"EV-Power Optimization" (lead MOBIS) spin-off of "EV-Charging group" (lead FORD)

Goal:

Abstraction of an app for last mile extension based on VSS

EV Power Optimization: Initiator MOBIS Extend VSS for power management

Choice 1: (read-only or actuator set-value)

Add data points for current data value

e.g. "display brightness level", later powertrain, HVAC

1a) go for data type "sensor" [r] advantage power derating is done via actuator settings

1b) go for data type "actuator" [rw] advantage Power might be used also as a set value for power derating-SW below VSS VSS derating set-value can only be a recommendation to the low level SW below api (lowest brigdness is not "0")

Choice 2: Where allocate to new data?

2a) new power data under each branch

2b) new power branch

condensed view

- 2c) Add meta data "power" to existing component
 - → as a dynamic meta data [r]
 - → as read-only "power" or "current"

Advantage: no extension of VSS tree Disadvantage: no set value possible

some values might not map to individual VSS-data points

~100 components/vehicle -> additional points tbc

EV Power Optimization: Initiator MOBIS Split reading sensors value and the set-value

Set-value (actuator) – recommendation to component, only:

- RB recommendation Degradation system state = mode for each main branch (powertrain, body, Cabin, ADAS, Chassis ...) [1...10] with [power system state "1": lowest power possible, ..., "10" max consumption allowed]
- Or Power level-value for each domain (= main branch) [0...100%] with [0% lowest power possible, ..., 100% max power consumption]

Each component can overrule this power mode recommendation according local needs (legal, safety,...)

For later (if abstractable from different vehicle architectures)

- Dyn. Power [W] (Read for each component RB-preferred)
- Dyn. Current [A] \leftarrow s. like CAAM
- s. also vHAL (e.g. µP power)

