
MiTM’ing Secured
Communications in
Automotive Apps Month 10, 2017 |
Subtitle

Ben Gardiner, Cloakware by Irdeto
Principal Security Engineer, GENIVI Alliance

• https://www.linkedin.com/in/ben0l0gardiner/

• 4 years experience in software security, 9+
years in embedded software
design/development

About Me

▪ Irdeto is a pioneer in digital
platform and application security.

▪ ~50 years of security expertise.
▪ It’s software security technology

and cyber services:
▪ Protect more than 5B devices &

applications.
▪ Protect against cyberattacks for

some of the world’s best known
brands.

▪ Cloakware for Automotive by
Irdeto helps automakers and
tier-one suppliers protect their
brand and save cost in the
battle against cybercriminals by
creating a secure, tamper-proof
environment for vehicle
software.

About Irdeto

• Man In The Middle
– Background Information

• SSL
• Certificate Pinning
• Integrity Verification

– Protection Types
• 1-6 levels

– Attacks
• Difficulties

– In Field
– At Home

• Tools
– Proxy

• Mitmproxy
• Burp
• OWASP ZAP

– Hooking
• Frida
• JustTrustMe

• Examples
• In Field Automotive Apps

– Anonymous

• Appendix
– Mitmproxy Setup

Overview

What is MiTM?

• Man in The Middle attacks (MiTM / MITM)

• Intercepting and possibly modifying communications between two parties
– without either party detecting the interception
– assumed to mean bypassing encryption and authentication also -- when encrypted

and/or authenticated communications are involved

• Where or not data is modified yields two flavors of the attack:
– Siphon (no data modification)
– Proxy

• Applicable to nearly all transport-layer and application-layer protocols in some
form or another. In the following we will be discussing HTTP/HTTPS

Agenda

• Examine the increasing levels of protection in HTTP/HTTPS communications
– In mobile apps (focus on Android),
– They are borne from mitigations against attacks
“Type” Trust

Type 1 Trust anything (no SSL/TLS)

Type 2 Trust any valid certificate

Type 3 Trust any root-CA in OS “Trust Store”

Type 4 Trust only (pin) the pub key of certificate

Type 5 Trust only (pin) the pub key of cert. signer

Type 6 Pinning and Integrity Verification0xc0de

Type 1: Just HTTP (no S: SSL/TLS)
• No encryption, integrity or authentication in place

• A valid ‘position’ in the network is required
– This depends on the network medium (see next slide)

• First; terminology for topologies

’Gateway’ Position

‘Sibling’ Position

Type 1 Defeat: Traffic Capture
• To view the unencrypted traffic attackers need only to receive the packets

Medium Visibility from Sibling
Position

Visibility from Gateway
Position

Ethernet, Hub Yes Yes
Ethernet, Switch Yes, with ARP-poisoning

attack
Yes

Wi-fi Yes Yes, with Wi-fi Pineapple
Wi-fi +WEP Yes Yes, with Pineapple

Wi-fi +WPA2 PSK Yes, with PSK known and
captured WPA2 negotiation

(e.g. de-auth attacks)

Yes, with Pineapple and
PSK known

Wi-fi +WPA2 PSK Enterprise No Yes, with Pineapple and
PSK known

Discussion: Difficulty of Achieving
Positions

Difficulty in-field … at-home
‘Sibling’
Position

Trivial (Ethernet, WEP)
to
Moderate (WPA2 PSK)

Trivial

’Gateway’
Position

Easy (Wi-fi)
to
Unfeasible (WPA2 PSK
Enterprise)

Trivial

Type 1 Examples in Automotive Apps
• For all the applications surveyed, none. Which is good
• Minor exceptions: included some libraries pulled-in transitively by automotive

apps
– Remember to audit and/or test the behavior of your 3rd party components

Discussion: Encryption without Authentication?
• It is possible to setup encrypted connections with a very-large pre-shared secret.

– Not really feasible to deploy these systems at scale
• It is technically possible to setup negotiated encrypted channels at scale without

authentication. c.f. TCPInc
– These systems must negotiate their encryption keys during setup of the channel
– Anyone eavesdropping on the channel setup (see Type 1 defeats) can discover the

encryption keys
• Enter public-key crypto…

– Dual-purpose the private keys used for identity also for setting up channel encryption
immune to eavesdropping

• Reminder public key crypto can: enable a proof that a party has the private part of
any public key

Type 2: Trust ‘any’ Endpoint With Certificate

• Verify, in client HTTPS code, that the server has a
valid certificate, any certificate

– Validity here means signed by anything; including self-
signed

– Self-signed: signing the public key of the certificate with
the private key of the same certificate

Certificate Name

Public Key

Signature

Discussion: What are Certificates?
• Colloquially, for this presentation: the public keys and a signature of it against

another certificate
– In a chain

https://commons.wikimedia.org/wiki/File:Chain_of_trust.svg

Type 2 Defeat: Burp et. al.

• Proxy the HTTPS traffic; supply your own certificate to the clients
• Requires a ’gateway’ position on the network (see Type 1)

– Achievable in many in-field situations and also in all at-home situations
• Many tool options: Burp, OWASP ZAP, mitmproxy

Attack Difficulty in-field … at-home
Proxy Https Traffic Moderate Trivial

Type 2 Example in Automotive Apps

▪ One example, non-critical use

▪ We also found many libraries with this pattern – appeared to be unused
at runtime
▪ Reminder: check what your third-party libraries are doing at runtime

client

Discussion: Authentication via Chains of
Trust

https://commons.wikimedia.org/wiki/File:Chain_of_trust.svg

Aside: HSTS
• Protects a website against these sorts of attacks, informing the user that this

website is only to be accessed in HTTPS protocol

• Although certain sites are preloaded, it is possible to mitm the first connection to
the site, and prevent the browser from receiving the HSTS flag

• This may also prevent cookie-downgrading attacks through a similar mechanism

Discussion: Authentication in Mobile OS
and the Trust-Store.• Android devices come preloaded with a list of trusted root Certificate Authorities
that are inherent as trusted anchors. Anything signed by them will not throw
security exceptions when the server is accessed

• iOS similarly comes with a preloaded list of trusted root CAs

Trust
Store

• All chains must end with a valid root
CA certificate found in the Trust
Store

Type 3: Trust the Trust-Store

https://commons.wikimedia.org/wiki/File:Chain_of_trust.svg

Trust
Store

Type 3 Defeat: Add to the Trust-Store
• Custom user certs can be added,
• If root access is granted, can insert certs without user knowledge
• Improperly signed Certificates
• Private key leaks

Attack Difficulty in-field … at-home
Improperly signed Certificates Difficult Difficult

Private key leaks Difficult Difficult

Custom certificate installation Moderate Easy

• The vast majority of apps surveyed relied on the system Trust Store
• Default in Android and iOS; therefore many ways this type gets implemented

– Android trivial example from
developer.android.com/training/articles/security-ssl.html#CommonProblems :

Type 3 Examples in Automotive Apps

URL url = new URL("https://wikipedia.org");
URLConnection urlConnection = url.openConnection();
InputStream in = urlConnection.getInputStream();
copyInputStreamToOutputStream(in, System.out);

URL url = new URL("https://wikipedia.org");
URLConnection urlConnection = url.openConnection();
InputStream in = urlConnection.getInputStream();
copyInputStreamToOutputStream(in, System.out);

Deep-dive: HOWTO Setup mitmproxy for
Android Testing

• Setting up environment
– Longsword.sh Setup Scripts
– Iptables modification

• Starting Proxy
– Installing Certificate
– Connection to Proxy

• Monitoring output

Setting up Environment: Longsword init

•
deps () {

printf "\nDownload the openvpn files to /etc/openvpn and add your secrets\s"
set -x
apt-get install hostapd isc-dhcp-server haveged
systemctl enable hostapd
systemctl enable haveged
systemctl start haveged
mkdir -p /etc/hostapd
rm -f /etc/hostapd/hostapd.conf /etc/dhcp/dhcpd.conf /etc/default/isc-default-server
ln -s "$PWD/hostapd.conf" /etc/hostapd/hostapd.conf
ln -s "$PWD/dhcpd.conf" /etc/dhcp/dhcpd.conf
ln -s "$PWD/isc-dhcp-server" /etc/default/isc-default-server

}

init () {
WLAN="wlan0"
[-n "$1"] && WLAN="$1"

iptables-restore iptables.save
sysctl -w net.ipv4.ip_forward=1 2>&1 >/dev/null

#transparent proxying on $WLAN assuming the clients have custom gateway set, disable ICMP redirects
echo 0 > /proc/sys/net/ipv4/conf/$WLAN/send_redirects

systemctl restart hostapd

ip link set "$WLAN" type wlan
ifconfig "$WLAN" 192.168.25.1 netmask 255.255.255.0
ip link set "$WLAN" up

systemctl restart isc-dhcp-server

}

Setting up Environment: Iptables
• # Generated by iptables-save v1.6.0 on Tue Jul 19 08:35:14 2016

*filter
:INPUT ACCEPT [89463:118052725]
:FORWARD ACCEPT [3547:1414213]
:OUTPUT ACCEPT [50141:6008962]
COMMIT
Completed on Tue Jul 19 08:35:14 2016
Generated by iptables-save v1.6.0 on Tue Jul 19 08:35:14 2016
*nat
:PREROUTING ACCEPT [0:0]
:INPUT ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
:POSTROUTING ACCEPT [0:0]
#Victims
-A PREROUTING -i wlan0 -p tcp -m tcp -s 192.168.25.100 --dport 443 -j REDIRECT --to-ports 8080
-A PREROUTING -i wlan0 -p tcp -m tcp -s 192.168.25.100 --dport 80 -j REDIRECT --to-ports 8080
-A PREROUTING -i wlan0 -p tcp -m tcp -s 192.168.25.51 --dport 443 -j REDIRECT --to-ports 8080
-A PREROUTING -i wlan0 -p tcp -m tcp -s 192.168.25.51 --dport 80 -j REDIRECT --to-ports 8080
#.4
-A PREROUTING -i wlan0 -p tcp -m tcp -s 192.168.25.4 --dport 8080 -j REDIRECT --to-ports 8080
-A PREROUTING -i wlan0 -p tcp -m tcp -s 192.168.25.4 --dport 7758 -j REDIRECT --to-ports 8080
-A PREROUTING -i wlan0 -p tcp -m tcp -s 192.168.25.205 --dport 443 -j REDIRECT --to-ports 8080
-A PREROUTING -i wlan0 -p tcp -m tcp -s 192.168.25.205 --dport 80 -j REDIRECT --to-ports 8080
#The attacker
-A PREROUTING -i wlan0 -p tcp -m tcp -s 192.168.25.5 --dport 443 -j REDIRECT --to-ports 8081
-A PREROUTING -i wlan0 -p tcp -m tcp -s 192.168.25.5 --dport 80 -j REDIRECT --to-ports 8081
-A POSTROUTING ! -o lo -j MASQUERADE
COMMIT
Completed on Tue Jul 19 08:35:14 2016

Starting Mitmproxy
Most common starting arguments: mitmproxy –T –host –anticache

-T – transparent mode: with iptables config
-host : In the current setup of mitmproxy, it is in gateway form
-anticache: this allows a verbose look at server interactions

Other Helpful Commands:
-z : Convince servers to send uncompressed data
-replace PATTERN : Replacing server response that matches regex

Details

javax.net.ssl.SSLHandshakeException: java.security.cert.CertPathValidatorException:
Trust anchor for certification path not found.
… 18 more
Caused by: java.security.cert.CertificateException:
java.security.cert.CertPathValidatorException: Trust anchor for certification path not
found.
... 17 more
Caused by: java.security.cert.CertPathValidatorException: Trust anchor for certification
path not found.
... 22 more

Android Built in Defenses.

Installing the Android Certificate

Sending ssl data to arbitrary web page

Monitoring Output

The key sent through a secure channel can be intercepted

The default Mitigation: Notification

Android will alert the user
When a suspicious trust store
has been added

Recap: how the Trust-Store was
‘bypassed’

A User knowingly
added the
certificate to his
trusted certs

Type 4: Trust the Public-Key of the endpoint.

• Verify server has an expected public key
– variant: verify hash of public key

https://commons.wikimedia.org/wiki/File:Chain_of_trust.svg

AAAAB3NzaC1yc2EAAAADAQABAAABAQDM5H
emQzUMjFF5rywPeWR3PS8ZdZLKZ2TngyPk
Ik04knVEHTYeQlcm9PZZkj5LJOsOcEBJ93
ydiLyhj22bwgdk/DxQ6Qi8h3GmNYYy/c2U
837Yvh4OcqV/SoZrcoCiZKAwfjt/E/RjaE
nlA15TDLMdPm2wnd7Poz8I4WnHlnXRXSFu
2K30rbVbNL3iqEjUUJKmSWSCHcbJ/bKCpV
NBp9dpBk9gvtr8Bo3/3jzS2dwcySQGyYsG
mHJVamXXlMGsU6ycx/NpATmOwyvxkVBjmX
EnoSLDpirjYgPwAlbpOrRu12EzNcvCMUUx
MoRuFjkdST68QH6ENZkyibbTOw0pcwW7

Legend

Type 4 Defeats
• Collision with pub key
• Patch Software
• Disable SSL entirely with JustTrustMe

(github.com/Fuzion24/JustTrustMe)
• Patch certificate checks in Java using FRIDA (demo in

Type 5)
Attack Difficulty in-field … at-home
Public key Collision Infeasible Infeasible

Patch Software Infeasible Moderate.

Disable SSL Infeasible Easy

Type 4 Examples in Automotive Apps
• For all the applications surveyed, none.

– This method is inflexible to changes in the server certificates.

Discussion: More on Pinning
• Type 4 (and Type 5, coming up) are ”Certificate Pinning”

• This is the de-facto design to mitigate nearly all in-field attacks.
– At-home attacks are still possible

• For many more details; consult
owasp.org/index.php/Certificate_and_Public_Key_Pinning

Type 5: Trust the Public-Key of a Signer
of the Endpoint.

▪ Verify signer of the server’s certificate has an
expected public key
▪ variant: verify hash of public key

https://commons.wikimedia.org/wiki/File:Chain_of_trust.svg

AAAAB3NzaC1yc2EAAAADAQABAAABAQDM5H
emQzUMjFF5rywPeWR3PS8ZdZLKZ2TngyPk
Ik04knVEHTYeQlcm9PZZkj5LJOsOcEBJ93
ydiLyhj22bwgdk/DxQ6Qi8h3GmNYYy/c2U
837Yvh4OcqV/SoZrcoCiZKAwfjt/E/RjaE
nlA15TDLMdPm2wnd7Poz8I4WnHlnXRXSFu
2K30rbVbNL3iqEjUUJKmSWSCHcbJ/bKCpV
NBp9dpBk9gvtr8Bo3/3jzS2dwcySQGyYsG
mHJVamXXlMGsU6ycx/NpATmOwyvxkVBjmX
EnoSLDpirjYgPwAlbpOrRu12EzNcvCMUUx
MoRuFjkdST68QH6ENZkyibbTOw0pcwW7

Legend

Type 5 Defeats: Same as Type 4
• All the type 4 defeats apply here too.
• Demo:

• Frida, a javascript hooking engine.
– Installed through simple commands on rooted device

• adb push frida-server /data/local/tmp
• adb shell “chmod 755 /data/local/tmp/frida-server”
• Adb shell “su –c chown root:root /data/local/tmp/frida-server”
• adb shell “/data/local/tmp/frida-server &”

– Connect from host
• frida –U -f <application> --codeshare pcipolloni/universal-android-ssl-
pinning-bypass-with-Frida –no-pause

• Additional api available in documentation page: (www.frida.re/docs/home/)

• Capture data before encrypted

Type 5 Examples in Automotive Apps
• For all the applications surveyed, one.

– But we can’t show code sample from that one (even anonymized ones)

Type 6+: Integrity-Verification of Public Key
Pinning Data• Pin the certificate (or an intermediate certificate) AND verify that the application
performing the check hasn’t been tampered

– Easy: verifying it hasn’t been tampered on-disk (or NAND or whatever)

– Harder: verifying it hasn’t been tampered in-memory

– Hardest: doing either of those in a way that an attacker at-home can’t easily disable

0xc0de

Type 6 Defeats

Bypass certificate pinning AND Difficulty in-
field

… at-home

Bypass simple on-disk IV Infeasible Easy (e.g. repackage APK)
to
Difficult (e.g. patch-out IV, use iOS
jailbreak)

Bypass simple in-memory IV " Difficult (patch-out IV)

Bypass mutually-reinforcing protections
around on-disk/in-memory IV

" “Very” Difficult (reverse-engineer & patch-
out all)

Bypass renewable mutually-… " Infeasible (attacker efforts restarted
repeatedly)

Type 6 Examples in Automotive Apps
• None (yet).

– This is a common design for media players and mobile banking apps, but the automotive
apps haven’t reached this level of sophistication yet.

Review
• Type system progression

– Protections
– Defeats
– Automotive Examples

• Tools
– MitmProxy
– FRIDA

• What Type level is correct?

Thank you!

Visit GENIVI at http://www.genivi.org or http://projects.genivi.org
Contact us: help@genivi.org

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries.
Copyright © GENIVI Alliance 2017.

Appendix 1: Mitmproxy setup
• Detailed documents listed at http://docs.mitmproxy.org/en/latest/install.html

– It might be worth using a specific device for the setup.
• Installation Options

– Binary Download options: releases page
– Package manager options:

• Homebrew on OSX
– brew install mitmproxy

• Pacman on Arch Linux
– sudo pacman –S mitmproxy

– Source:
• Python

– pip3 install mitmproxy

Appendix 1: Mitmproxy Setup Certs
• mitmproxy generates its own certificate into the ~/.mitmproxy/mitmproxy-ca.pem

• If a custom certificate is needed, this can be specified with the –client-certs
option.
– Requirements:

• installation of new root certificates onto android device
• Creation of self signed root CA through openssl

