
Automotive Push Notifications

BMW
20th November 2023

| 1Copyright ©2022 COVESA

| 2

Update: Automotive Push Notifications
Current Status TODO

• We need to define the new Automotive Standard
• Inspiration:

• RFC8030
• RFC8291
• RFC8292
• UnifiedPush

Upcoming

• Large consensus that a specification based approach like
UnifiedPush is the way to go

• Feedback so far suggests that OEMs prefer to implement
their own solution

• POC1 with UnifiedPush successfully completed

• POC2 with mavi.io

| 4

My Experience

Stakeholders Questions & Answers

Onboard

Backend

Security

The ‘Distributor’ app should be a
system service and must be able to

send/receive Android Intents

Ask them:
• What infrastructure does already exist that connects the car to

your backend?
• Our approach is most likely compatible with that!

• Onboard should not be a big issue depending on whether a
bi-directional communication channel between the car and
the OEM backend already exists

• Implements an Android Intent based API

| 5

My Experience

Stakeholders Questions & Answers

Backend

Onboard

Security

There must be a publicly
accessible backend server

• The backend implementation is probably the most work
• The backend team needs to develop a new backend service

that supports all features COVESA agrees upon

You will need to explain to them what you need:
• They will need a thorough explanation of UnifiedPush

and/or WebPush
• Especially how URL endpoints are mapped to cars and apps
• If they want to know how such a backend might look like:

• Refer them to WebPush/UnifiedPush. For both open
source backends exist

• Also mention RFC8030

| 6

My Experience

Stakeholders Questions & Answers

Security

Onboard

Backend

The public push server will be
connected to the car and send

unknown payloads to it

They will ask you about:
• Application Server Authentication:

• This is what RFC8292 does (VAPID)
• Message encryption

• This is what RFC8291 specifies

Because the backend is (directly) connected to a car, security is
very relevant!

| 7

VAPID: Voluntary Application Server Identification
Who sends the notification?

OEM
Push Server

3rd Party
Application
Server

OEM custom
interface

3rd party custom
interface

Are they allowed to send notifications to the car?

Create a Public/Private key pair

Include the public key in the app and include it
when subscribing to push notifications

Create a new URL endpoint that only
accepts requests signed with the private key
associated with the provided public key

Include a signed JWT containing some
contact information in every push
notification request

OEM
Distributor

App

3rd Party
 Automotive
 App

| 8

Proposal for Automotive Push Notifications
• Application server: This is the server that hosts the application – the

3rd party backend

• Automotive application: The (3rd party) application receiving the
push notifications. The application gets started by the distributor on
incoming push notifications if it is not running

• Push server: This is the server that listens for incoming push
messages and forwards them to the connected Push Distributor
running in the car

• Distributor: This is the application that forwards push messages to
the registered end user application. It is the application which is
connected to the Push Server and must be running at all times

Provided by the OEM Provided by the 3rd party

OEM
Push Server

OEM
Distributor

App

3rd Party
 Automotive
 App

3rd Party
Application
Server

RFC8030

• Use RFC8030 in the backend
à Provides full compatibility with existing services!
à Make RFC8292 (VAPID) mandatory!

• Adapt and extend the existing UnifiedPush
protocol on the client side to support all features
from RFC8030

OEM custom
interface

3rd party custom
interface

Automotive
 Protocol

Thank you!

Backup

| 11

POC 2

ntfy distributor
.apk

ntfy.sh

1. Use ntfy.sh as the push server and distributor
• Easily installable on the head unit as an .apk1
• Provides a free push server we can use for the

POC

2. Install the 3rd party application POC that implements
UnifiedPush

à Evaluate the end-user experience

Time requirements: <1 hour once the 3rd party
application POC is available

3rd party

Existing solution for OEM part / 3rd party application POC

1 https://f-droid.org/de/packages/io.heckel.ntfy/

head unit

3rd party app

OEM

https://ntfy.sh/
https://f-droid.org/de/packages/io.heckel.ntfy/

| 12

UnifiedPush

Source: https://unifiedpush.org/

• Application server: This is the server that hosts the
application – the 3rd party backend

• Automotive application: The (3rd party) application receiving
the push notifications. The application gets started by the
distributor on incoming push notifications if it is not running

• Push server: This is the server that listens for incoming push
messages and forwards them to the connected Push
Distributor running in the car

• Distributor: This is the application that forwards push
messages to the registered end user application. It is the
application which is connected to the Push Server and must
be running at all times

• UP API & UP Protocol: The only thing COVESA
needs to standardize

Push server Application Server

Automotive
app

Provided by the OEM Provided by the 3rd party

https://unifiedpush.org/

