}
private:

void indexDirectory(const QString dirPath);

void mediaInfo(const QStringList filelList);

private:
QJsonArray m_audioFiles;
QJsonArray m_videoFiles;
QStringList audioFilters;
QStringList videoFilters;

};

Using Medialnfo

void IndexingWorker::mediaInfo(const QStringlList fileList)
{
if (fileList.isEmpty()) return;
QStringList generalParams;
generalParams << "CompleteName" << "FolderName" << "FileName" << "FileExtension" << "Artist" << "Cover_Data"
<< "Format" << "InternetMediaType"
<< "Title" << "Season" << "Movie"
<< "Album" << "Album_More" << "Album/Performer";
QString generalInform;
generalInform="General;";
foreach(QString s, generalParams) {
generalInform += QString("\%%1\%|").arg(s);
}
generalInform+="\\n";
MediaInfolLib::MediaInfolList MI;
MI.Option(QSLWSTR("ParseSpeed"), QSLWSTR("0"));
MI.Option(QSLWSTR("Language"), QSLWSTR("raw"));
MI.Option(QSLWSTR("ReadByHuman"), QSLWSTR("©"));
MI.Option(QSLWSTR("Legacy"), QSLWSTR("9"));
int nfiles;
foreach (QString file, fileList) {
nfiles=MI.Open(file.toStdWString(), MediaInfoLib::FileOption_NoRecursive);
}
if (nfiles!=filelList.count()) {
gWarning() << Q_FUNC_INFO << "some files could not be opened, have" << nfiles << "out of" << filelList.count();

MI.Option(QStringLiteral("Inform").toStdWString(), generalInform.toStdWString());
QString informOptionExample=QString::fromStdWString(MI.Inform());

..
Retrieving Data from Mediainfo

QStringList informResult=informOptionExample.split('\n',QString: :SkipEmptyParts);
QVariantMap resMap;
foreach (QString res, informResult) {
QStringList resList=res.split("|");
Q_ASSERT((resList.count()-1)==generalParams.count());
for (int i=@;i<resList.count()-1;++i) {
resMap[generalParams[i]] = reslList[i];
}
QJsonObject resObject=QJsonObject::fromVariantMap(resMap);
QString mimeType=resMap["InternetMediaType"].toString();
if (mimeType.startsWith("audio")) m_audioFiles.append(resObject);
else if (mimeType.startsWith("video")) m_videoFiles.append(resObject);
else {
gWarning() << Q_FUNC_INFO << "mimetype for file"
<< resMap["CompleteName"]<< "not one of audio or video but"
<< resMap["InternetMediaType"];

MediaPlayers

e MediaPlayers do not provide Ul control

elements!
o They do
however have i | Mo
visible elements MP3Player | MediSession
o E.g. video surfaces | ModlaSession |
o Control is through — | |
a plugin interface VideoPlayer = | |
| MediaSession |
DLNAPIlayer

©2015 Integrated Computer Solutions, Inc. All Rights Reserved

Media Players

class MediaPlayerInterface : public QObject
{
Q_OBJECT
public:
typedef mmTypes::PlayState PlayState;
explicit MediaPlayerInterface(QObject * parent=0) : QObject(parent) {}
virtual ~MediaPlayerInterface() {}

virtual void setMediaPlaylist(const QStringlList playList) = ©;
virtual void addMediaPlaylist(const QStringList playList) = ©;

virtual const QSet<QString> supportedFileSuffixes() const = 0;
virtual PlayState playState() const = @;
virtual int currentTrackIndex() const = @;

public slots:
virtual void play() const = @;
virtual void pause() const = @;
virtual void stop() const = @;
virtual void next() const = @;
virtual void previous() const = 0;
virtual void setCurrentTrack(int index) const = 0;
virtual void setVideoRectangle(const QRect rect) const {Q_UNUSED(rect);}

signals:
/** Must emit this signal so that the Controllers are notified
* when the current state changes **/
void playStateChanged(PlayState state) const;
/** Must emit this signal so that the Controllers are notified
* when the current track changes **/
void currentTrackIndexChanged(int index);

}s

~N
Controllers

e Media Manager employs the concept of active

MediaSessions
o Control the actual playback of media.

o It calls the active sessions player with the standard
actions of playing
o E.qg. play, pause, next, previous, play by index etc..

o The control of the Media Manager itself is through a

MediaManagerControllerinterface that is implemented
by a variety of “stateless” plugins.

o E.g., a simple Ul plugin allows for a graphical user
interface to be implemented while a “remote controller”
plugin allows mobile devices to control the Media

playing functionality.
©2015 Integrated Computer Solutions, Inc. All Rights Reserved

QtQuick - Ul Controller

Run Away with You
Big & 1

j A ﬂ

-ou'rnnaﬂl\'—"""

.....

-

> ...
Integration Genivi Development Platform

JSON Rpc Controller

TCP based JSON-RPC

Utilizes QJsonRpc

Implements MediaManagerControllerinterface
Same Interface as Ul based Controllers
Stateless Controller Architecture guarantees
that all Controllers are in the same state
Signal and Slot implementation allows to add
controllers at will without changing the
MediaManager code

Media Manager - App Demo

Part 1:
Part 2:

https://drive.google.com/open?id=0Bx4bOwcUqb8hcS1mUk9vbHN6RTA
https://drive.google.com/open?id=0Bx4bOwcUqb8hcS1mUk9vbHN6RTA
https://drive.google.com/open?id=0Bx4bOwcUqb8hN2ZKX2xBX2RucWc
https://drive.google.com/open?id=0Bx4bOwcUqb8hN2ZKX2xBX2RucWc

Next Steps

e Plugins and Indexers for Phones and Tablet
devices - this will require mobile apps
e Plugins for DLNA devices

e Plugins for Bluetooth device playback
o BlueZ, AVRCP and A2DP protocols

~N
Conclusion

As the vision of autonomous driving changes
the role of the automobile itself:

o Our Vision is to create software that allows the

Automobile to be an integration point for Media
o Similar to the “Connected Home”
o Central point where Media “comes together”

Architecture of our components should not
withstand the developments of the future but
adopt to it.

Visit us - Talk to us - Work with us!

How can we help you?

©2015 Integrated Computer Solutions, Inc. All Rights Reserved

