CES - EV POWER OPTIMIZATION

Guidelines/Attributes to increase travel range for fixed battery

Hyundai Mobis Chandra Sekhar Chitikela and Pradeep Kumar K (chandrashekhar chitikela@gmobis.com, pradeepkumur.k@gmobis.com) January 2023

S.S.S.C

COVESA Wiki Link for EV Power Optimization Project: https://wiki.covesa.global/display/WIK4/EV+Optimi zation+-+Increase+Travel+Range+for+Fixed+Battery

AGENDA/OBJECTIVE

 \checkmark

 \checkmark

Why?

- Need to understand the importance of Power optimization during critical SOC stage
- Backup the travel range effecting parameters data on cloud

Goal - To minimize/avoid last mile anxiety

Support OEMs to analyze and derive power efficient algorithms

Goal – Better battery management by run time optimization

Where?

• Seek Collaboration from the industry players

PARAMETERS EFFECTING TRAVEL RANGE

PRACTICAL/SIMULATION RESULTS

IVI USE CASES : POC RESULT - DISPLAY(8" TFT) POWER OPTIMIZATION

DISPLAY MODULE

Observation: At high display brightness, if optimization is applied to minimize brightness, then maximum power savings achieved

IVI USE CASES : POC RESULT-SOUND LEVEL POWER OPTIMIZATION

	Sound						
Description/Objective	Sound System optimization for Energy Conservation.						
Pre-condition	ACC	OFF		IGN ON	Start		
	Sleep	ACC ON (Timeout)	ACC ON		Stationary	Moving	ISG
	х	х	0	O/X	0	0	х
Optimization Rules Optimization	 Premium Sound option will be made unavailable. Position will be fixed to the last set setting/optimum values. Sound Tuning will be made to the optimum value. Subsystem volume will be fixed to last set values/optimum values. Noise Cancelation will be switched off. 						
Sequence Diagram	GUI Application Middleware Driver						
User Impact	Sound Qualit	y of Output	sound might	t be affecte	ed.		
Special Conditions	Option will be saving.	e given to dr	iver to choo	se whethe	r they want these ha	rsh methods for	battery
POC Results	10-30 %						

	Initial Volume (%)	Einitial (Wh)	E _{final} (Wh)	E _{saving} (%)
	70	22.252	15.33	31.107
	60	17.885	15.33	14.286
	50	15.553	15.33	1.433
Γ	40	15.406	15.33	0.493
	34 32 30 28 26 24 22 20 10 10 10 10 10 10 10 10 10 10 10 10 10	50 Initial Volume	 = (%)	7

Observation: At high volume, if optimization is applied to minimize volume, then maximum power savings achieved

SIMULATION RESULTS OF OPTIMIZATION POLICIES

Vehicle Model Considered	Kia EV 6			
Maximum Range	310 Miles/498 Km			
Battery Size/Capacity	77.4 Kwh			
Energy Consumed (Wh/mi)	288 Wh/mi			
Optimization policy	No Optimization			
	Level/Partial Optimization			
	 Level 1 Optimization (at 25% SOC): 			
	- 10% Power Savings in Powertrain System			
	Level 2 Optimization (at 20% SOC):			
	- 10% Power Savings in Powertrain System,			
	- 30% Power Savings in HVAC System,			
Optimization policy	- 50% Power Savings in Lighting System,			
	 Level 3 Optimization (at 10% SOC): 			
	- 10% Power Savings in Powertrain System,			
	- 30% Power Savings in HVAC System,			
	- 50% Power Savings in Lighting System,			
	- ~36% Power Savings in IVI System (as per IVI POC result)			
SOC savings	3%			
Power Savings	1.46 Kwh			
Extended Range	18.68 km			
	Full Optimization (at 100 % SOC to 0%)			
	- 10% Power Savings in Powertrain System,			
Optimization policy	- 30% Power Savings in HVAC System,			
	- 50% Power Savings in Lighting System,			
	- ~36% Power Savings in IVI System (as per IVI POC result)			
SOC savings	13.54%			
Power Savings	6.52 kWh			
Extended Range	76.78 Kms			

Accelerating the future of connected vehicle

OPTIMIZATION POLICIES VS POWER SAVINGS

Vehicle Model Considered	Kia EV 6
Maximum Range	310 Miles/~500 Km
Battery Size/Capacity	77.4 Kwh
Energy Consumed (Wh/mi)	288 Wh/mi
Optimization policy	Level 1/Level 10

EV POWER OPTIMIZATION IN VSS

Integration of EV Power optimization signals in VSS

VSS IN BRIEF - HTTPS://WIKI.COVESA.GLOBAL/DISPLAY/WIK4/VSS+-+VEHICLE+SIGNAL+SPECIFICATION

What is VSS

Vehicle Signal Specification

- Domain taxonomy/Catalogue for vehicle signals.

2

Domain Taxonomy

schema, etc.

further usage.

3 Tools and Serialization

Tools work on the specifcation to

for further usage. This could be

ison, franca or even a graphol

interface to the developer for

generate the serialization as basis

The tools create the serialization as

The Rule Set defines how to syntactically describe the Data Definition.

The Rule Set is the ground for human and machine

understanding.

The data definition describes the domain as a simple graph. As a goal, it maps features and behaviors of the domain onto a tree structure with child-parent relationship.

It's the released content of the domain taxonomy.

Data Definition

Rule Set

- Parent node Vehicle model
- Branches Vehicle main sub systems
- Modules Subsystem components
- Signals In the form of sensor, Actuators and meta data(new)

Vehicle.Cabin.Door.Row1.Left.IsLocked Vehicle.Cabin.Door.Row1.Left.Window.Position

Vehicle.Cabin.Door.Row2.Left.IsLocked Vehicle.Cabin.Door.Row2.Left.Window.Position

Data Definition

- Define data model of each module in terms of signals
- Categorize the signal based input and out forms
- Identify data types for each signal
- Define the acceptable range of signals

Tools to Develop & Serialize

- Define interfaces for each signal
- Implement and push to(using GitHub) local branch for review(by VSS team during weekly meet)
- Make pull request to integrate with main branch code

VSS THROUGH PLAYGROUND - HTTPS://DIGITALAUTO.NETLIFY.APP/MODEL

Accelerating the future of connected vehicle

20 October 2022

COVESA Wiki Link: https://wiki.covesa.global/display/WIK4/EV+Optimization+increase+Travel+Range+for+Fixed+Battery

chandrasekhar.chitikela@gmobis.com pradeepkumar.k@gmobis.com