How IVY manages signals generated in a vehicle and how Software Sensors identify what signals they need in order to implement their Insights.
AGENDA

- Intro to IVY and QNX
- Why COVESA VSS?
- IVY VSS Enhancements
- Discussion
A FOUNDATIONAL DATA INSIGHTS PLATFORM FOR THE SOFTWARE-DEFINED VEHICLE

Real time insights & ML for OEM and third-party solutions
BLACKBERRY QNX IS THE WORLD’S #1 AUTOMOTIVE SOFTWARE SUPPLIER

- 270+ Vehicle Makes & Models
- 10/10 Top Automakers
- 24/25 Top EV Automakers
- 235M+ Vehicles
- 100% SOP Deadlines
- 45+ Automakers
- 7/7 Top Tier-1s
DRIVING THE SOFTWARE-DEFINED VEHICLE

CONTINUALLY EVOLVING AUTOMOTIVE BUSINESS CHALLENGES

- Increase emphasis on functional safety & security
- Reduce complexity & cost
- Enhance user experience
- Facilitate new revenue models
- Implement with velocity
- Harness the power of the cloud and the edge

© 2023 BlackBerry Limited. All Rights Reserved.
IVA SIMPLIFIES LAUNCHING NEW SERVICES BY PROVIDING APPLICATIONS WITH THE VEHICLE DATA & INSIGHTS THEY NEED

IVA Provides automakers:

- Secure access to normalized data across multiple vehicle domains
- Cloud deployment of ML software sensors in the vehicle
- The ability to process data on the edge to generate actionable insights
- Enhanced services & applications using rich data insights
POSITIVE OUTCOMES FOR OEMS

FASTER INNOVATION
- Accelerate product development & delivery
- Lower developer friction

IMPROVED ECONOMICS
- Lower operating and data costs
- Turn upfront investment into a variable expense

IN-VEHICLE EXPERIENCES
- Update services throughout the vehicle lifecycle
- Enable monetizable services

CONTROL OF TECHNOLOGY STACK
- OEM control of data and permissions
- Agnostic to underlying cloud infrastructure, OS and hardware

SCALE & ECOSYSTEM
- Single platform for all auto domains
- Access to solution ecosystem
REDUCE UPFRONT INVESTMENT AND ACCELERATE YOUR ROADMAP

BLACKBERRY IVY

ECOSYSTEM

IVY PARTNERS

Prognostics

EV Range Application

In-Car Payments

Occupant Identity

Build and deploy your own custom insights

Use IVY as a platform for engaging partners

Leverage the growing list of IVY ecosystem partners

OEM VEHICLE
WHY COVES A AND V S? - OPPORTUNITIES

Why COVES A and V S?

Adoption leapfrogs development of own
Industry interest and adoption by OEMs makes it effectively a standard
Normalized signal data makes higher level applications more portable

Opportunities for development

COVES A V S still in early stages of development
Right time to influence implementation and industry adoption
Access control (permission definition on a per-node basis)
BLACKBERRY ENHANCEMENTS TO VSS/SIGNAL CATALOG

Per-signal permission assignment
• Each node has a single read permission
• Actuators have a single write permission
• Permissions are inherited from branch, simplifying permission assignment

Signal semantic uniqueness
• Across signal catalog provenance (COVESA, BlackBerry, OEM, Tier 1, etc.)
• Across signal catalog versions
• Allows differentiation of signal semantics that have changed across provenance and version
• Allows application and software sensor portability (optionality support)

Additional signals
• Support for signals requested by customers

Deletion of signals
• Allows for in-vehicle signals in catalog to match exactly signals generated by vehicle
BLACKBERRY ENHANCEMENTS TO VSS/SIGNAL CATALOG

Signal semantics can change across signal catalog versions and provenances

- Some OEMs may prefer to use different units (mph instead of km/h, for example)
- Signal data type may evolve over time and thus versions (change from integer to float, for example)
- Affects application portability

Introspection of each signal's semantic is a burden on applications

- We expect most signal definitions will not change over time
- But must still be prepared to handle change
- Main issue is detection of change or differences

Node path name (and thus UUID) is insufficient to determine signal semantics

- Other elements, such as type, data type, unit, min, max, allowed values are semantically relevant

EUUUID is a 64 bit hash of the node path name and semantical elements of each node

- Easier to manipulate than 128-bit UUID
- Can be used as an index in tables
- Guarantees uniqueness (within hashing limitations)
PORTABLE INTELLIGENT INSIGHTS

Two discrete problems:
• Developer coding for two possible inputs
• OEM deploying software sensor in two different regions

Consistent insight regardless of the underlying HW/FW

Software Sensor
Developed in one region
Now deployed in both regions

Signal Service
Signal Catalog
Signal Connector
Vehicle Data Source

mph

Km/h
PERMISSION SUPPORT AND EUUID GENERATION

Permissions File

"x-read-permission": [

 "permission": "Vehicle.READ",
 "nodes": [
 "Vehicle"
]
],

{
 "permission": "Vehicle.PII.READ",
 "nodes": [
 "Vehicle.VehicleIdentification",
 "Vehicle.Driver.Identifier"
]
}

Signal Catalog File

"Speed": {
 "datatype": "float",
 "description": "Vehicle speed.",
 "type": "sensor",
 "unit": "km/h",
 "uuid": "efe50798638d55fab18ab7d43cc490e9",
 "x-euuid": "86e92e0ee67d30dd",
 "x-read-permission": "Vehicle.READ"
},
EUUUID GENERATION AND PERMISSION ASSIGNMENT

Original signal catalog → IVY Tooling → IVY-enhanced signal catalog

```
"Speed": {
  "datatype": "float",
  "description": "Vehicle speed.",
  "type": "sensor",
  "unit": "km/h",
  "uuid": "efe50798638d55fab18ab7d43cc490e9"
},
```

```
"Speed": {
  "datatype": "float",
  "description": "Vehicle speed.",
  "type": "sensor",
  "unit": "km/h",
  "uuid": "efe50798638d55fab18ab7d43cc490e9",
  "x-euuid": "86e92e0ee67d30dd",
  "x-read-permission": "Vehicle.READ"
},
```
DETECT SOFTWARE SENSOR DEPLOYMENT LIMITATIONS

Reference signal catalog

- Vehicle.Speed (EUUUID-X1)
- Vehicle.CargoVolume (EUUUID-Y)
- Vehicle.VehicleIdentification.VIN (EUUUID-Z)

OEM Signal Catalog

- Vehicle.Speed (EUUUID-X2)
- Vehicle.VehicleIdentification.VIN (EUUUID-Z)

List or selection of signals of interest

- Vehicle.Speed
- Vehicle.CargoVolume
- Vehicle.VehicleIdentification.VIN

Software sensor

Software sensor and manifest

- Vehicle.Speed (EUUUID-X1 or EUUUID-X2)
- Vehicle.VehicleIdentification.VIN (EUUUID-Z)

Report

- EUUUID-X is not a match
- EUUUID-Y is absent
- EUUUID-Z matches
EUUUIDS IN A MANIFEST

```json
{
    "EUUUIDs": {
        "allOf": [
            {
                "oneOf": [
                    {
                        "Vehicle.Speed": "EUUUID-X1"
                    },
                    {
                        "Vehicle.Speed": "EUUUID-X2"
                    }
                ]
            },
            {
                "Vehicle.VehicleIdentification.VIN": "EUUUID-Z"
            }
        ],
        "anyOf": [
            {
                "Vehicle.CargoVolume": "EUUUID-Y"
            }
        ]
    }
}
```
PORTABLE SOFTWARE SENSOR CODE EXAMPLE

```cpp
float vehicleSpeed = getSignal("Vehicle.Speed");

auto datatype = getDataType("Vehicle.Speed");

if (datatype == "mph")
{
    vehicleSpeed = vehicleSpeed * 1.60934;
}
```

Write this conversion only when needed, not across the whole signal set.
DISCUSSION