
Vehicle Domain Interaction Workshop
Hypervisor for Safety Domain interaction

October 11, 2017

2

A hypervisor makes it possible to build mix-criticality systems and can integrate safely and securely:

• Software that is developed according to different quality standards:

o Related to safety (different ASIL levels)

o Related to security (different levels of trustworthiness, isolating a minimal trusted computing base)

o Related to reliability

• Software that has different real-time (e.g. RTOS and generic OS) and boot-time requirements

In addition, a hypervisor:

• Enables the use of optimally suited operating systems and frameworks (Linux, Android, AUTOSAR, RTOS)

• Isolates faults (safety, reliability) and attacks (security) and supports ASIL decomposition

• Enables modular development and modular software updates

• Supports software reuse across platforms and integration of legacy software

Role of a hypervisor in automotive

3

Design Patterns for Safety

SoC

External
Watchdog (ASIL)

Hypervisor (ASIL)

VM without
ASIL

requirements
...

• Design the system to reduce the amount of software that must be developed according to ASIL processes
and maximize as much software as is safe to not require development according to ISO26262:

o use a hierarchical watchdog approach

o use checking/monitoring strategies wherever possible

o use E2E protection in the communication wherever possible

• The Hypervisor must provide freedom from interference to separate the VMs developed to different
safety standards up to the requirements of ISO 26262 ASIL-B

External
MCU

VM that
underlies ASIL
requirements

4

Design Patterns for Security

SoC Security features

External
Security
Chipopt

(certified)
Hypervisor

Trusted OS
(TEE)

General
Purpose VM

Hardened VM ...

security assurance

external
interfaces

• Enforce the MILS (Multiple Independent Levels of Security) architecture

• Most systems will want to use a layering of security technologies, whereby the upper domain:

o provides better security assurance than the lower domain

o manages the communication with the previous domain

• Hypervisor ensures strong separation between general purpose VMs (with external interfaces) and
hardened VMs and provide secured access to trusted OS

• Hypervisor supports the SoC-specific hardware security features (such as Secure Boot, TrustZone,...)

• Hypervisor supports secure and modular software update to patch vulnerabilities in the field

attack

5

Separation

SoC

COQOS Hypervisor

VM without ASIL
requirements

/
untrusted VM

VM that underlies
ASIL requirements

/
hardened VM

Device with DMA

S-MMU SMMU = System MMU, or IO-MMU
DMA = Direct Memory Access

• On most SoC's several devices have DMA capabilities.
• To use such devices

o safely (to ensure freedom from interference between the VMs)
o securely (so that an attacker cannot abuse a DMA-capable device to break separation)

• the SoC needs the right hardware mechanisms (such as the presence of an SMMU or IO-MMU).
• In COQOS, the SMMU Controller is located in a VM (and can be integrated with the System Supervisor)

• The availability of an SMMU Controller is SoC-specific

SMMU
Controller

6

• Integrate Instrument Cluster and
In-vehicle Infotainment
functionality on a single device to
save cost and provide an
integrated driver experience

• Hypervisor separates functions
with different requirements on
real-time behavior and functional
safety

• The displays must share
information from different
functions

o infotainment

o real-time driver information

o safety-critical information

• The system must interact with an
AUTOSAR-based vehicle network

Overall Cockpit Controller Architecture

SoC

 Hypervisor

Sy
st

em

 S
u

p
er

vi
so

r

non-safety critical safety critical

Infotainment

C
o
m

m
u
n
ic

a
ti
o
n

Instrument

Cluster

7

o an IC Client component is
rendering all graphical elements –
including safety-critical graphical
elements.

o an independent IC Guard
component

o verifies the rendering of the
safety critical graphical elements
in time and in contents and

o hosts all safety relevant
functions

o an independent System Supervisor
component supervises the
computational fitness of the IC
(hierarchical watchdog).

Mixed Safety Instrument Cluster
Reference Architecture

SoC

 Hypervisor

Sy
st

em

 S
u

p
er

vi
so

r

non-safety critical safety critical

IC

G
u

a
rd

IC

C
lie

n
t

C
o
m

m
u

n
ic

a
ti
o
n

Infotainment

8

vdriver

Mechanisms for device sharing

Hypervisor

SoC device

driver

driver

in Hypervisor

driver

Hypervisor

SoC

driver

device with
virtualization support

driver

Hypervisor

SoC device

low-level
client-server

virtdev1 virtdevN

distributed frameworks
over VNET

vdriver
driver

Hypervisor

SoC device

driver

frame-
work sharing

frame-
work

VNET

• Only used for UART
(optionally)

• not recommended for
other devices as the
Hypervisor is minimalistic.

Example: UART

• COQOS supports this when
the SoC hardware supports
virtualized devices

• Recommended wherever
the hardware supports it,
as it tends to give the best
performance and
separation

Example: GPU on RCAR-H3

• Single driver in VM that
acts as "server"

• Driver-specific sharing logic
is needed.

• Other VMs use "virtual
driver".

• Compromise between
performance and flexibility

Example: shared block device

• Allows reuse of existing
frameworks for distributed
applications in a virtualized
environment over VNET.

• Supports complex sharing
semantics at the cost of
more overhead

Example: NFS, PULSE AUDIO

IXCF

9

• Virtualized IO devices are available for desktop and cloud applications because everyone
uses standardized interfaces (virtio, xen, vmware)

• Disk

• Network

• Embedded devices lack the ecosystem that cloud providers build upon

• Challenges for virtualized IO devices in automotive

• High effort of SoC specific device virtualization

• Multimedia device virtualization

• Low amount of reusable virtual devices

Introduction

10

Device Virtualization Technologies

Technology Description Reusability Platform independence

Standard library

(or layer)

virtualization

(OpenGL, DRM,

Android HAL …)

Implement hypervisor

specific standard libraries

As long as the same

hypervisor is used

As good as vendor interface

Virtio Implement virtio based

devices that follow either

existing standards or

specify new ones

Virtio support is

available in Linux,

Android and many

other operating

systems

Builds upon the kernel-

userspace interface of Linux and

allows large flexibility because

the devices themselves make no

assumption about the hardware

HV vendor

custom

Develop virtual devices

optimized to be used with a

particular hypervisor

As long as the same

hypervisor is used

Implementation specific

Trade-off between development effort, reusability, platform independence,

availability and maturity

11

• Virtio “De-Facto Standard For Virtual I/O Devices” (Russel 2008)

• Standardized since March 2016 (OASIS VIRTIO-v1.0)

• Virtio provides interfaces for many devices

• Block Storage

• Network

• Console

• GPU

• Input (hid)

• Crypto device

• vSock

• File Server (9pfs)

• Many more in development (vIOMMU, etc.)

• Still missing pieces

• Audio

• Sensors

• Media Acceleration Offload (VPU)

Virtio

12

OpenSynergy GmbH

Rotherstraße 20
D-10245 Berlin
Germany

Phone +49 30 60 98 540-0
E-Mail info@opensynergy.com
Web www.opensynergy.com

OpenSynergy GmbH

Starnberger Str. 22
D-82131 Gauting / Munich
Germany

Phone +49 89 89 34 13-33
E-Mail bluetooth@opensynergy.com

OpenSynergy, Inc. (USA)

765 East 340 South
Suite 106
American Fork, Utah 84003

Phone +1 619 962 1725
E-Mail bluetooth@opensynergy.com

OpenSynergy, COQOS SDK, Blue SDK, IrDA SDK, Voice SDK, Update SDK, Qonformat, and other OpenSynergy products and
services mentioned herein as well as their respective logos are trademarks or registered trademarks of OpenSynergy GmbH
in Germany and in other countries around the world. All other product and service names in this document are the
trademarks of their respective companies. These materials are subject to change without notice. These materials are
provided by OpenSynergy GmbH for informational purposes only, without representation or warranty of any kind and
OpenSynergy GmbH shall not be liable for errors or omissions with respect to the materials. © OpenSynergy GmbH 2016

