4
’’’’’’’

VSS <> SPREAD

Facts

Start of Operations: 01.11.2019 Harald Kriger
Form. CEO of BMW Group,

Telekom & Lufthansa

Headquarters: Berlin

Dr. Till Reuter
Former CEO of KUKA Group,

IndUStrY' Verwaltungsprasident Muller
Automotive | Machinery | Aerospace & Defence Sebastian Borek
Philipp Noll Robert Gébel Founder & CEO of Founders
Co-Founder / Managing Director Co-Founder / Managing Director Foundaton (Berte|smann)

Charles Songhurst
Former Strategy Director
Bill Gates at Microsoft

Joachim Schreiner
@ m @ Exec. VP Sales & Country Leader
Salesforce Germany & Austria
Mercedes-Benz
Markus Ehrle

Senior VP Enterprise Sales

Powered by Presion Salesforce Deutschland

—
Miele HAZEM AG) rRHEINMETALL COFICAB Za Fraunhofer

Process proposal

Conceptual area

Vehicle ‘
Today --> signal
Specification ‘

Proposal --> .
18

Generalize the current data
modeling approach to make it
re usable (1a) w!len needed (1b)

v
Generic YAML-based

tree modeling approach
(one hierarchy)

Rule-set for a
new tree model

Tree data modeling

| All VSS
> VSS-tools ' spec as
‘ schema
Extend the tools to:
(2a) publish a tree model with RDF and SKOS standards
(2b) allow the arbitrary coqstructlon of custom schemas
oo
£ _
Tree-to-standards "
mechanism Custom dataschema | """~~~
construction mechanism
<
selected concepts

selected concepts

from tree(s) from ontologies

Tools

—

Application area

‘ Custom mechanism to
‘ ignore the over head

Publish the COVESA tree(s)
n with standards and
future-proof namespac: m m—
> Covesa core
Use the tree to automatically = > Domain ontology e—
Domaintree WS- feed one hierarchy of "’ ontology
using standards '’ a domain ontology

RDF and SKOS

Ontology modeling

Domain interoperability

COVESA project proposal: Evolving
VSS into a domain agnostic
information model

;ﬂﬁ,Bjorkengren Ford Motor Company

MQng 2023 Porto, Portugal

“COVESA

. Accelerating the future of connected vehicles

) SPREAD

Our Product

. | &/ﬁ PRODUCTION ol

SPREAD Studio is a low code platform | it
with specialized widgets to create - — _ _ o

web-based applications within hours 1

- _' ; — — sPREAD STUDIo
Subgraphs serve Use Case specific
needs and increase application
o= performance (e.g. Electric-to-

Software-to-Function)

SPREAD's Engineering Intelligence <= Engineering :
Network manages interdependencies ‘ ‘ i : Intelligence . ;|-
of mechatronic systems. - '

=~ - Generic mapper link data to SPREAD’s

o open and standardized product

information model
8

DATABASES

Connect source systems via RestAP|,
authenticated GraphQL AP|, Kafka — —
stream and more

- SYSTEMS

Supergraph based on GraphQL

APP
‘ -_— - PRODUCTION e

type Query {
SRR . I me: User
APP - APP

«,“6'
|
—

e N | a0
y ' 3D Ko ' l_fur:ti; Q_uerT_me_(r;ue:t)_(! e o
BT N’ T P s 8 S P) I return request.auth.user |
1’ |
o A 0 | function User_name(user) { |
return user.getName() I
2D % Capability I } o
————————— = Client
A .
= Engineerin D)
N 1) g S
Table - : |nte|||gence : Analysis
' Network
< 8 -2
L : "
Exports Q _ Q. API Calls
. O 2
: In GraphQL, a client specifies the structure of the data it needs by defining a query,
S which can include multiple fields and nested objects. The server then responds with the
& exact data requested by the client, in the same shape as the query.

SYSTEMS

VSS <> SPREAD

;:_mz:

g

| ,, _..~ ! Ll | |
o f ,#—r__:__ m, m~F=*-r

“REEEd

_.:
ST

o o ||
T . e || |
v il
[.;:.: . / 1 \
AL i |
i f
__
—_ \ .v_
1 |
|
\
| M w J_*
I m 1) % — T _ i
I —_ __ | r;: : .:____T
AM - “:

;::.:7:_:

~..~““__ (AT

o i
|
ol
| |

—. i |
‘...‘ -.-,— —.,

_-m

. Lt
O o
Lt .

1°t of AUGUST 2023

GraphQL Schema as contract

GraphQL Schema as contract

As contract...

A description of an electrical component and
it's metadata

IMPLEMENTS

GenericEntity
Common fields of any entity

FIELDS

id: ID!
ID of the entity given by the interface type

nameEn: String

The name of the component in the given
language @todo: filter instead of several
fields.

nameDe: String

The name of the component in the given
language @todo: filter instead of several
fields.

objectld: String
ID for a specific version of a component.
Changes, when related data changes

variants: [ComponentVariant]
Connected variants of the specific
component

referenceld: ID
A referenceld how the component is
identified in a harness.

releasedIn: Release
The release that the instance belongs to

version: String
Version of the component

partNumber: String
The part number of the component

type: ComponentType
The type of the component

id ID!
nameEn String
nameDe String
objectld String
variants [ComponentVariant]
referenceld ID
releasedIn Release
version String
partNumber String
type ComponentType

GraphQL Schema as contract

As contract...

A description of an electrical component and
it's metadata

IMPLEMENTS

GenericEntity
Common fields of any entity

FIELDS

id: ID!
ID of the entity given by the interface type

nameEn: String

The name of the component in the given
language @todo: filter instead of several
fields.

nameDe: String

The name of the component in the given
language @todo: filter instead of several
fields.

objectld: String
ID for a specific version of a component.
Changes, when related data changes

variants: [ComponentVariant]
Connected variants of the specific
component

referenceld: ID
A referenceld how the component is
identified in a harness.

releasedIn: Release
The release that the instance belongs to

version: String
Version of the component

partNumber: String
The part number of the component

type: ComponentType
The type of the component

LogicalConnection

LogicalConnection:startComponent
LegicalComection:endCompanent

id D!
signalName String
startComponent Component!
endComponent Component!

physicalConnection PhysicalConnection |

release Release! |

PhysicalConnection:stanCompon

PhysicalConnection

id ID!
signalName String
startComponent Component }
endComponent Component

startConnectorVariant ConnectorVariant |

endConnectorVariant ConnectorVariant |

startPinVariant PinVariant |
endPinVariant PinVariant |
wire Wire! |
startPin Pin! |
endPin Pin! |
release Release! |

id D!
nameEn String
nameDe String
objectid String

referenceld D

version String
partNumber String
type ComponentType =

variants [ComponentVariant]

releasedin Release j—

GraphQL Schema as contract

® Start from GraphQL Schema
As contract between graph database ...

In our GraphQL Schema we define the entities,
their attributes and how to connect them. The
schema is managed, described and customer

independent.

@ Extension

uses & extends - - Toolchain GraphQL uses “directives” for extensions. We use

| those to tell our toolchain the details about how to
generate the graph database, generic
queries/mutations and resolvers.

® Generation of DB

Graph DB is created based on the instructions of
the schema.

e -— s - - -

® Generation of resolvers

Where possible, resolvers are generated.
Customization for special business queries are
possible.

PROCESSING PIPE

As contract between graph database, data ingest ...

uses & extends -)[Toolchain]

MAPPING
uses structure from = FILE - ‘maps it to *
I ' S
XML INPUT [: GraphQL aligns >
FLE [€-—-—---"7 \| ----- schema v
! —

»] .USeS ~
™o ,) Resolvers - -uses - - >R T

VoS /

\ S~ o

N ~-- K GraphQL
\ -~

. S o ! A
Vo
v Mo
\ N NN
A Y
\

\
A 4 \ 4 + 1

STEP 0 L STEP 1 L STEP 2 L STEP 3
EXPECTATIONS MAPPER POST PROCESSING INGEST

Mapping File

Links the structure of the input file to the desired
format for the GraphQL mutations. Defines the
entities and their relations in a RML like way.

Step O &1

Checks the input file, for expected fields and
values. Uses the the mapping file for the creation of
entities based on the input.

Step 2

Does the postprocessing and optimization (e.g.
local uniqueness of the identifier)

Step 3

Ingests the data over mutations.

GraphQL Schema as contract

As contract between graph database, data ingest, other (customer) data sources ...

Sub-graphs

Studio Backend

oL oL L&

GraphQL Schema as contract

As contract between graph database, data ingest, other (customer) data sources and applications (low code)

Engineering
Intelligence
Network

'..""-.(DATA I\/I.APPINGD-:.;°..
o o
(@)

SPECIFICATION (VSS)

YAML SPECIFICATION RSN Bl A,

Vehicle.Drivetrain. Transmission.Speed B e S | d e S tO O I m a | n te n a n Ce,

type: sensor
datatype: float

e * Limited modeling capabilities with regards to
description: The vehicle speed as measured by the drivetrain . . .
relationships (only parent <> child)

VEHICLE Multidomain reference almost impossible

_—
/\\

CHASSIS

YAML SPECIFICATION PROs & CONS

DRIVETRAIN Easy to read, parse and understand.

Tooling available and useable beyond
vehicle signals.

w
Only text, well maintainable in common ﬁ
\ development tools and version management. s

ISOPEN T~ But, limited modelling capabilities with regard to i ..
relationships. * Steep learning curve * Similar syntax
PRESSURE _ * Deep expertise required * Real graphs
Hard to refer from one domain to another.] | . . V] |t d .
* Little traction in . ulti-domain
ible and protocol agnostic way of describing standardization * Alot of tooling available

 Query definition part of
the schema language

Proposal

\
-

\
\
~ \
/“~\ \
Infrastructure | =~/ PO
JI / RN
/ -~
II / ”/

1 ,/
/ / -
/ _-"
-~ Extensions
Vehicle

Signal
| @ Specificatior OSS Tooling

Conceptual area Application area

DN

Vehicle (All VSS
Signal :L VSS-tools spec as

Custom mechanism to
ignore the over head

Today -->

S

Specification schema

We are looking forward to hearing from you

Your team from SPREAD

Philipp Noll Marius Booms
Co-Founder & Managing Director Account Executive
philipp@spread.ai marius@spread.ai

+49 151 650 44441

9 Prinzessinnenstral3e 8-14

£4 : @l - .
10969 Berlin 1?) spread.ai et Info@spread.ai

mailto:info@spread.ai
http://www.spread.ai/
mailto:philipp@spread.ai
mailto:marius@spread.ai

