GENIVI

MiTM’ing Secured
Communications in
Automotive ApPS wontn 10, 2017 |

Subtitle

Ben Gardiner, C

Principal Security Engineer

About Me

» https://www.linkedin.com/in/ben0l0gardiner/

» 4 years experience in software security, 9+
years in embedded software
design/development

GENIVI

About Irdeto

irdeto

Building a Secure Future.™

Irdeto is a pioneer in digital

platform and application security.

~50 years of security expertise.

It's software security technology
and cyber services:

Protect more than 5B devices &
applications.

Protect against cyberattacks for
some of the world’s best known
brands.

cloak ", irdeta

for automotive

Cloakware for Automotive by
Irdeto helps automakers and
tier-one suppliers protect their
brand and save cost in the
battle against cybercriminals by
creating a secure, tamper-proof
environment for vehicle
software.

IR
l"l
GENIVI’

Overview

 Man In The Middle * Tools
— Background Information — Proxy
« SSL * Mitmproxy
« Certificate Pinning * Burp
* Integrity Verification « OWASP ZAP
— Protection Types — Hooking
« 1-6 levels * Frida
— Attacks * JustTrustMe
- Difficulties Examples
— InField « In Field Automotive Apps
— AtHome — Anonymous
« Appendix
— Mitmproxy Setup

GENIVI

What is MiTM?

Man in The Middle attacks (MiTM / MITM)

Intercepting and possibly modifying communications between two parties
— without either party detecting the interception

— assumed to mean bypassing encryption and authentication also -- when encrypted
and/or authenticated communications are involved

Where or not data is modified yields two flavors of the attack:
— Siphon (no data modification)
— Proxy

Applicable to nearly all transport-layer and application-layer protocols in some
form or another. In the following we will be discussing HTTP/HTTPS

l'.l
GENIVI’

Agenda

« Examine the increasing levels of protection in HTTP/HTTPS communications
— In mobile apps (focus on Android),
— They are borne from mitigations against attacks

Type 1 ;]le Trust anything (no SSL/TLS)

Type 2 & [[-<) Trust any valid certificate

Type 3 ’/?’k\\f]’|° Trust any root-CA in OS “Trust Store”
Type 4 ve Trust only (pin) the pub key of certificate

©'e
Type 5 Trust only (pin) the pub key of cert. signer

Type 6 ~;|Q + | Pinning and Integrity Verification

—

GENIVI

Type 1: Just HTTP (no S: SSL/TLS)

* No encryption, integrity or authentication in place

« Avalid ‘position’ in the network is required
— This depends on the network medium (see next slide)

\\\\\\\

 First; terminology for topologies

’Gateway’ Position

‘Sibling’ Position

IR
l"l
GENIVI’

Type 1 Defeat: Traffic Capture

« To view the unencrypted traffic attackers need only to receive the packets

Ethernet, Hub
Ethernet, Switch

Wi-fi

Wi-fi +WEP
Wi-fi +WPA2 PSK

Wi-fi +WPA2 PSK Enterprise

Yes

Yes, with ARP-poisoning
attack
Yes
Yes

Yes, with PSK known and
captured WPA2 negotiation
(e.g. de-auth attacks)

No

Yes
Yes

Yes, with Wi-fi Pineapple
Yes, with Pineapple

Yes, with Pineapple and
PSK known

Yes, with Pineapple and
PSK known

l'.l
GENIVI’

Discussion: Difficulty of Achieving
Positions

‘Sibling’ Trivial (Ethernet, WEP) Trivial
Position to
Moderate (WPA2 PSK)

‘Gateway’ Easy (Wi-fi) Trivial
Position to
Unfeasible (WPA2 PSK

_I_I_]_ . o Enterprise)

GENIVI

Type 1 Examples in Automotive Apps

* For all the applications surveyed, none. Which is good
* Minor exceptions: included some libraries pulled-in transitively by automotive

apps
— Remember to audit and/or test the behavior of your 3@ party components

GENIVI

Discussion: Encryption without Authentication?

It is possible to setup encrypted connections with a very-large pre-shared secret.
— Not really feasible to deploy these systems at scale

It is technically possible to setup negotiated encrypted channels at scale without
authentication. c.f. TCPInc

— These systems must negotiate their encryption keys during setup of the channel

— Anyone eavesdropping on the channel setup (see Type 1 defeats) can discover the
encryption keys

Enter public-key crypto...

— Dual-purpose the private keys used for identity also for setting up channel encryption
immune to eavesdropping

Reminder public key crypto can: enable a proof that a party has the private part of
any public key

l'.l
GENIVI’

Type 2: Trust ‘any’ Endpoint With Certificate

» Verify, in client HTTPS code, that the server has a Io

valid certificate, any certificate

— Validity here means signed by anything; including self-
signed

— Self-signed: signing the public key of the certificate with
the private key of the same certificate

Public Key

C Signature

IR
l"l
GENIVI’

Discussion: What are Certificates?

« Colloquially, for this presentation: the public keys and a signature of it against

another certificate
— In a chain

End-entity Certificate

Owner's name

Owner's public key

Issuer's (CA's)
name

reference

Issuer's signature

A

sign

* Intermediate Certificate
Owner's (CA's) name

https://commons.wikimedia.org/wiki/File:Chain_of trust.svg

Owner's public key

Issuer's (root CA's) reference
name
Issuer's signature
4) Root CA's name
sign

Root CA's public key

: Root CA's signature
self-sign

Root Certificate

GENIVI

Type 2 Defeat: Burp et. al.

« Proxy the HTTPS traffic; supply your own certificate to the clients

« Requires a 'gateway’ position on the network (see Type 1)
— Achievable in many in-field situations and also in all at-home situations

« Many tool options: Burp, OWASP ZAP, mitmproxy

Z]BURP - ! :
A L— Q &y mitmproxy
Proxy Https Traffic Moderate Trivial

GENIVI

Type 2 Example in Automotive Apps

vl, Lco 3
invoke-direct {vl, v4} (31 31 nit> (L com/ R ;)V ; 0x36d7
1nvoke static {vi}, Lj x/net/ssl/HttpsURLConnect1on setDefaultHostnameVY@®tier(Ljavax/net/ssl/HostnameVerifier;)V ; Ox5f11
! ect v1 LJava util/concurrent/TimeUnit;- SECONDS L]GVO ut1l concurrent /TimeUnit;

const/4 v@, Ox1
return v@

GENIVI

Discussion: Authentication via Chains of
Trust

End-entity Certificate
Owner's name

? Owner's public key

] Issuer's (CA's) reference

name

Issuer's signature + Intermediate Certificate
| |

Owner's (CA's) name

client

sign

_Owner's public key

Issuer's (root CA's) reference

name
Issuer's signature

?{?@]@&? . { sign Root CA's name

Root CA's public key

; Root CA's signature
self-sign

Root Certificate

https://commons.wikimedia.org/wiki/File:Chain_of _trust.svg

GENIVI

Aside: HSTS

Protects a website against these sorts of attacks, informing the user that this
website is only to be accessed in HTTPS protocol

Although certain sites are preloaded, it is possible to mitm the first connection to
the site, and prevent the browser from receiving the HSTS flag

This may also prevent cookie-downgrading attacks through a similar mechanism

GENIVI

Discussion: Authentication in Mobile OS

gnrc!rmd (!gwces come prsf gede with a list of trusted root Certificate Authorities
that are inherent as trusted anchors. Anything signed by them will not throw
security exceptions when the server is accessed

* i0OS similarly comes with a preloaded list of trusted root CAs

GENIVI

Type 3: Trust the Trust-Store

* All chains must end with a valid root
CA certificate found in the Trust
Store

o

End-entity Certificate

Owner's name

Owner's public key

Issuer's (CA's) reference
name
Issuer's signature Intermediate Certificate
Owner's (CA's) name
sign =
Z Owner's public key
Issuer's (root CA's) reference
name
Issuer's signature

* . Root CA's name -
sign ?
?

Root CA's public key‘

self-sign Root CA's signature

Root Certificate

https://commons.wikimedia.org/wiki/File:Chain_of _trust.svg

GENIVI

Type 3 Defeat: Add to the Trust-Store

Custom user certs can be added,

If root access is granted, can insert certs without user knowledge
Improperly signed Certificates

Private key leaks

Improperly signed Certificates Difficult Difficult
Private key leaks Difficult Difficult
Custom certificate installation =~ Moderate Easy

GENIVI

Type 3 Examples in Automotive Apps

 The vast majorlty of apps surveyed relied on the system Trust Store

1>

nva
W0404d1c]> ethod.Lnet ndroid/android/c/h.Lnet

RM mouse:canvas-y movem

invoke-virtual {v5}, Ljava/net/URL.JIICIIESICR(OLjava/net/URLConnection; ; Oxellf
move-result-object
v@, Ljava/net/HttpURLConnection;
invoke-virtual {v4, v@}, Lnet/droid/remcandroid/c/h.a(Ljava/net/ HttpURLConnectlon,)V ; 0xe619
invoke-virtual {v@}, Ljava/net/HttpURLConnection.getResponseCode()I ; @xedda
ge-result vl
o &6 v2, Ox12d
if-oy 2. 0x00404d4e

0x404d3e ;[gf]
const/16 v2, @x12e
if-eq vl, v2, 0x00404d4e

0x404d4e ;[gd]
if-nez v6, 0x00404d54

0x404d46 ;[gh]
const/16 v2, Ox12f
if-ne vl, v2, 0x00404d52

URL url new URL("https://wikipedia.org"
URLConnection urlConnection url.openConnection
InputStream in urlConnection.getInputStream
copyInputStreamToOutputStream(in, System.out

GENIVI

Deep-dive: HOWTO Setup mitmproxy for
Android Testing

@ mitmproxy

« Setting up environment

— Longsword.sh Setup Scripts
— Iptables modification

« Starting Proxy

— Installing Certificate

— Connection to Proxy

» Monitoring output

IR
l'.l
GENIVI

Setting up Environment: Longsword init

deps

Q)

{

printf "\nDownload the openvpn files to /etc/openvpn and add your secrets\s"
-X

apt-get install hostapd isc-dhcp-server haveged

systemctl enable hostapd

systemctl enable haveged

systemctl start haveged

set

mkdir

-p /etc/hostapd

rm -f /etc/hostapd/hostapd.conf /etc/dhcp/dhcpd.conf /etc/default/isc-default-server
1n -s "$PWD/hostapd.conf" /etc/hostapd/hostapd.conf
1n -s "$PWD/dhcpd.conf" /etc/dhcp/dhcpd.conf
) 1n -s "$PWD/isc-dhcp-server" /etc/default/isc-default-server
init () {
WLAN="wlano@"

[-n "$1"] && WLAN="$1"

iptables-restore iptables.save
sysctl -w net.ipv4.ip_forward=1 2>&1 >/dev/null

#transparent proxying on $WLAN assuming the clients have custom gateway set, disable
echo @ > /proc/sys/net/ipv4/conf/$WLAN/send_redirects

systemctl restart hostapd

ip link set "$WLAN" type wlan
ifconfig "$WLAN" 192.168.25.1 netmask 255.255.255.0
ip link set "$WLAN" up

systemctl restart isc-dhcp-server

ICMP redirects

GENIVI

Setting up Environment: Iptables

Generated by iptables-save v1.6.0 on Tue Jul 19 ©8:35:14 2016

*filter

:INPUT ACCEPT [89463:118052725]
:FORWARD ACCEPT [3547:1414213]
:OUTPUT ACCEPT [50141:6008962]

COMMIT

Completed on Tue Jul 19 ©8:35:14 2016
Generated by iptables-save v1.6.0 on Tue Jul 19 ©8:35:14 2016

*nat

:PREROUTING ACCEPT [0:0]

:INPUT ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]

:POSTROUTING ACCEPT [0:0]

#Victims

-A PREROUTING -1 wlan® -p tcp -m tcp -s 192.168.25.100 --dport 443 -] REDIRECT --to-ports 8080
-A PREROUTING -i wlan® -p tcp -m tcp -s 192.168.25.100 --dport 80 -j REDIRECT --to-ports 8080
-A PREROUTING -i wlan® -p tcp -m tcp -s 192.168.25.51 --dport 443 -j REDIRECT --to-ports 8080
-A PREROUTING -i wlan® -p tcp -m tcp -s 192.168.25.51 --dport 80 -j REDIRECT --to-ports 8080
#.4

-A PREROUTING -i wlan® -p tcp -m tcp -s 192.168.25.4 --dport 8080 -j REDIRECT --to-ports 8080
-A PREROUTING -i wlan® -p tcp -m tcp -s 192.168.25.4 --dport 7758 -j REDIRECT --to-ports 8080
-A PREROUTING -i wlan® -p tcp -m tcp -s 192.168.25.205 --dport 443 -j REDIRECT --to-ports 8080
- -i wlan® -p tcn -m tcp -5 192.168.25.205 --dnort 80 -7 RFDTRFCT --to-ports ROK]0
#The attacker

-A PREROUTING -i wlan® -p tcp -m tcp -s 192.168.25.5 --dport 443 -j REDIRECT --to-ports 8081
-A PREROUTING -i wlan® -p tcp -m tcp -s 192.168.25.5 --dport 80 -j REDIRECT --to-ports 8081

-A POSTROUTING ! -o lo -j MASQUERADE

"COMMIT

Completed on Tue Jul 19 ©8:35:14 2016

GENIVI

Starting Mitmproxy
Most common starting arguments: mitmproxy -T -host -anticache
-T — transparent mode: with iptables config
-host : In the current setup of mitmproxy, it is in gateway form
-anticache: this allows a verbose look at server interactions

Other Helpful Commands:

-z . Convince servers to send uncompressed data
-replace PATTERN : Replacing server response that matches regex

GENIVI

Details

2017-09-28 10:53:21 GET http://www.cnn.com/ ‘
« 200 OK text/html 29k 460ms
Request Response Detail |
Server Connection: ‘
Address 151.101.21.67:80
Resolved Address 151.101.21.67:80 ‘
Client Connection:
Address 192.168.25.205:38079 ‘

Timing:
Client conn. established 2017-09-28 10:53:20.410
First request byte 2017-09-28 10:53:21.426
Request complete 2017-09-28 10:53:21.464
Server conn. initiated 2017-09-28 10:53:21.837
Server conn. TCP handshake 2017-09-28 10:53:21.849
First response byte 2017-09-28 10:53:21.863
Response complete 2017-09-28 10:53:21.886
[3/152] [anticache:showhost] ?:help g:back [*:8080]

Warn: 192.168.25.205:42834: Error in HTTP connection: TcpDisconnect('[Errno 32] Broken pipe',)

GENIVI

m 3:46

0’))

£ google.ca C @ .
javax.net.ssl.SSLHandshakeException: java.security.cert.CertPathValidatorException:
Trust anchor for certification path not found.), The site's security certificate is
18 more not trusted!
o You attempted to reach www.google.ca, but
Caused by java.secu rlty.Cert.Cel’tlfl cate Exceptlon: the server presented a certificate issued by
java.security.cert.CertPathValidatorException: Trust anchor for certification path not an entity that is not trusted by your
computer's operating system. This may
found. mean that the server has generated its own
1 7 more security credentials, which Chrome cannot
rely on for identity information, or an attacker
Caused by: java.security.cert.CertPathValidatorException: Trust anchor for certification may be trying to intercept your

communications.

path not found. You should not proceed, especially if you

... 22 more hgve never seen this warning before for this
site.

Proceed anyway | | Back to safety.

»Help me understand

GENIVI

Installing the Android Certificate

mitm.it (& @ H

Click to install the

mitmproxy certificate:
p

Apple

Windows

am
l'l

Android

!

=N

Certificate name:

Credential use:

VPN and apps

The package contains:
one CA certificate

Cancel

= 12:43 [|

A

You need to set a lock screen PIN
or password before you can use
credential storage.

Cancel

AL W = 12:44
mitm.it (¢; @

mitmproxy certificate:
’

Apple

Windows

a
l'l

Android

ManinTheMidle is installed.

Other

oS OO =

GENIVI

Sending ssl data to arbitrary web page

-———— . —————— i ——— - ————— = ————— - ——— " ————— —— v ——— = —

fab.setOnClickListener((view) - {
new RequestTask().execute("https://golang.org",<DVKey: GETPWNED"
Snackbar.make(view, "Unlock Request Sent", Snackbar.LENGTH LONG)
.setAction("Action”, null).show();

});

AL DM = @ 12:24 AL DM <=/ Hd12:26

DamnVulnerableAutomotiveApp DamnVulnerableAutomotiveApp

Unlock

Unlock

Unlock Request Sent

GENIVI

Monitoring Output

The key sent through a secure channel can be intercepted

2017-09-28 11:08:19 POST https://golang.org/
« 200 OK text/html 7k 340ms

Request Response Detail
User-Agent: Dalvik/1.6.0 (Linux; U; Android 4.4.2; Nexus 5 Build/KOT49H)
Host: golang.org
Connection: Keep-Alive
Accept-Encoding: gzip
Content-Type: application/x-www-form-urlencoded
Content-Length: 15
URIEnz-cdzd farm [m:Auto]

DVKey: GETPWNED:

GENIVI

The default Mitigation: Notification

[« Saving screenshot...

8 . 53 THU, SEPTEMBER 21

Network may be monitored
By an unknown third party

Android will alert the use
When a suspicious trust
has been added

System update available
Touch to download.

A Network monitoring

USB debugging connected

Touch to disable USB debugging.

A third party is capable of
monitoring your network activity,
including emails, apps, and secure
websites.

A trusted credential installed on
your device is making this
possible.

Check trusted credentials

GENIVI

Recap: how the Trust-Store was

‘bypassed’

A User knowingly
added the
certificate to his
trusted certs

End-entity Certificate

Owner's name

Owner's public key

Issue
name

Issuer

'S signature

r's (CA's) reference

; Intermediate Certificate

Owner's (CA's) name

é sign

Owner's public key

Issuer's (root CA's)
name

Issuer's signature

self-sign

User trusted

vy

Or
in? Trust
Store

reierence

é sign

Root CA's name l
Root CA's public key ‘

in?

Root CA's signature ‘

Root Certificate

IR
l"l
GENIVI’

Type 4: Trust the Public-Key of the endpoint.

» Verify server has an expected public key
— variant: verify hash of public key

AAAAB3NzaClyc2EAAAADAQABAAABAQDMSH
emQzUMJjFF5rywPeWR3PS8ZdZLKZ2TngyPk
Ike4knVEHTYeQlcm9PZZkj5LIOsOCEBI93
ydilyhj22bwgdk/DxQ6Qi8h3GmNYYy/c2U
837Yvh40cqV/SoZrcoCiZKAwfjt/E/RjaE
n1A15TDLMdPm2wnd7Poz8I4WnH1NXRXSFu
2K30rbVbNL31igEjUUIKmSWSCHcb3/bKCpV
NBp9dpBk9ogvtr8Bo3/3jzS2dwcySQGyYsG
mHIVamXX1MGsU6ycx/NpATmOwyvxkVBjmX
EnoSLDpirjYgPwAlbpOrRul2EzNcvCMUUX
MoRUF jkdST68QHEENZKy ibbTOWOpCWW7

End-entity Certificate

Owner's name

Owner's public key

Issuer's (CA's)
name

Issuer's signature

opftieonal

' Owner's (CA's) name
290 Owner's public key

reference

Intermediate Certificate

Issuer's (root CA's)
name

Issuer's signature

* : Root CA's name
sign

reference

self-sign

Root CA's public key ‘

Root CA's signature ‘

Root Certificate

o

Trust
Store

in?

https://commons.wikimedia.org/wiki/File:Chain_of _trust.svg

GENIVI

Type 4 Defeats

 Collision with pub key
« Patch Software

« Disable SSL entirely with JustTrustMe
(github.com/Fuzion24/JustTrustMe)

 Patch certificate checks in Java using FRIDA (demo in

Type 5)
Public key Collision Infeasible Infeasible
Patch Software Infeasible Moderate.
Disable SSL Infeasible Easy

i,
l'.l
GENIVI

Type 4 Examples in Automotive Apps

« For all the applications surveyed, none.

— This method is inflexible to changes in the server certificates.

IR
l'.l
GENIVI’

Discussion: More on Pinning
Type 4 (and Type 5, coming up) are "Certificate Pinning”

This is the de-facto design to mitigate nearly all in-field attacks.
— At-home attacks are still possible

For many more details; consult
owasp.org/index.php/Certificate and Public Key Pinning

GENIVI

Type 5: Trust the Public-Key of a Signer
of the Endpoint.

= Verify signer of the server’s certificate has an
expected public key

= variant: verify hash of public key

o

End-entity Certificate

Owner's name
Owner's public key

| | Issuer's (CA's) reference

lrust
Intermediate Certificate

Issuer's signature

AAAAB3NzaClyc2EAAAADAQABAAABAQDMSH
emQzUMJjFF5rywPeWR3PS82dZLKZ2TngyPk
Ik@4knVEHTYeQlcm9PZZkj5LI0sOCEBI93
ydiLyhj22bwgdk/DxQ6Qi8h3GmNYYy/c2U
837Yvh40cqV/SoZrcoCiZKAwfjt/E/RjaE
n1A15TDLMdPm2wnd7Poz8I4WnH1nXRXSFu
2K30rbVbNL3iqEjUUIKmSWSCHcbI /bKCpV
NBp9dpBk9ogvtr8Bo3/3jzS2dwcySQGyYsG
mHJIVamXX1MGsU6ycx/NpATmOwyvxkVBjmX
EnoSLDpirjYgPwAlbpOrRul2EzNcvCMUUX
MORUFjkdST68QHE6ENZKyibbTOWOpCcWW7

Owner's (CA's) name

= Owner's public key Sﬁ@[ﬁ@

Issuer's (root CA's) reference
name

Issuer's signature

* . Root CA's name o
sign 02)
Root CA's public key ‘ [I [ﬁ]
a

Root CA's signature ‘

self-sign

Root Certificate

opftieonal

https://commons.wikimedia.org/wiki/File:Chain_of _trust.svg

GENIVI

Type 5 Defeats: Same as Type 4

« All the type 4 defeats apply here too.
 Demo:

» Frida, a javascript hooking engine.
— Installed through simple commands on rooted device
 adb push frida-server /data/local/tmp
« adb shell “chmod 755 /data/local/tmp/frida-server”
« Adb shell “su -c chown root:root /data/local/tmp/frida-server”
« adb shell “/data/local/tmp/frida-server &”
— Connect from host

« frida -U -f <application> --codeshare pcipolloni/universal-android-ssl-
pinning-bypass-with-Frida -no-pause

 Additional api available in documentation page: (www.frida.re/docs/home/)
« Capture data before encrypted

GENIVI

Type 5 Examples in Automotive Apps

» For all the applications surveyed, one.
— But we can’t show code sample from that one (even anonymized ones)

v8, Lira/abnache/httn/imol/client/Basic -

v4, Lorg/apache/http/conn/scheme/Scheme: ; IS .. .~ ; , Lorg
-string v5, @x13!

invoke-static {}, Lor

const-string v5, @x135584

V6, Lorg'gmche http/conn/ssl/SSLSocketFactory; mo sult-object v6
, v8, LV ;->keyStore Ljava/security/KeyStore; W, v8, Lco/infi

i rect {v6, }, Lorg/apache/http/conn/ssl/SSLSocketFactory.<init>(Ljava/security/KeyStore;)V ; @x33d7 invoke-direct {v4, v5
iget ¥4, v8, Lv7. L . _ ->htinsReusiel invoke-virtual {v3, v
invoke-direct {v4, v5, v6, Mg}, Lorg/apache/http/g®h cheme/Scheme.<init>(Lja"glang/String;Lorg/apache/http/conn/scheme/SocketFactory;I)V ; @x33d4 goto @x00093616
invoke-virtual {v3, v4}, Lorg/apache/http/conn/schege/SchemeRegistry.register(efg/apache/http/conn/scheme/Scheme;)Lorg/apache/http/conn/scheme/Scheme; ; @x33d6

GENIVI

Type 6+: Integrity-Verification of Public Key

. Er! Q\Q(I;entgcape?otr%n intermediate certificate) AND verify that the application
performing the check hasn’t been tampered

— Easy: verifying it hasn’t been tampered on-disk (or NAND or whatever)
— Harder: verifying it hasn’t been tampered in-memory

— Hardest: doing either of those in a way that an attacker at-home can’t easily disable

o

GENIVI

Type 6 Defeats

Bypass simple on-disk IV

Bypass simple in-memory [V

Bypass mutually-reinforcing protections
around on-disk/in-memory IV

Bypass renewable mutually-...

Infeasible

Easy (e.g. repackage APK)

to

Difficult (e.g. patch-out IV, use iOS
jailbreak)

Difficult (patch-out V)

“Very” Difficult (reverse-engineer & patch-
out all)

Infeasible (attacker efforts restarted
repeatedly)

GENIVI

Type 6 Examples in Automotive Apps

* None (yet).

— This is a common design for media players and mobile banking apps, but the automotive
apps haven’t reached this level of sophistication yet.

l'.l
GENIVI

Review

* Type system progression
— Protections
— Defeats
— Automotive Examples

* Tools
— MitmProxy
— FRIDA

« What Type level is correct?

l'.l
GENIVI’

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries.
Copyright © GENIVI Alliance 2017.

Appendix 1: Mitmproxy setup

» Detailed documents listed at http://docs.mitmproxy.org/en/latest/install.nhtml
— It might be worth using a specific device for the setup.

* [Installation Options
— Binary Download options: releases page

— Package manager options:

* Homebrew on OSX
— brew install mitmproxy

« Pacman on Arch Linux
— sudo pacman -S mitmproxy
— Source:

* Python
— pip3 install mitmproxy

liil
GENIVI

Appendix 1: Mitmproxy Setup Certs

« mitmproxy generates its own certificate into the ~/.mitmproxy/mitmproxy-ca.pem

 If a custom certificate is needed, this can be specified with the —client-certs
option.
— Requirements:
« installation of new root certificates onto android device
 Creation of self signed root CA through openssl

GENIVI

